Appendix A. Construction Variables

This appendix contains descriptions of all of the construction variables that are potentially available "out of the box" in this version of SCons. Whether or not setting a construction variable in a construction environment will actually have an effect depends on whether any of the Tools and/or Builders that use the variable have been included in the construction environment.

In this appendix, we have appended the initial $ (dollar sign) to the beginning of each variable name when it appears in the text, but left off the dollar sign in the left-hand column where the name appears for each entry.

__LDMODULEVERSIONFLAGS

This construction variable automatically introduces $_LDMODULEVERSIONFLAGS if $LDMODULEVERSION is set. Othervise it evaluates to an empty string.

__SHLIBVERSIONFLAGS

This construction variable automatically introduces $_SHLIBVERSIONFLAGS if $SHLIBVERSION is set. Othervise it evaluates to an empty string.

APPLELINK_COMPATIBILITY_VERSION

On Mac OS X this is used to set the linker flag: -compatibility_version

The value is specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z can be omitted or between 1 and 255. This value will be derived from $SHLIBVERSION if not specified. The lowest digit will be dropped and replaced by a 0.

If the $APPLELINK_NO_COMPATIBILITY_VERSION is set then no -compatibility_version will be output.

See MacOS's ld manpage for more details

_APPLELINK_COMPATIBILITY_VERSION

A macro (by default a generator function) used to create the linker flags to specify apple's linker's -compatibility_version flag. The default generator uses $APPLELINK_COMPATIBILITY_VERSION and $APPLELINK_NO_COMPATIBILITY_VERSION and $SHLIBVERSION to determine the correct flag.

APPLELINK_CURRENT_VERSION

On Mac OS X this is used to set the linker flag: -current_version

The value is specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z can be omitted or between 1 and 255. This value will be set to $SHLIBVERSION if not specified.

If the $APPLELINK_NO_CURRENT_VERSION is set then no -current_version will be output.

See MacOS's ld manpage for more details

_APPLELINK_CURRENT_VERSION

A macro (by default a generator function) used to create the linker flags to specify apple's linker's -current_version flag. The default generator uses $APPLELINK_CURRENT_VERSION and $APPLELINK_NO_CURRENT_VERSION and $SHLIBVERSION to determine the correct flag.

APPLELINK_NO_COMPATIBILITY_VERSION

Set this to any True (1|True|non-empty string) value to disable adding -compatibility_version flag when generating versioned shared libraries.

This overrides $APPLELINK_COMPATIBILITY_VERSION.

APPLELINK_NO_CURRENT_VERSION

Set this to any True (1|True|non-empty string) value to disable adding -current_version flag when generating versioned shared libraries.

This overrides $APPLELINK_CURRENT_VERSION.

AR

The static library archiver.

ARCHITECTURE

Specifies the system architecture for which the package is being built. The default is the system architecture of the machine on which SCons is running. This is used to fill in the Architecture: field in an Ipkg control file, and the BuildArch: field in the RPM .spec file, as well as forming part of the name of a generated RPM package file.

See the Package builder.

ARCOM

The command line used to generate a static library from object files.

ARCOMSTR

The string displayed when a static library is generated from object files. If this is not set, then $ARCOM (the command line) is displayed.

env = Environment(ARCOMSTR = "Archiving $TARGET")
ARFLAGS

General options passed to the static library archiver.

AS

The assembler.

ASCOM

The command line used to generate an object file from an assembly-language source file.

ASCOMSTR

The string displayed when an object file is generated from an assembly-language source file. If this is not set, then $ASCOM (the command line) is displayed.

env = Environment(ASCOMSTR = "Assembling $TARGET")
ASFLAGS

General options passed to the assembler.

ASPPCOM

The command line used to assemble an assembly-language source file into an object file after first running the file through the C preprocessor. Any options specified in the $ASFLAGS and $CPPFLAGS construction variables are included on this command line.

ASPPCOMSTR

The string displayed when an object file is generated from an assembly-language source file after first running the file through the C preprocessor. If this is not set, then $ASPPCOM (the command line) is displayed.

env = Environment(ASPPCOMSTR = "Assembling $TARGET")
ASPPFLAGS

General options when an assembling an assembly-language source file into an object file after first running the file through the C preprocessor. The default is to use the value of $ASFLAGS.

BIBTEX

The bibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

BIBTEXCOM

The command line used to call the bibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

BIBTEXCOMSTR

The string displayed when generating a bibliography for TeX or LaTeX. If this is not set, then $BIBTEXCOM (the command line) is displayed.

env = Environment(BIBTEXCOMSTR = "Generating bibliography $TARGET")
BIBTEXFLAGS

General options passed to the bibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

BUILDERS

A dictionary mapping the names of the builders available through the construction environment to underlying Builder objects. Custom builders need to be added to this to make them available.

A platform-dependent default list of builders such as Program, Library etc. is used to populate this construction variable when the construction environment is initialized via the presence/absence of the tools those builders depend on. $BUILDERS can be examined to learn which builders will actually be available at run-time.

Note that if you initialize this construction variable through assignment when the construction environment is created, that value for $BUILDERS will override any defaults:

bld = Builder(action='foobuild < $SOURCE > $TARGET')
env = Environment(BUILDERS={'NewBuilder': bld})

To instead use a new Builder object in addition to the default Builders, add your new Builder object like this:

env = Environment()
env.Append(BUILDERS={'NewBuilder': bld})

or this:

env = Environment()
env['BUILDERS']['NewBuilder'] = bld
CACHEDIR_CLASS

The class type that SCons should use when instantiating a new CacheDir in this construction environment. Must be a subclass of the SCons.CacheDir.CacheDir class.

CC

The C compiler.

CCCOM

The command line used to compile a C source file to a (static) object file. Any options specified in the $CFLAGS, $CCFLAGS and $CPPFLAGS construction variables are included on this command line. See also $SHCCCOM for compiling to shared objects.

CCCOMSTR

If set, the string displayed when a C source file is compiled to a (static) object file. If not set, then $CCCOM (the command line) is displayed. See also $SHCCCOMSTR for compiling to shared objects.

env = Environment(CCCOMSTR = "Compiling static object $TARGET")
CCDEPFLAGS

Options to pass to C or C++ compiler to generate list of dependency files.

This is set only by compilers which support this functionality. (gcc, clang, and msvc currently)

CCFLAGS

General options that are passed to the C and C++ compilers. See also $SHCCFLAGS for compiling to shared objects.

CCPCHFLAGS

Options added to the compiler command line to support building with precompiled headers. The default value expands expands to the appropriate Microsoft Visual C++ command-line options when the $PCH construction variable is set.

CCPDBFLAGS

Options added to the compiler command line to support storing debugging information in a Microsoft Visual C++ PDB file. The default value expands expands to appropriate Microsoft Visual C++ command-line options when the $PDB construction variable is set.

The Microsoft Visual C++ compiler option that SCons uses by default to generate PDB information is /Z7. This works correctly with parallel (-j) builds because it embeds the debug information in the intermediate object files, as opposed to sharing a single PDB file between multiple object files. This is also the only way to get debug information embedded into a static library. Using the /Zi instead may yield improved link-time performance, although parallel builds will no longer work.

You can generate PDB files with the /Zi switch by overriding the default $CCPDBFLAGS variable as follows:

env['CCPDBFLAGS'] = ['${(PDB and "/Zi /Fd%s" % File(PDB)) or ""}']

An alternative would be to use the /Zi to put the debugging information in a separate .pdb file for each object file by overriding the $CCPDBFLAGS variable as follows:

env['CCPDBFLAGS'] = '/Zi /Fd${TARGET}.pdb'
CCVERSION

The version number of the C compiler. This may or may not be set, depending on the specific C compiler being used.

CFILESUFFIX

The suffix for C source files. This is used by the internal CFile builder when generating C files from Lex (.l) or YACC (.y) input files. The default suffix, of course, is .c (lower case). On case-insensitive systems (like Windows), SCons also treats .C (upper case) files as C files.

CFLAGS

General options that are passed to the C compiler (C only; not C++). See also $SHCFLAGS for compiling to shared objects.

CHANGE_SPECFILE

A hook for modifying the file that controls the packaging build (the .spec for RPM, the control for Ipkg, the .wxs for MSI). If set, the function will be called after the SCons template for the file has been written.

See the Package builder.

CHANGED_SOURCES

A reserved variable name that may not be set or used in a construction environment. (See the manpage section "Variable Substitution" for more information).

CHANGED_TARGETS

A reserved variable name that may not be set or used in a construction environment. (See the manpage section "Variable Substitution" for more information).

CHANGELOG

The name of a file containing the change log text to be included in the package. This is included as the %changelog section of the RPM .spec file.

See the Package builder.

COMPILATIONDB_COMSTR

The string displayed when the CompilationDatabase builder's action is run.

COMPILATIONDB_PATH_FILTER

A string which instructs CompilationDatabase to only include entries where the output member matches the pattern in the filter string using fnmatch, which uses glob style wildcards.

The default value is an empty string '', which disables filtering.

COMPILATIONDB_USE_ABSPATH

A boolean flag to instruct CompilationDatabase whether to write the file and output members in the compilation database using absolute or relative paths.

The default value is False (use relative paths)

_concat

A function used to produce variables like $_CPPINCFLAGS. It takes four mandatory arguments, and up to 4 additional optional arguments: 1) a prefix to concatenate onto each element, 2) a list of elements, 3) a suffix to concatenate onto each element, 4) an environment for variable interpolation, 5) an optional function that will be called to transform the list before concatenation, 6) an optionally specified target (Can use TARGET), 7) an optionally specified source (Can use SOURCE), 8) optional affect_signature flag which will wrap non-empty returned value with $( and $) to indicate the contents should not affect the signature of the generated command line.

        env['_CPPINCFLAGS'] = '${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs, TARGET, SOURCE, affect_signature=False)}'
    
CONFIGUREDIR

The name of the directory in which Configure context test files are written. The default is .sconf_temp in the top-level directory containing the SConstruct file.

If variant directories are in use, and the configure check results should not be shared between variants, you can set $CONFIGUREDIR and $CONFIGURELOG so they are unique per variant directory.

CONFIGURELOG

The name of the Configure context log file. The default is config.log in the top-level directory containing the SConstruct file.

If variant directories are in use, and the configure check results should not be shared between variants, you can set $CONFIGUREDIR and $CONFIGURELOG so they are unique per variant directory.

_CPPDEFFLAGS

An automatically-generated construction variable containing the C preprocessor command-line options to define values. The value of $_CPPDEFFLAGS is created by respectively prepending and appending $CPPDEFPREFIX and $CPPDEFSUFFIX to each definition in $CPPDEFINES.

CPPDEFINES

A platform independent specification of C preprocessor macro definitions. The definitions are added to command lines through the automatically-generated $_CPPDEFFLAGS construction variable, which is constructed according to the contents of $CPPDEFINES:

  • If $CPPDEFINES is a string, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction variables are respectively prepended and appended to each definition in $CPPDEFINES, split on whitespace.

    # Adds -Dxyz to POSIX compiler command lines,
    # and /Dxyz to Microsoft Visual C++ command lines.
    env = Environment(CPPDEFINES='xyz')
    
  • If $CPPDEFINES is a list, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction variables are respectively prepended and appended to each element in the list. If any element is a tuple (or list) then the first item of the tuple is the macro name and the second is the macro definition. If the definition is not omitted or None, the name and definition are combined into a single name=definition item before the preending/appending.

    # Adds -DB=2 -DA to POSIX compiler command lines,
    # and /DB=2 /DA to Microsoft Visual C++ command lines.
    env = Environment(CPPDEFINES=[('B', 2), 'A'])
    
  • If $CPPDEFINES is a dictionary, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction variables are respectively prepended and appended to each key from the dictionary. If the value for a key is not None, then the key (macro name) and the value (macros definition) are combined into a single name=definition item before the prepending/appending.

    # Adds -DA -DB=2 to POSIX compiler command lines,
    # or /DA /DB=2 to Microsoft Visual C++ command lines.
    env = Environment(CPPDEFINES={'B':2, 'A':None})
    

Depending on how contents are added to $CPPDEFINES, it may be transformed into a compound type, for example a list containing strings, tuples and/or dictionaries. SCons can correctly expand such a compound type.

Note that SCons may call the compiler via a shell. If a macro definition contains characters such as spaces that have meaning to the shell, or is intended to be a string value, you may need to use the shell's quoting syntax to avoid interpretation by the shell before the preprocessor sees it. Function-like macros are not supported via this mechanism (and some compilers do not even implement that functionality via the command lines). When quoting, note that one set of quote characters are used to define a Python string, then quotes embedded inside that would be consumed by the shell unless escaped. These examples may help illustrate:

env = Environment(CPPDEFINES=['USE_ALT_HEADER=\\"foo_alt.h\\"'])
env = Environment(CPPDEFINES=[('USE_ALT_HEADER', '\\"foo_alt.h\\"')])

:Changed in version 4.5: SCons no longer sorts $CPPDEFINES values entered in dictionary form. Python now preserves dictionary keys in the order they are entered, so it is no longer necessary to sort them to ensure a stable command line.

CPPDEFPREFIX

The prefix used to specify preprocessor macro definitions on the C compiler command line. This will be prepended to each definition in the $CPPDEFINES construction variable when the $_CPPDEFFLAGS variable is automatically generated.

CPPDEFSUFFIX

The suffix used to specify preprocessor macro definitions on the C compiler command line. This will be appended to each definition in the $CPPDEFINES construction variable when the $_CPPDEFFLAGS variable is automatically generated.

CPPFLAGS

User-specified C preprocessor options. These will be included in any command that uses the C preprocessor, including not just compilation of C and C++ source files via the $CCCOM, $SHCCCOM, $CXXCOM and $SHCXXCOM command lines, but also the $FORTRANPPCOM, $SHFORTRANPPCOM, $F77PPCOM and $SHF77PPCOM command lines used to compile a Fortran source file, and the $ASPPCOM command line used to assemble an assembly language source file, after first running each file through the C preprocessor. Note that this variable does not contain -I (or similar) include search path options that scons generates automatically from $CPPPATH. See $_CPPINCFLAGS, below, for the variable that expands to those options.

_CPPINCFLAGS

An automatically-generated construction variable containing the C preprocessor command-line options for specifying directories to be searched for include files. The value of $_CPPINCFLAGS is created by respectively prepending and appending $INCPREFIX and $INCSUFFIX to each directory in $CPPPATH.

CPPPATH

The list of directories that the C preprocessor will search for include directories. The C/C++ implicit dependency scanner will search these directories for include files. In general it's not advised to put include directory directives directly into $CCFLAGS or $CXXFLAGS as the result will be non-portable and the directories will not be searched by the dependency scanner. $CPPPATH should be a list of path strings, or a single string, not a pathname list joined by Python's os.pathsep.

Note: directory names in $CPPPATH will be looked-up relative to the directory of the SConscript file when they are used in a command. To force scons to look-up a directory relative to the root of the source tree use the # prefix:

env = Environment(CPPPATH='#/include')

The directory look-up can also be forced using the Dir function:

include = Dir('include')
env = Environment(CPPPATH=include)

The directory list will be added to command lines through the automatically-generated $_CPPINCFLAGS construction variable, which is constructed by respectively prepending and appending the values of the $INCPREFIX and $INCSUFFIX construction variables to each directory in $CPPPATH. Any command lines you define that need the $CPPPATH directory list should include $_CPPINCFLAGS:

env = Environment(CCCOM="my_compiler $_CPPINCFLAGS -c -o $TARGET $SOURCE")
CPPSUFFIXES

The list of suffixes of files that will be scanned for C preprocessor implicit dependencies (#include lines). The default list is:

[".c", ".C", ".cxx", ".cpp", ".c++", ".cc",
 ".h", ".H", ".hxx", ".hpp", ".hh",
 ".F", ".fpp", ".FPP",
 ".m", ".mm",
 ".S", ".spp", ".SPP"]
CXX

The C++ compiler. See also $SHCXX for compiling to shared objects..

CXXCOM

The command line used to compile a C++ source file to an object file. Any options specified in the $CXXFLAGS and $CPPFLAGS construction variables are included on this command line. See also $SHCXXCOM for compiling to shared objects..

CXXCOMSTR

If set, the string displayed when a C++ source file is compiled to a (static) object file. If not set, then $CXXCOM (the command line) is displayed. See also $SHCXXCOMSTR for compiling to shared objects..

env = Environment(CXXCOMSTR = "Compiling static object $TARGET")
CXXFILESUFFIX

The suffix for C++ source files. This is used by the internal CXXFile builder when generating C++ files from Lex (.ll) or YACC (.yy) input files. The default suffix is .cc. SCons also treats files with the suffixes .cpp, .cxx, .c++, and .C++ as C++ files, and files with .mm suffixes as Objective C++ files. On case-sensitive systems (Linux, UNIX, and other POSIX-alikes), SCons also treats .C (upper case) files as C++ files.

CXXFLAGS

General options that are passed to the C++ compiler. By default, this includes the value of $CCFLAGS, so that setting $CCFLAGS affects both C and C++ compilation. If you want to add C++-specific flags, you must set or override the value of $CXXFLAGS. See also $SHCXXFLAGS for compiling to shared objects..

CXXVERSION

The version number of the C++ compiler. This may or may not be set, depending on the specific C++ compiler being used.

DC

The D compiler to use. See also $SHDC for compiling to shared objects.

DCOM

The command line used to compile a D file to an object file. Any options specified in the $DFLAGS construction variable is included on this command line. See also $SHDCOM for compiling to shared objects.

DCOMSTR

If set, the string displayed when a D source file is compiled to a (static) object file. If not set, then $DCOM (the command line) is displayed. See also $SHDCOMSTR for compiling to shared objects.

DDEBUG

List of debug tags to enable when compiling.

DDEBUGPREFIX

DDEBUGPREFIX.

DDEBUGSUFFIX

DDEBUGSUFFIX.

DESCRIPTION

A long description of the project being packaged. This is included in the relevant section of the file that controls the packaging build.

See the Package builder.

DESCRIPTION_lang

A language-specific long description for the specified lang. This is used to populate a %description -l section of an RPM .spec file.

See the Package builder.

DFILESUFFIX

DFILESUFFIX.

DFLAGPREFIX

DFLAGPREFIX.

DFLAGS

General options that are passed to the D compiler.

DFLAGSUFFIX

DFLAGSUFFIX.

DI_FILE_DIR

Path where .di files will be generated

DI_FILE_DIR_PREFIX

Prefix to send the di path argument to compiler

DI_FILE_DIR_SUFFFIX

Suffix to send the di path argument to compiler

DI_FILE_SUFFIX

Suffix of d include files default is .di

DINCPREFIX

DINCPREFIX.

DINCSUFFIX

DLIBFLAGSUFFIX.

Dir

A function that converts a string into a Dir instance relative to the target being built.

Dirs

A function that converts a list of strings into a list of Dir instances relative to the target being built.

DLIB

Name of the lib tool to use for D codes.

DLIBCOM

The command line to use when creating libraries.

DLIBDIRPREFIX

DLIBLINKPREFIX.

DLIBDIRSUFFIX

DLIBLINKSUFFIX.

DLIBFLAGPREFIX

DLIBFLAGPREFIX.

DLIBFLAGSUFFIX

DLIBFLAGSUFFIX.

DLIBLINKPREFIX

DLIBLINKPREFIX.

DLIBLINKSUFFIX

DLIBLINKSUFFIX.

DLINK

Name of the linker to use for linking systems including D sources. See also $SHDLINK for linking shared objects.

DLINKCOM

The command line to use when linking systems including D sources. See also $SHDLINKCOM for linking shared objects.

DLINKFLAGPREFIX

DLINKFLAGPREFIX.

DLINKFLAGS

List of linker flags. See also $SHDLINKFLAGS for linking shared objects.

DLINKFLAGSUFFIX

DLINKFLAGSUFFIX.

DOCBOOK_DEFAULT_XSL_EPUB

The default XSLT file for the DocbookEpub builder within the current environment, if no other XSLT gets specified via keyword.

DOCBOOK_DEFAULT_XSL_HTML

The default XSLT file for the DocbookHtml builder within the current environment, if no other XSLT gets specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLCHUNKED

The default XSLT file for the DocbookHtmlChunked builder within the current environment, if no other XSLT gets specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLHELP

The default XSLT file for the DocbookHtmlhelp builder within the current environment, if no other XSLT gets specified via keyword.

DOCBOOK_DEFAULT_XSL_MAN

The default XSLT file for the DocbookMan builder within the current environment, if no other XSLT gets specified via keyword.

DOCBOOK_DEFAULT_XSL_PDF

The default XSLT file for the DocbookPdf builder within the current environment, if no other XSLT gets specified via keyword.

DOCBOOK_DEFAULT_XSL_SLIDESHTML

The default XSLT file for the DocbookSlidesHtml builder within the current environment, if no other XSLT gets specified via keyword.

DOCBOOK_DEFAULT_XSL_SLIDESPDF

The default XSLT file for the DocbookSlidesPdf builder within the current environment, if no other XSLT gets specified via keyword.

DOCBOOK_FOP

The path to the PDF renderer fop or xep, if one of them is installed (fop gets checked first).

DOCBOOK_FOPCOM

The full command-line for the PDF renderer fop or xep.

DOCBOOK_FOPCOMSTR

The string displayed when a renderer like fop or xep is used to create PDF output from an XML file.

DOCBOOK_FOPFLAGS

Additonal command-line flags for the PDF renderer fop or xep.

DOCBOOK_XMLLINT

The path to the external executable xmllint, if it's installed. Note, that this is only used as last fallback for resolving XIncludes, if no lxml Python binding can be imported in the current system.

DOCBOOK_XMLLINTCOM

The full command-line for the external executable xmllint.

DOCBOOK_XMLLINTCOMSTR

The string displayed when xmllint is used to resolve XIncludes for a given XML file.

DOCBOOK_XMLLINTFLAGS

Additonal command-line flags for the external executable xmllint.

DOCBOOK_XSLTPROC

The path to the external executable xsltproc (or saxon, xalan), if one of them is installed. Note, that this is only used as last fallback for XSL transformations, if no lxml Python binding can be imported in the current system.

DOCBOOK_XSLTPROCCOM

The full command-line for the external executable xsltproc (or saxon, xalan).

DOCBOOK_XSLTPROCCOMSTR

The string displayed when xsltproc is used to transform an XML file via a given XSLT stylesheet.

DOCBOOK_XSLTPROCFLAGS

Additonal command-line flags for the external executable xsltproc (or saxon, xalan).

DOCBOOK_XSLTPROCPARAMS

Additonal parameters that are not intended for the XSLT processor executable, but the XSL processing itself. By default, they get appended at the end of the command line for saxon and saxon-xslt, respectively.

DPATH

List of paths to search for import modules.

DRPATHPREFIX

DRPATHPREFIX.

DRPATHSUFFIX

DRPATHSUFFIX.

DSUFFIXES

The list of suffixes of files that will be scanned for imported D package files. The default list is ['.d'].

DVERPREFIX

DVERPREFIX.

DVERSIONS

List of version tags to enable when compiling.

DVERSUFFIX

DVERSUFFIX.

DVIPDF

The TeX DVI file to PDF file converter.

DVIPDFCOM

The command line used to convert TeX DVI files into a PDF file.

DVIPDFCOMSTR

The string displayed when a TeX DVI file is converted into a PDF file. If this is not set, then $DVIPDFCOM (the command line) is displayed.

DVIPDFFLAGS

General options passed to the TeX DVI file to PDF file converter.

DVIPS

The TeX DVI file to PostScript converter.

DVIPSFLAGS

General options passed to the TeX DVI file to PostScript converter.

ENV

The execution environment - a dictionary of environment variables used when SCons invokes external commands to build targets defined in this construction environment. When $ENV is passed to a command, all list values are assumed to be path lists and are joined using the search path separator. Any other non-string values are coerced to a string.

Note that by default SCons does not propagate the environment in effect when you execute scons (the "shell environment") to the execution environment. This is so that builds will be guaranteed repeatable regardless of the environment variables set at the time scons is invoked. If you want to propagate a shell environment variable to the commands executed to build target files, you must do so explicitly. A common example is the system PATH environment variable, so that scons will find utilities the same way as the invoking shell (or other process):

import os
env = Environment(ENV={'PATH': os.environ['PATH']})

Although it is usually not recommended, you can propagate the entire shell environment in one go:

import os
env = Environment(ENV=os.environ.copy())
ESCAPE

A function that will be called to escape shell special characters in command lines. The function should take one argument: the command line string to escape; and should return the escaped command line.

F03

The Fortran 03 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $F03 if you need to use a specific compiler or compiler version for Fortran 03 files.

F03COM

The command line used to compile a Fortran 03 source file to an object file. You only need to set $F03COM if you need to use a specific command line for Fortran 03 files. You should normally set the $FORTRANCOM variable, which specifies the default command line for all Fortran versions.

F03COMSTR

If set, the string displayed when a Fortran 03 source file is compiled to an object file. If not set, then $F03COM or $FORTRANCOM (the command line) is displayed.

F03FILESUFFIXES

The list of file extensions for which the F03 dialect will be used. By default, this is ['.f03']

F03FLAGS

General user-specified options that are passed to the Fortran 03 compiler. Note that this variable does not contain -I (or similar) include search path options that scons generates automatically from $F03PATH. See $_F03INCFLAGS below, for the variable that expands to those options. You only need to set $F03FLAGS if you need to define specific user options for Fortran 03 files. You should normally set the $FORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F03INCFLAGS

An automatically-generated construction variable containing the Fortran 03 compiler command-line options for specifying directories to be searched for include files. The value of $_F03INCFLAGS is created by appending $INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F03PATH.

F03PATH

The list of directories that the Fortran 03 compiler will search for include directories. The implicit dependency scanner will search these directories for include files. Don't explicitly put include directory arguments in $F03FLAGS because the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in $F03PATH will be looked-up relative to the SConscript directory when they are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only need to set $F03PATH if you need to define a specific include path for Fortran 03 files. You should normally set the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran versions.

env = Environment(F03PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F03PATH=include)

The directory list will be added to command lines through the automatically-generated $_F03INCFLAGS construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory in $F03PATH. Any command lines you define that need the F03PATH directory list should include $_F03INCFLAGS:

env = Environment(F03COM="my_compiler $_F03INCFLAGS -c -o $TARGET $SOURCE")
F03PPCOM

The command line used to compile a Fortran 03 source file to an object file after first running the file through the C preprocessor. Any options specified in the $F03FLAGS and $CPPFLAGS construction variables are included on this command line. You only need to set $F03PPCOM if you need to use a specific C-preprocessor command line for Fortran 03 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-preprocessor command line for all Fortran versions.

F03PPCOMSTR

If set, the string displayed when a Fortran 03 source file is compiled to an object file after first running the file through the C preprocessor. If not set, then $F03PPCOM or $FORTRANPPCOM (the command line) is displayed.

F03PPFILESUFFIXES

The list of file extensions for which the compilation + preprocessor pass for F03 dialect will be used. By default, this is empty.

F08

The Fortran 08 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $F08 if you need to use a specific compiler or compiler version for Fortran 08 files.

F08COM

The command line used to compile a Fortran 08 source file to an object file. You only need to set $F08COM if you need to use a specific command line for Fortran 08 files. You should normally set the $FORTRANCOM variable, which specifies the default command line for all Fortran versions.

F08COMSTR

If set, the string displayed when a Fortran 08 source file is compiled to an object file. If not set, then $F08COM or $FORTRANCOM (the command line) is displayed.

F08FILESUFFIXES

The list of file extensions for which the F08 dialect will be used. By default, this is ['.f08']

F08FLAGS

General user-specified options that are passed to the Fortran 08 compiler. Note that this variable does not contain -I (or similar) include search path options that scons generates automatically from $F08PATH. See $_F08INCFLAGS below, for the variable that expands to those options. You only need to set $F08FLAGS if you need to define specific user options for Fortran 08 files. You should normally set the $FORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F08INCFLAGS

An automatically-generated construction variable containing the Fortran 08 compiler command-line options for specifying directories to be searched for include files. The value of $_F08INCFLAGS is created by appending $INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F08PATH.

F08PATH

The list of directories that the Fortran 08 compiler will search for include directories. The implicit dependency scanner will search these directories for include files. Don't explicitly put include directory arguments in $F08FLAGS because the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in $F08PATH will be looked-up relative to the SConscript directory when they are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only need to set $F08PATH if you need to define a specific include path for Fortran 08 files. You should normally set the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran versions.

env = Environment(F08PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F08PATH=include)

The directory list will be added to command lines through the automatically-generated $_F08INCFLAGS construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory in $F08PATH. Any command lines you define that need the F08PATH directory list should include $_F08INCFLAGS:

env = Environment(F08COM="my_compiler $_F08INCFLAGS -c -o $TARGET $SOURCE")
F08PPCOM

The command line used to compile a Fortran 08 source file to an object file after first running the file through the C preprocessor. Any options specified in the $F08FLAGS and $CPPFLAGS construction variables are included on this command line. You only need to set $F08PPCOM if you need to use a specific C-preprocessor command line for Fortran 08 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-preprocessor command line for all Fortran versions.

F08PPCOMSTR

If set, the string displayed when a Fortran 08 source file is compiled to an object file after first running the file through the C preprocessor. If not set, then $F08PPCOM or $FORTRANPPCOM (the command line) is displayed.

F08PPFILESUFFIXES

The list of file extensions for which the compilation + preprocessor pass for F08 dialect will be used. By default, this is empty.

F77

The Fortran 77 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $F77 if you need to use a specific compiler or compiler version for Fortran 77 files.

F77COM

The command line used to compile a Fortran 77 source file to an object file. You only need to set $F77COM if you need to use a specific command line for Fortran 77 files. You should normally set the $FORTRANCOM variable, which specifies the default command line for all Fortran versions.

F77COMSTR

If set, the string displayed when a Fortran 77 source file is compiled to an object file. If not set, then $F77COM or $FORTRANCOM (the command line) is displayed.

F77FILESUFFIXES

The list of file extensions for which the F77 dialect will be used. By default, this is ['.f77']

F77FLAGS

General user-specified options that are passed to the Fortran 77 compiler. Note that this variable does not contain -I (or similar) include search path options that scons generates automatically from $F77PATH. See $_F77INCFLAGS below, for the variable that expands to those options. You only need to set $F77FLAGS if you need to define specific user options for Fortran 77 files. You should normally set the $FORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F77INCFLAGS

An automatically-generated construction variable containing the Fortran 77 compiler command-line options for specifying directories to be searched for include files. The value of $_F77INCFLAGS is created by appending $INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F77PATH.

F77PATH

The list of directories that the Fortran 77 compiler will search for include directories. The implicit dependency scanner will search these directories for include files. Don't explicitly put include directory arguments in $F77FLAGS because the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in $F77PATH will be looked-up relative to the SConscript directory when they are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only need to set $F77PATH if you need to define a specific include path for Fortran 77 files. You should normally set the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran versions.

env = Environment(F77PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F77PATH=include)

The directory list will be added to command lines through the automatically-generated $_F77INCFLAGS construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory in $F77PATH. Any command lines you define that need the F77PATH directory list should include $_F77INCFLAGS:

env = Environment(F77COM="my_compiler $_F77INCFLAGS -c -o $TARGET $SOURCE")
F77PPCOM

The command line used to compile a Fortran 77 source file to an object file after first running the file through the C preprocessor. Any options specified in the $F77FLAGS and $CPPFLAGS construction variables are included on this command line. You only need to set $F77PPCOM if you need to use a specific C-preprocessor command line for Fortran 77 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-preprocessor command line for all Fortran versions.

F77PPCOMSTR

If set, the string displayed when a Fortran 77 source file is compiled to an object file after first running the file through the C preprocessor. If not set, then $F77PPCOM or $FORTRANPPCOM (the command line) is displayed.

F77PPFILESUFFIXES

The list of file extensions for which the compilation + preprocessor pass for F77 dialect will be used. By default, this is empty.

F90

The Fortran 90 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $F90 if you need to use a specific compiler or compiler version for Fortran 90 files.

F90COM

The command line used to compile a Fortran 90 source file to an object file. You only need to set $F90COM if you need to use a specific command line for Fortran 90 files. You should normally set the $FORTRANCOM variable, which specifies the default command line for all Fortran versions.

F90COMSTR

If set, the string displayed when a Fortran 90 source file is compiled to an object file. If not set, then $F90COM or $FORTRANCOM (the command line) is displayed.

F90FILESUFFIXES

The list of file extensions for which the F90 dialect will be used. By default, this is ['.f90']

F90FLAGS

General user-specified options that are passed to the Fortran 90 compiler. Note that this variable does not contain -I (or similar) include search path options that scons generates automatically from $F90PATH. See $_F90INCFLAGS below, for the variable that expands to those options. You only need to set $F90FLAGS if you need to define specific user options for Fortran 90 files. You should normally set the $FORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F90INCFLAGS

An automatically-generated construction variable containing the Fortran 90 compiler command-line options for specifying directories to be searched for include files. The value of $_F90INCFLAGS is created by appending $INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F90PATH.

F90PATH

The list of directories that the Fortran 90 compiler will search for include directories. The implicit dependency scanner will search these directories for include files. Don't explicitly put include directory arguments in $F90FLAGS because the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in $F90PATH will be looked-up relative to the SConscript directory when they are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only need to set $F90PATH if you need to define a specific include path for Fortran 90 files. You should normally set the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran versions.

env = Environment(F90PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F90PATH=include)

The directory list will be added to command lines through the automatically-generated $_F90INCFLAGS construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory in $F90PATH. Any command lines you define that need the F90PATH directory list should include $_F90INCFLAGS:

env = Environment(F90COM="my_compiler $_F90INCFLAGS -c -o $TARGET $SOURCE")
F90PPCOM

The command line used to compile a Fortran 90 source file to an object file after first running the file through the C preprocessor. Any options specified in the $F90FLAGS and $CPPFLAGS construction variables are included on this command line. You only need to set $F90PPCOM if you need to use a specific C-preprocessor command line for Fortran 90 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-preprocessor command line for all Fortran versions.

F90PPCOMSTR

If set, the string displayed when a Fortran 90 source file is compiled after first running the file through the C preprocessor. If not set, then $F90PPCOM or $FORTRANPPCOM (the command line) is displayed.

F90PPFILESUFFIXES

The list of file extensions for which the compilation + preprocessor pass for F90 dialect will be used. By default, this is empty.

F95

The Fortran 95 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $F95 if you need to use a specific compiler or compiler version for Fortran 95 files.

F95COM

The command line used to compile a Fortran 95 source file to an object file. You only need to set $F95COM if you need to use a specific command line for Fortran 95 files. You should normally set the $FORTRANCOM variable, which specifies the default command line for all Fortran versions.

F95COMSTR

If set, the string displayed when a Fortran 95 source file is compiled to an object file. If not set, then $F95COM or $FORTRANCOM (the command line) is displayed.

F95FILESUFFIXES

The list of file extensions for which the F95 dialect will be used. By default, this is ['.f95']

F95FLAGS

General user-specified options that are passed to the Fortran 95 compiler. Note that this variable does not contain -I (or similar) include search path options that scons generates automatically from $F95PATH. See $_F95INCFLAGS below, for the variable that expands to those options. You only need to set $F95FLAGS if you need to define specific user options for Fortran 95 files. You should normally set the $FORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F95INCFLAGS

An automatically-generated construction variable containing the Fortran 95 compiler command-line options for specifying directories to be searched for include files. The value of $_F95INCFLAGS is created by appending $INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F95PATH.

F95PATH

The list of directories that the Fortran 95 compiler will search for include directories. The implicit dependency scanner will search these directories for include files. Don't explicitly put include directory arguments in $F95FLAGS because the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in $F95PATH will be looked-up relative to the SConscript directory when they are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only need to set $F95PATH if you need to define a specific include path for Fortran 95 files. You should normally set the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran versions.

env = Environment(F95PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F95PATH=include)

The directory list will be added to command lines through the automatically-generated $_F95INCFLAGS construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory in $F95PATH. Any command lines you define that need the F95PATH directory list should include $_F95INCFLAGS:

env = Environment(F95COM="my_compiler $_F95INCFLAGS -c -o $TARGET $SOURCE")
F95PPCOM

The command line used to compile a Fortran 95 source file to an object file after first running the file through the C preprocessor. Any options specified in the $F95FLAGS and $CPPFLAGS construction variables are included on this command line. You only need to set $F95PPCOM if you need to use a specific C-preprocessor command line for Fortran 95 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-preprocessor command line for all Fortran versions.

F95PPCOMSTR

If set, the string displayed when a Fortran 95 source file is compiled to an object file after first running the file through the C preprocessor. If not set, then $F95PPCOM or $FORTRANPPCOM (the command line) is displayed.

F95PPFILESUFFIXES

The list of file extensions for which the compilation + preprocessor pass for F95 dialect will be used. By default, this is empty.

File

A function that converts a string into a File instance relative to the target being built.

FILE_ENCODING

File encoding used for files written by Textfile and Substfile. Set to "utf-8" by default.

New in version 4.5.0.

FORTRAN

The default Fortran compiler for all versions of Fortran.

FORTRANCOM

The command line used to compile a Fortran source file to an object file. By default, any options specified in the $FORTRANFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS construction variables are included on this command line.

FORTRANCOMMONFLAGS

General user-specified options that are passed to the Fortran compiler. Similar to $FORTRANFLAGS, but this construction variable is applied to all dialects.

New in version 4.4.

FORTRANCOMSTR

If set, the string displayed when a Fortran source file is compiled to an object file. If not set, then $FORTRANCOM (the command line) is displayed.

FORTRANFILESUFFIXES

The list of file extensions for which the FORTRAN dialect will be used. By default, this is ['.f', '.for', '.ftn']

FORTRANFLAGS

General user-specified options for the FORTRAN dialect that are passed to the Fortran compiler. Note that this variable does not contain -I (or similar) include or module search path options that scons generates automatically from $FORTRANPATH. See $_FORTRANINCFLAGS and $_FORTRANMODFLAG for the construction variables that expand those options.

_FORTRANINCFLAGS

An automatically-generated construction variable containing the Fortran compiler command-line options for specifying directories to be searched for include files and module files. The value of $_FORTRANINCFLAGS is created by respectively prepending and appending $INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $FORTRANPATH.

FORTRANMODDIR

Directory location where the Fortran compiler should place any module files it generates. This variable is empty, by default. Some Fortran compilers will internally append this directory in the search path for module files, as well.

FORTRANMODDIRPREFIX

The prefix used to specify a module directory on the Fortran compiler command line. This will be prepended to the beginning of the directory in the $FORTRANMODDIR construction variables when the $_FORTRANMODFLAG variables is automatically generated.

FORTRANMODDIRSUFFIX

The suffix used to specify a module directory on the Fortran compiler command line. This will be appended to the end of the directory in the $FORTRANMODDIR construction variables when the $_FORTRANMODFLAG variables is automatically generated.

_FORTRANMODFLAG

An automatically-generated construction variable containing the Fortran compiler command-line option for specifying the directory location where the Fortran compiler should place any module files that happen to get generated during compilation. The value of $_FORTRANMODFLAG is created by respectively prepending and appending $FORTRANMODDIRPREFIX and $FORTRANMODDIRSUFFIX to the beginning and end of the directory in $FORTRANMODDIR.

FORTRANMODPREFIX

The module file prefix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-standard naming convention for module files of module_name.mod. As a result, this variable is left empty, by default. For situations in which the compiler does not necessarily follow the normal convention, the user may use this variable. Its value will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANMODSUFFIX

The module file suffix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-standard naming convention for module files of module_name.mod. As a result, this variable is set to ".mod", by default. For situations in which the compiler does not necessarily follow the normal convention, the user may use this variable. Its value will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANPATH

The list of directories that the Fortran compiler will search for include files and (for some compilers) module files. The Fortran implicit dependency scanner will search these directories for include files (but not module files since they are autogenerated and, as such, may not actually exist at the time the scan takes place). Don't explicitly put include directory arguments in FORTRANFLAGS because the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in FORTRANPATH will be looked-up relative to the SConscript directory when they are used in a command. To force scons to look-up a directory relative to the root of the source tree use #:

env = Environment(FORTRANPATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(FORTRANPATH=include)

The directory list will be added to command lines through the automatically-generated $_FORTRANINCFLAGS construction variable, which is constructed by respectively prepending and appending the values of the $INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory in $FORTRANPATH. Any command lines you define that need the FORTRANPATH directory list should include $_FORTRANINCFLAGS:

env = Environment(FORTRANCOM="my_compiler $_FORTRANINCFLAGS -c -o $TARGET $SOURCE")
FORTRANPPCOM

The command line used to compile a Fortran source file to an object file after first running the file through the C preprocessor. By default, any options specified in the $FORTRANFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS construction variables are included on this command line.

FORTRANPPCOMSTR

If set, the string displayed when a Fortran source file is compiled to an object file after first running the file through the C preprocessor. If not set, then $FORTRANPPCOM (the command line) is displayed.

FORTRANPPFILESUFFIXES

The list of file extensions for which the compilation + preprocessor pass for FORTRAN dialect will be used. By default, this is ['.fpp', '.FPP']

FORTRANSUFFIXES

The list of suffixes of files that will be scanned for Fortran implicit dependencies (INCLUDE lines and USE statements). The default list is:

[".f", ".F", ".for", ".FOR", ".ftn", ".FTN", ".fpp", ".FPP",
".f77", ".F77", ".f90", ".F90", ".f95", ".F95"]
FRAMEWORKPATH

On Mac OS X with gcc, a list containing the paths to search for frameworks. Used by the compiler to find framework-style includes like #include <Fmwk/Header.h>. Used by the linker to find user-specified frameworks when linking (see $FRAMEWORKS). For example:

env.AppendUnique(FRAMEWORKPATH='#myframeworkdir')
            

will add

... -Fmyframeworkdir
            

to the compiler and linker command lines.

_FRAMEWORKPATH

On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line options corresponding to $FRAMEWORKPATH.

FRAMEWORKPATHPREFIX

On Mac OS X with gcc, the prefix to be used for the FRAMEWORKPATH entries. (see $FRAMEWORKPATH). The default value is -F.

FRAMEWORKPREFIX

On Mac OS X with gcc, the prefix to be used for linking in frameworks (see $FRAMEWORKS). The default value is -framework.

FRAMEWORKS

On Mac OS X with gcc, a list of the framework names to be linked into a program or shared library or bundle. The default value is the empty list. For example:

env.AppendUnique(FRAMEWORKS=Split('System Cocoa SystemConfiguration'))
            
_FRAMEWORKS

On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line options for linking with FRAMEWORKS.

FRAMEWORKSFLAGS

On Mac OS X with gcc, general user-supplied frameworks options to be added at the end of a command line building a loadable module. (This has been largely superseded by the $FRAMEWORKPATH, $FRAMEWORKPATHPREFIX, $FRAMEWORKPREFIX and $FRAMEWORKS variables described above.)

GS

The Ghostscript program used to, for example, convert PostScript to PDF files.

GSCOM

The full Ghostscript command line used for the conversion process. Its default value is $GS $GSFLAGS -sOutputFile=$TARGET $SOURCES.

GSCOMSTR

The string displayed when Ghostscript is called for the conversion process. If this is not set (the default), then $GSCOM (the command line) is displayed.

GSFLAGS

General options passed to the Ghostscript program, when converting PostScript to PDF files for example. Its default value is -dNOPAUSE -dBATCH -sDEVICE=pdfwrite

HOST_ARCH

The name of the host hardware architecture used to create this construction environment. The platform code sets this when initializing (see $PLATFORM and the platform argument to Environment). Note the detected name of the architecture may not be identical to that returned by the Python platform.machine method.

On the win32 platform, if the Microsoft Visual C++ compiler is available, msvc tool setup is done using $HOST_ARCH and $TARGET_ARCH. Changing the values at any later time will not cause the tool to be reinitialized. Valid host arch values are x86 and arm for 32-bit hosts and amd64, arm64, and x86_64 for 64-bit hosts.

Should be considered immutable. $HOST_ARCH is not currently used by other platforms, but the option is reserved to do so in future

HOST_OS

The name of the host operating system for the platform used to create this construction environment. The platform code sets this when initializing (see $PLATFORM and the platform argument to Environment).

Should be considered immutable. $HOST_OS is not currently used by SCons, but the option is reserved to do so in future

IDLSUFFIXES

The list of suffixes of files that will be scanned for IDL implicit dependencies (#include or import lines). The default list is:

[".idl", ".IDL"]
IMPLIBNOVERSIONSYMLINKS

Used to override $SHLIBNOVERSIONSYMLINKS/$LDMODULENOVERSIONSYMLINKS when creating versioned import library for a shared library/loadable module. If not defined, then $SHLIBNOVERSIONSYMLINKS/$LDMODULENOVERSIONSYMLINKS is used to determine whether to disable symlink generation or not.

IMPLIBPREFIX

The prefix used for import library names. For example, cygwin uses import libraries (libfoo.dll.a) in pair with dynamic libraries (cygfoo.dll). The cyglink linker sets $IMPLIBPREFIX to 'lib' and $SHLIBPREFIX to 'cyg'.

IMPLIBSUFFIX

The suffix used for import library names. For example, cygwin uses import libraries (libfoo.dll.a) in pair with dynamic libraries (cygfoo.dll). The cyglink linker sets $IMPLIBSUFFIX to '.dll.a' and $SHLIBSUFFIX to '.dll'.

IMPLIBVERSION

Used to override $SHLIBVERSION/$LDMODULEVERSION when generating versioned import library for a shared library/loadable module. If undefined, the $SHLIBVERSION/$LDMODULEVERSION is used to determine the version of versioned import library.

IMPLICIT_COMMAND_DEPENDENCIES

Controls whether or not SCons will add implicit dependencies for the commands executed to build targets.

By default, SCons will add to each target an implicit dependency on the command represented by the first argument of any command line it executes (which is typically the command itself). By setting such a dependency, SCons can determine that a target should be rebuilt if the command changes, such as when a compiler is upgraded to a new version. The specific file for the dependency is found by searching the PATH variable in the ENV dictionary in the construction environment used to execute the command. The default is the same as setting the construction variable $IMPLICIT_COMMAND_DEPENDENCIES to a True-like value (true, yes, or 1 - but not a number greater than one, as that has a different meaning).

Action strings can be segmented by the use of an AND operator, &&. In a segemented string, each segment is a separate command line, these are run sequentially until one fails or the entire sequence has been executed. If an action string is segmented, then the selected behavior of $IMPLICIT_COMMAND_DEPENDENCIES is applied to each segment.

If $IMPLICIT_COMMAND_DEPENDENCIES is set to a False-like value (none, false, no, 0, etc.), then the implicit dependency will not be added to the targets built with that construction environment.

If $IMPLICIT_COMMAND_DEPENDENCIES is set to 2 or higher, then that number of arguments in the command line will be scanned for relative or absolute paths. If any are present, they will be added as implicit dependencies to the targets built with that construction environment. The first argument in the command line will be searched for using the PATH variable in the ENV dictionary in the construction environment used to execute the command. The other arguments will only be found if they are absolute paths or valid paths relative to the working directory.

If $IMPLICIT_COMMAND_DEPENDENCIES is set to all, then all arguments in the command line will be scanned for relative or absolute paths. If any are present, they will be added as implicit dependencies to the targets built with that construction environment. The first argument in the command line will be searched for using the PATH variable in the ENV dictionary in the construction environment used to execute the command. The other arguments will only be found if they are absolute paths or valid paths relative to the working directory.

env = Environment(IMPLICIT_COMMAND_DEPENDENCIES=False)
INCPREFIX

The prefix used to specify an include directory on the C compiler command line. This will be prepended to each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_CPPINCFLAGS and $_FORTRANINCFLAGS variables are automatically generated.

INCSUFFIX

The suffix used to specify an include directory on the C compiler command line. This will be appended to each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_CPPINCFLAGS and $_FORTRANINCFLAGS variables are automatically generated.

INSTALL

A function to be called to install a file into a destination file name. The default function copies the file into the destination (and sets the destination file's mode and permission bits to match the source file's). The function takes the following arguments:

def install(dest, source, env):

dest is the path name of the destination file. source is the path name of the source file. env is the construction environment (a dictionary of construction values) in force for this file installation.

INSTALLSTR

The string displayed when a file is installed into a destination file name. The default is:

Install file: "$SOURCE" as "$TARGET"
INTEL_C_COMPILER_VERSION

Set by the intelc Tool to the major version number of the Intel C compiler selected for use.

JAR

The Java archive tool.

JARCHDIR

The directory to which the Java archive tool should change (using the -C option).

JARCOM

The command line used to call the Java archive tool.

JARCOMSTR

The string displayed when the Java archive tool is called If this is not set, then $JARCOM (the command line) is displayed.

env = Environment(JARCOMSTR="JARchiving $SOURCES into $TARGET")
JARFLAGS

General options passed to the Java archive tool. By default this is set to cf to create the necessary jar file.

JARSUFFIX

The suffix for Java archives: .jar by default.

JAVABOOTCLASSPATH

Specifies the location of the bootstrap class files. Can be specified as a string or Node object, or as a list of strings or Node objects.

The value will be added to the JDK command lines via the -bootclasspath option, which requires a system-specific search path separator. This will be supplied by SCons as needed when it constructs the command line if $JAVABOOTCLASSPATH is provided in list form. If $JAVABOOTCLASSPATH is a single string containing search path separator characters (: for POSIX systems or ; for Windows), it will not be modified; and so is inherently system-specific; to supply the path in a system-independent manner, give $JAVABOOTCLASSPATH as a list of paths instead.

Note

Can only be used when compiling for releases prior to JDK 9.

JAVAC

The Java compiler.

JAVACCOM

The command line used to compile a directory tree containing Java source files to corresponding Java class files. Any options specified in the $JAVACFLAGS construction variable are included on this command line.

JAVACCOMSTR

The string displayed when compiling a directory tree of Java source files to corresponding Java class files. If this is not set, then $JAVACCOM (the command line) is displayed.

env = Environment(JAVACCOMSTR="Compiling class files $TARGETS from $SOURCES")
            
JAVACFLAGS

General options that are passed to the Java compiler.

JAVACLASSDIR

The directory in which Java class files may be found. This is stripped from the beginning of any Java .class file names supplied to the JavaH builder.

JAVACLASSPATH

Specifies the class search path for the JDK tools. Can be specified as a string or Node object, or as a list of strings or Node objects. Class path entries may be directory names to search for class files or packages, pathnames to archives (.jar or .zip) containing classes, or paths ending in a "base name wildcard" character (*), which matches files in that directory with a .jar suffix. See the Java documentation for more details.

The value will be added to the JDK command lines via the -classpath option, which requires a system-specific search path separator. This will be supplied by SCons as needed when it constructs the command line if $JAVACLASSPATH is provided in list form. If $JAVACLASSPATH is a single string containing search path separator characters (: for POSIX systems or ; for Windows), it will be split on the separator into a list of individual paths for dependency scanning purposes. It will not be modified for JDK command-line usage, so such a string is inherently system-specific; to supply the path in a system-independent manner, give $JAVACLASSPATH as a list of paths instead.

Note

SCons always supplies a -sourcepath when invoking the Java compiler javac, regardless of the setting of $JAVASOURCEPATH, as it passes the path(s) to the source(s) supplied in the call to the Java builder via -sourcepath . From the documentation of the standard Java toolkit for javac: If not compiling code for modules, if the --source-path or -sourcepath option is not specified, then the user class path is also searched for source files. Since -sourcepath is always supplied, javac will not use the contents of the value of $JAVACLASSPATH when searching for sources.

JAVACLASSSUFFIX

The suffix for Java class files; .class by default.

JAVAH

The Java generator for C header and stub files.

JAVAHCOM

The command line used to generate C header and stub files from Java classes. Any options specified in the $JAVAHFLAGS construction variable are included on this command line.

JAVAHCOMSTR

The string displayed when C header and stub files are generated from Java classes. If this is not set, then $JAVAHCOM (the command line) is displayed.

env = Environment(JAVAHCOMSTR="Generating header/stub file(s) $TARGETS from $SOURCES")
JAVAHFLAGS

General options passed to the C header and stub file generator for Java classes.

JAVAINCLUDES

Include path for Java header files (such as jni.h).

JAVAPROCESSORPATH

Specifies the location of the annotation processor class files. Can be specified as a string or Node object, or as a list of strings or Node objects.

The value will be added to the JDK command lines via the -processorpath option, which requires a system-specific search path separator. This will be supplied by SCons as needed when it constructs the command line if $JAVAPROCESSORPATH is provided in list form. If $JAVAPROCESSORPATH is a single string containing search path separator characters (: for POSIX systems or ; for Windows), it will not be modified; and so is inherently system-specific; to supply the path in a system-independent manner, give $JAVAPROCESSORPATH as a list of paths instead.

New in version 4.5.0

JAVASOURCEPATH

Specifies the list of directories that will be searched for input (source) .java files. Can be specified as a string or Node object, or as a list of strings or Node objects.

The value will be added to the JDK command lines via the -sourcepath option, which requires a system-specific search path separator, This will be supplied by SCons as needed when it constructs the command line if $JAVASOURCEPATH is provided in list form. If $JAVASOURCEPATH is a single string containing search path separator characters (: for POSIX systems or ; for Windows), it will not be modified, and so is inherently system-specific; to supply the path in a system-independent manner, give $JAVASOURCEPATH as a list of paths instead.

Note that the specified directories are only added to the command line via the -sourcepath option. SCons does not currently search the $JAVASOURCEPATH directories for dependent .java files.

JAVASUFFIX

The suffix for Java files; .java by default.

JAVAVERSION

Specifies the Java version being used by the Java builder. Set this to specify the version of Java targeted by the javac compiler. This is sometimes necessary because Java 1.5 changed the file names that are created for nested anonymous inner classes, which can cause a mismatch with the files that SCons expects will be generated by the javac compiler. Setting $JAVAVERSION to a version greater than 1.4 makes SCons realize that a build with such a compiler is actually up to date. The default is 1.4.

While this is not primarily intended for selecting one version of the Java compiler vs. another, it does have that effect on the Windows platform. A more precise approach is to set $JAVAC (and related construction variables for related utilities) to the path to the specific Java compiler you want, if that is not the default compiler. On non-Windows platforms, the alternatives system may provide a way to adjust the default Java compiler without having to specify explicit paths.

LATEX

The LaTeX structured formatter and typesetter.

LATEXCOM

The command line used to call the LaTeX structured formatter and typesetter.

LATEXCOMSTR

The string displayed when calling the LaTeX structured formatter and typesetter. If this is not set, then $LATEXCOM (the command line) is displayed.

env = Environment(LATEXCOMSTR = "Building $TARGET from LaTeX input $SOURCES")
LATEXFLAGS

General options passed to the LaTeX structured formatter and typesetter.

LATEXRETRIES

The maximum number of times that LaTeX will be re-run if the .log generated by the $LATEXCOM command indicates that there are undefined references. The default is to try to resolve undefined references by re-running LaTeX up to three times.

LATEXSUFFIXES

The list of suffixes of files that will be scanned for LaTeX implicit dependencies (\include or \import files). The default list is:

[".tex", ".ltx", ".latex"]
LDMODULE

The linker for building loadable modules. By default, this is the same as $SHLINK.

LDMODULECOM

The command line for building loadable modules. On Mac OS X, this uses the $LDMODULE, $LDMODULEFLAGS and $FRAMEWORKSFLAGS variables. On other systems, this is the same as $SHLINK.

LDMODULECOMSTR

If set, the string displayed when building loadable modules. If not set, then $LDMODULECOM (the command line) is displayed.

LDMODULEEMITTER

Contains the emitter specification for the LoadableModule builder. The manpage section "Builder Objects" contains general information on specifying emitters.

LDMODULEFLAGS

General user options passed to the linker for building loadable modules.

LDMODULENOVERSIONSYMLINKS

Instructs the LoadableModule builder to not automatically create symlinks for versioned modules. Defaults to $SHLIBNOVERSIONSYMLINKS

LDMODULEPREFIX

The prefix used for loadable module file names. On Mac OS X, this is null; on other systems, this is the same as $SHLIBPREFIX.

_LDMODULESONAME

A macro that automatically generates loadable module's SONAME based on $TARGET, $LDMODULEVERSION and $LDMODULESUFFIX. Used by LoadableModule builder when the linker tool supports SONAME (e.g. gnulink).

LDMODULESUFFIX

The suffix used for loadable module file names. On Mac OS X, this is null; on other systems, this is the same as $SHLIBSUFFIX.

LDMODULEVERSION

When this construction variable is defined, a versioned loadable module is created by LoadableModule builder. This activates the $_LDMODULEVERSIONFLAGS and thus modifies the $LDMODULECOM as required, adds the version number to the library name, and creates the symlinks that are needed. $LDMODULEVERSION versions should exist in the same format as $SHLIBVERSION.

_LDMODULEVERSIONFLAGS

This macro automatically introduces extra flags to $LDMODULECOM when building versioned LoadableModule (that is when $LDMODULEVERSION is set). _LDMODULEVERSIONFLAGS usually adds $SHLIBVERSIONFLAGS and some extra dynamically generated options (such as -Wl,-soname=$_LDMODULESONAME). It is unused by plain (unversioned) loadable modules.

LDMODULEVERSIONFLAGS

Extra flags added to $LDMODULECOM when building versioned LoadableModule. These flags are only used when $LDMODULEVERSION is set.

LEX

The lexical analyzer generator.

LEX_HEADER_FILE

If supplied, generate a C header file with the name taken from this variable. Will be emitted as a --header-file= command-line option. Use this in preference to including --header-file= in $LEXFLAGS directly.

LEX_TABLES_FILE

If supplied, write the lex tables to a file with the name taken from this variable. Will be emitted as a --tables-file= command-line option. Use this in preference to including --tables-file= in $LEXFLAGS directly.

LEXCOM

The command line used to call the lexical analyzer generator to generate a source file.

LEXCOMSTR

The string displayed when generating a source file using the lexical analyzer generator. If this is not set, then $LEXCOM (the command line) is displayed.

env = Environment(LEXCOMSTR="Lex'ing $TARGET from $SOURCES")
LEXFLAGS

General options passed to the lexical analyzer generator. In addition to passing the value on during invocation, the lex tool also examines this construction variable for options which cause additional output files to be generated, and adds those to the target list. Recognized for this purpose are GNU flex options --header-file= and --tables-file=; the output file is named by the option argument.

Note that files specified by --header-file= and --tables-file= may not be properly handled by SCons in all situations. Consider using $LEX_HEADER_FILE and $LEX_TABLES_FILE instead.

LEXUNISTD

Used only on windows environments to set a lex flag to prevent 'unistd.h' from being included. The default value is '--nounistd'.

_LIBDIRFLAGS

An automatically-generated construction variable containing the linker command-line options for specifying directories to be searched for library. The value of $_LIBDIRFLAGS is created by respectively prepending and appending $LIBDIRPREFIX and $LIBDIRSUFFIX to each directory in $LIBPATH.

LIBDIRPREFIX

The prefix used to specify a library directory on the linker command line. This will be prepended to each directory in the $LIBPATH construction variable when the $_LIBDIRFLAGS variable is automatically generated.

LIBDIRSUFFIX

The suffix used to specify a library directory on the linker command line. This will be appended to each directory in the $LIBPATH construction variable when the $_LIBDIRFLAGS variable is automatically generated.

LIBEMITTER

Contains the emitter specification for the StaticLibrary builder. The manpage section "Builder Objects" contains general information on specifying emitters.

_LIBFLAGS

An automatically-generated construction variable containing the linker command-line options for specifying libraries to be linked with the resulting target. The value of $_LIBFLAGS is created by respectively prepending and appending $LIBLINKPREFIX and $LIBLINKSUFFIX to each filename in $LIBS.

LIBLINKPREFIX

The prefix used to specify a library to link on the linker command line. This will be prepended to each library in the $LIBS construction variable when the $_LIBFLAGS variable is automatically generated.

LIBLINKSUFFIX

The suffix used to specify a library to link on the linker command line. This will be appended to each library in the $LIBS construction variable when the $_LIBFLAGS variable is automatically generated.

LIBLITERALPREFIX

If the linker supports command line syntax directing that the argument specifying a library should be searched for literally (without modification), $LIBLITERALPREFIX can be set to that indicator. For example, the GNU linker follows this rule: -l:foo searches the library path for a filename called foo, without converting it to libfoo.so or libfoo.a. If $LIBLITERALPREFIX is set, SCons will not transform a string-valued entry in $LIBS that starts with that string. The entry will still be surrounded with $LIBLINKPREFIX and $LIBLINKSUFFIX on the command line. This is useful, for example, in directing that a static library be used when both a static and dynamic library are available and linker policy is to prefer dynamic libraries. Compared to the example in $LIBS,

env.Append(LIBS=":libmylib.a")

will let the linker select that specific (static) library name if found in the library search path. This differs from using a File object to specify the static library, as the latter bypasses the library search path entirely.

LIBPATH

The list of directories that will be searched for libraries specified by the $LIBS construction variable. $LIBPATH should be a list of path strings, or a single string, not a pathname list joined by Python's os.pathsep. Do not put library search directives directly into $LINKFLAGS or $SHLINKFLAGS as the result will be non-portable.

Note: directory names in $LIBPATH will be looked-up relative to the directory of the SConscript file when they are used in a command. To force scons to look-up a directory relative to the root of the source tree use the # prefix:

env = Environment(LIBPATH='#/libs')

The directory look-up can also be forced using the Dir function:

libs = Dir('libs')
env = Environment(LIBPATH=libs)

The directory list will be added to command lines through the automatically-generated $_LIBDIRFLAGS construction variable, which is constructed by respectively prepending and appending the values of the $LIBDIRPREFIX and $LIBDIRSUFFIX construction variables to each directory in $LIBPATH. Any command lines you define that need the $LIBPATH directory list should include $_LIBDIRFLAGS:

env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")
LIBPREFIX

The prefix used for (static) library file names. A default value is set for each platform (posix, win32, os2, etc.), but the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries they create.

LIBPREFIXES

A list of all legal prefixes for library file names on the current platform. When searching for library dependencies, SCons will look for files with these prefixes, the base library name, and suffixes from the $LIBSUFFIXES list.

LIBS

The list of libraries that will be added to the link line for linking with any executable program, shared library, or loadable module created by the construction environment or override.

For portability, a string-valued library name should include only the base library name, without prefixes such as lib or suffixes such as .so or .dll. SCons will attempt to strip prefixes from the $LIBPREFIXES list and suffixes from the $LIBSUFFIXES list, but depending on that behavior will make the build less portable: for example, on a POSIX system, no attempt will be made to strip a suffix like .dll. Library name strings in $LIBS should not include a path component: instead use $LIBPATH to direct the compiler to look for libraries in those paths, plus any default paths the linker searches in. If $LIBLITERALPREFIX is set to a non-empty string, then a string-valued $LIBS entry that starts with $LIBLITERALPREFIX will cause the rest of the entry to be searched for for unmodified, but respecting normal library search paths (this is an exception to the guideline above about leaving off the prefix/suffix from the library name).

If a $LIBS entry is a Node object (either as returned by a previous Builder call, or as the result of an explicit call to File), the pathname from that Node will be added to $_LIBFLAGS, and thus to the link line, unmodified - without adding $LIBLINKPREFIX or $LIBLINKSUFFIX. Such entries are searched for literally (including any path component); the library search paths are not used. For example:

env.Append(LIBS=File('/tmp/mylib.so'))

For each Builder call that causes linking with libraries, SCons will add the libraries in the setting of $LIBS in effect at that moment to the dependecy graph as dependencies of the target being generated.

The library list will transformed to command line arguments through the automatically-generated $_LIBFLAGS construction variable which is constructed by respectively prepending and appending the values of the $LIBLINKPREFIX and $LIBLINKSUFFIX construction variables to each library name.

Any command lines you define yourself that need the libraries from $LIBS should include $_LIBFLAGS (as well as $_LIBDIRFLAGS) rather than $LIBS. For example:

env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")
LIBSUFFIX

The suffix used for (static) library file names. A default value is set for each platform (posix, win32, os2, etc.), but the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries they create.

LIBSUFFIXES

A list of all legal suffixes for library file names. on the current platform. When searching for library dependencies, SCons will look for files with prefixes from the $LIBPREFIXES list, the base library name, and these suffixes.

LICENSE

The abbreviated name, preferably the SPDX code, of the license under which this project is released (GPL-3.0, LGPL-2.1, BSD-2-Clause etc.). See http://www.opensource.org/licenses/alphabetical for a list of license names and SPDX codes.

See the Package builder.

LINESEPARATOR

The separator used by the Substfile and Textfile builders. This value is used between sources when constructing the target. It defaults to the current system line separator.

LINGUAS_FILE

The $LINGUAS_FILE defines file(s) containing list of additional linguas to be processed by POInit, POUpdate or MOFiles builders. It also affects Translate builder. If the variable contains a string, it defines name of the list file. The $LINGUAS_FILE may be a list of file names as well. If $LINGUAS_FILE is set to True (or non-zero numeric value), the list will be read from default file named LINGUAS.

LINK

The linker. See also $SHLINK for linking shared objects.

On POSIX systems (those using the link tool), you should normally not change this value as it defaults to a "smart" linker tool which selects a compiler driver matching the type of source files in use. So for example, if you set $CXX to a specific compiler name, and are compiling C++ sources, the smartlink function will automatically select the same compiler for linking.

LINKCOM

The command line used to link object files into an executable. See also $SHLINKCOM for linking shared objects.

LINKCOMSTR

If set, the string displayed when object files are linked into an executable. If not set, then $LINKCOM (the command line) is displayed. See also $SHLINKCOMSTR. for linking shared objects.

env = Environment(LINKCOMSTR = "Linking $TARGET")
LINKFLAGS

General user options passed to the linker. Note that this variable should not contain -l (or similar) options for linking with the libraries listed in $LIBS, nor -L (or similar) library search path options that scons generates automatically from $LIBPATH. See $_LIBFLAGS above, for the variable that expands to library-link options, and $_LIBDIRFLAGS above, for the variable that expands to library search path options. See also $SHLINKFLAGS. for linking shared objects.

M4

The M4 macro preprocessor.

M4COM

The command line used to pass files through the M4 macro preprocessor.

M4COMSTR

The string displayed when a file is passed through the M4 macro preprocessor. If this is not set, then $M4COM (the command line) is displayed.

M4FLAGS

General options passed to the M4 macro preprocessor.

MAKEINDEX

The makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

MAKEINDEXCOM

The command line used to call the makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

MAKEINDEXCOMSTR

The string displayed when calling the makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter. If this is not set, then $MAKEINDEXCOM (the command line) is displayed.

MAKEINDEXFLAGS

General options passed to the makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

MAXLINELENGTH

The maximum number of characters allowed on an external command line. On Win32 systems, link lines longer than this many characters are linked via a temporary file name.

MIDL

The Microsoft IDL compiler.

MIDLCOM

The command line used to pass files to the Microsoft IDL compiler.

MIDLCOMSTR

The string displayed when the Microsoft IDL compiler is called. If this is not set, then $MIDLCOM (the command line) is displayed.

MIDLFLAGS

General options passed to the Microsoft IDL compiler.

MOSUFFIX

Suffix used for MO files (default: '.mo'). See msgfmt tool and MOFiles builder.

MSGFMT

Absolute path to msgfmt(1) binary, found by Detect(). See msgfmt tool and MOFiles builder.

MSGFMTCOM

Complete command line to run msgfmt(1) program. See msgfmt tool and MOFiles builder.

MSGFMTCOMSTR

String to display when msgfmt(1) is invoked (default: '', which means ``print $MSGFMTCOM''). See msgfmt tool and MOFiles builder.

MSGFMTFLAGS

Additional flags to msgfmt(1). See msgfmt tool and MOFiles builder.

MSGINIT

Path to msginit(1) program (found via Detect()). See msginit tool and POInit builder.

MSGINITCOM

Complete command line to run msginit(1) program. See msginit tool and POInit builder.

MSGINITCOMSTR

String to display when msginit(1) is invoked (default: '', which means ``print $MSGINITCOM''). See msginit tool and POInit builder.

MSGINITFLAGS

List of additional flags to msginit(1) (default: []). See msginit tool and POInit builder.

_MSGINITLOCALE

Internal ``macro''. Computes locale (language) name based on target filename (default: '${TARGET.filebase}' ).

See msginit tool and POInit builder.

MSGMERGE

Absolute path to msgmerge(1) binary as found by Detect(). See msgmerge tool and POUpdate builder.

MSGMERGECOM

Complete command line to run msgmerge(1) command. See msgmerge tool and POUpdate builder.

MSGMERGECOMSTR

String to be displayed when msgmerge(1) is invoked (default: '', which means ``print $MSGMERGECOM''). See msgmerge tool and POUpdate builder.

MSGMERGEFLAGS

Additional flags to msgmerge(1) command. See msgmerge tool and POUpdate builder.

MSSDK_DIR

The directory containing the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.

MSSDK_VERSION

The version string of the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation. Supported versions include 6.1, 6.0A, 6.0, 2003R2 and 2003R1.

MSVC_BATCH

When set to any true value, specifies that SCons should batch compilation of object files when calling the Microsoft Visual C++ compiler. All compilations of source files from the same source directory that generate target files in a same output directory and were configured in SCons using the same construction environment will be built in a single call to the compiler. Only source files that have changed since their object files were built will be passed to each compiler invocation (via the $CHANGED_SOURCES construction variable). Any compilations where the object (target) file base name (minus the .obj) does not match the source file base name will be compiled separately.

MSVC_NOTFOUND_POLICY

Specify the scons behavior when the Microsoft Visual C++ compiler is not detected.

The $MSVC_NOTFOUND_POLICY specifies the scons behavior when no msvc versions are detected or when the requested msvc version is not detected.

The valid values for $MSVC_NOTFOUND_POLICY and the corresponding scons behavior are:

'Error' or 'Exception'

Raise an exception when no msvc versions are detected or when the requested msvc version is not detected.

'Warning' or 'Warn'

Issue a warning and continue when no msvc versions are detected or when the requested msvc version is not detected. Depending on usage, this could result in build failure(s).

'Ignore' or 'Suppress'

Take no action and continue when no msvc versions are detected or when the requested msvc version is not detected. Depending on usage, this could result in build failure(s).

Note: in addition to the camel case values shown above, lower case and upper case values are accepted as well.

The $MSVC_NOTFOUND_POLICY is applied when any of the following conditions are satisfied:

  • $MSVC_VERSION is specified, the default tools list is implicitly defined (i.e., the tools list is not specified), and the default tools list contains one or more of the msvc tools.

  • $MSVC_VERSION is specified, the default tools list is explicitly specified (e.g., tools=['default']), and the default tools list contains one or more of the msvc tools.

  • A non-default tools list is specified that contains one or more of the msvc tools (e.g., tools=['msvc', 'mslink']).

The $MSVC_NOTFOUND_POLICY is ignored when any of the following conditions are satisfied:

  • $MSVC_VERSION is not specified and the default tools list is implicitly defined (i.e., the tools list is not specified).

  • $MSVC_VERSION is not specified and the default tools list is explicitly specified (e.g., tools=['default']).

  • A non-default tool list is specified that does not contain any of the msvc tools (e.g., tools=['mingw']).

Important usage details:

  • $MSVC_NOTFOUND_POLICY must be passed as an argument to the Environment constructor when an msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment constructor. Otherwise, $MSVC_NOTFOUND_POLICY must be set before the first msvc tool is loaded into the environment.

When $MSVC_NOTFOUND_POLICY is not specified, the default scons behavior is to issue a warning and continue subject to the conditions listed above. The default scons behavior may change in the future.

New in version 4.4

MSVC_SCRIPT_ARGS

Pass user-defined arguments to the Microsoft Visual C++ batch file determined via autodetection.

$MSVC_SCRIPT_ARGS is available for msvc batch file arguments that do not have first-class support via construction variables or when there is an issue with the appropriate construction variable validation. When available, it is recommended to use the appropriate construction variables (e.g., $MSVC_TOOLSET_VERSION) rather than $MSVC_SCRIPT_ARGS arguments.

The valid values for $MSVC_SCRIPT_ARGS are: None, a string, or a list of strings.

The $MSVC_SCRIPT_ARGS value is converted to a scalar string (i.e., "flattened"). The resulting scalar string, if not empty, is passed as an argument to the msvc batch file determined via autodetection subject to the validation conditions listed below.

$MSVC_SCRIPT_ARGS is ignored when the value is None and when the result from argument conversion is an empty string. The validation conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:

  • $MSVC_SCRIPT_ARGS is specified for Visual Studio 2013 and earlier.

  • Multiple SDK version arguments (e.g., '10.0.20348.0') are specified in $MSVC_SCRIPT_ARGS.

  • $MSVC_SDK_VERSION is specified and an SDK version argument (e.g., '10.0.20348.0') is specified in $MSVC_SCRIPT_ARGS. Multiple SDK version declarations via $MSVC_SDK_VERSION and $MSVC_SCRIPT_ARGS are not allowed.

  • Multiple toolset version arguments (e.g., '-vcvars_ver=14.29') are specified in $MSVC_SCRIPT_ARGS.

  • $MSVC_TOOLSET_VERSION is specified and a toolset version argument (e.g., '-vcvars_ver=14.29') is specified in $MSVC_SCRIPT_ARGS. Multiple toolset version declarations via $MSVC_TOOLSET_VERSION and $MSVC_SCRIPT_ARGS are not allowed.

  • Multiple spectre library arguments (e.g., '-vcvars_spectre_libs=spectre') are specified in $MSVC_SCRIPT_ARGS.

  • $MSVC_SPECTRE_LIBS is enabled and a spectre library argument (e.g., '-vcvars_spectre_libs=spectre') is specified in $MSVC_SCRIPT_ARGS. Multiple spectre library declarations via $MSVC_SPECTRE_LIBS and $MSVC_SCRIPT_ARGS are not allowed.

  • Multiple UWP arguments (e.g., uwp or store) are specified in $MSVC_SCRIPT_ARGS.

  • $MSVC_UWP_APP is enabled and a UWP argument (e.g., uwp or store) is specified in $MSVC_SCRIPT_ARGS. Multiple UWP declarations via $MSVC_UWP_APP and $MSVC_SCRIPT_ARGS are not allowed.

Example 1 - A Visual Studio 2022 build with an SDK version and a toolset version specified with a string argument:

env = Environment(MSVC_VERSION='14.3', MSVC_SCRIPT_ARGS='10.0.20348.0 -vcvars_ver=14.29.30133')

Example 2 - A Visual Studio 2022 build with an SDK version and a toolset version specified with a list argument:

env = Environment(MSVC_VERSION='14.3', MSVC_SCRIPT_ARGS=['10.0.20348.0', '-vcvars_ver=14.29.30133'])

Important usage details:

  • $MSVC_SCRIPT_ARGS must be passed as an argument to the Environment constructor when an msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment constructor. Otherwise, $MSVC_SCRIPT_ARGS must be set before the first msvc tool is loaded into the environment.

  • Other than checking for multiple declarations as described above, $MSVC_SCRIPT_ARGS arguments are not validated.

  • Erroneous, inconsistent, and/or version incompatible $MSVC_SCRIPT_ARGS arguments are likely to result in build failures for reasons that are not readily apparent and may be difficult to diagnose. The burden is on the user to ensure that the arguments provided to the msvc batch file are valid, consistent and compatible with the version of msvc selected.

New in version 4.4

MSVC_SCRIPTERROR_POLICY

Specify the scons behavior when Microsoft Visual C++ batch file errors are detected.

The $MSVC_SCRIPTERROR_POLICY specifies the scons behavior when msvc batch file errors are detected. When $MSVC_SCRIPTERROR_POLICY is not specified, the default scons behavior is to suppress msvc batch file error messages.

The root cause of msvc build failures may be difficult to diagnose. In these situations, setting the scons behavior to issue a warning when msvc batch file errors are detected may produce additional diagnostic information.

The valid values for $MSVC_SCRIPTERROR_POLICY and the corresponding scons behavior are:

'Error' or 'Exception'

Raise an exception when msvc batch file errors are detected.

'Warning' or 'Warn'

Issue a warning when msvc batch file errors are detected.

'Ignore' or 'Suppress'

Suppress msvc batch file error messages.

New in version 4.4

Note: in addition to the camel case values shown above, lower case and upper case values are accepted as well.

Example 1 - A Visual Studio 2022 build with user-defined script arguments:

env = environment(MSVC_VERSION='14.3', MSVC_SCRIPT_ARGS=['8.1', 'store', '-vcvars_ver=14.1'])
env.Program('hello', ['hello.c'], CCFLAGS='/MD', LIBS=['kernel32', 'user32', 'runtimeobject'])

Example 1 - Output fragment:

...
link /nologo /OUT:_build001\hello.exe kernel32.lib user32.lib runtimeobject.lib _build001\hello.obj
LINK : fatal error LNK1104: cannot open file 'MSVCRT.lib'
...

Example 2 - A Visual Studio 2022 build with user-defined script arguments and the script error policy set to issue a warning when msvc batch file errors are detected:

env = environment(MSVC_VERSION='14.3', MSVC_SCRIPT_ARGS=['8.1', 'store', '-vcvars_ver=14.1'], MSVC_SCRIPTERROR_POLICY='warn')
env.Program('hello', ['hello.c'], CCFLAGS='/MD', LIBS=['kernel32', 'user32', 'runtimeobject'])

Example 2 - Output fragment:

...
scons: warning: vc script errors detected:
[ERROR:vcvars.bat] The UWP Application Platform requires a Windows 10 SDK.
[ERROR:vcvars.bat] WindowsSdkDir = "C:\Program Files (x86)\Windows Kits\8.1\"
[ERROR:vcvars.bat] host/target architecture is not supported : { x64 , x64 }
...
link /nologo /OUT:_build001\hello.exe kernel32.lib user32.lib runtimeobject.lib _build001\hello.obj
LINK : fatal error LNK1104: cannot open file 'MSVCRT.lib'

Important usage details:

  • $MSVC_SCRIPTERROR_POLICY must be passed as an argument to the Environment constructor when an msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment constructor. Otherwise, $MSVC_SCRIPTERROR_POLICY must be set before the first msvc tool is loaded into the environment.

  • Due to scons implementation details, not all Windows system environment variables are propagated to the environment in which the msvc batch file is executed. Depending on Visual Studio version and installation options, non-fatal msvc batch file error messages may be generated for ancillary tools which may not affect builds with the msvc compiler. For this reason, caution is recommended when setting the script error policy to raise an exception (e.g., 'Error').

New in version 4.4

MSVC_SDK_VERSION

Build with a specific version of the Microsoft Software Development Kit (SDK).

The valid values for $MSVC_SDK_VERSION are: None or a string containing the requested SDK version (e.g., '10.0.20348.0').

$MSVC_SDK_VERSION is ignored when the value is None and when the value is an empty string. The validation conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:

  • $MSVC_SDK_VERSION is specified for Visual Studio 2013 and earlier.

  • $MSVC_SDK_VERSION is specified and an SDK version argument is specified in $MSVC_SCRIPT_ARGS. Multiple SDK version declarations via $MSVC_SDK_VERSION and $MSVC_SCRIPT_ARGS are not allowed.

  • The $MSVC_SDK_VERSION specified does not match any of the supported formats:

    • '10.0.XXXXX.Y' [SDK 10.0]

    • '8.1' [SDK 8.1]

  • The system folder for the corresponding $MSVC_SDK_VERSION version is not found. The requested SDK version does not appear to be installed.

  • The $MSVC_SDK_VERSION version does not appear to support the requested platform type (i.e., UWP or Desktop). The requested SDK version platform type components do not appear to be installed.

  • The $MSVC_SDK_VERSION version is 8.1, the platform type is UWP, and the build tools selected are from Visual Studio 2017 and later (i.e., $MSVC_VERSION must be '14.0' or $MSVC_TOOLSET_VERSION must be '14.0').

Example 1 - A Visual Studio 2022 build with a specific Windows SDK version:

env = Environment(MSVC_VERSION='14.3', MSVC_SDK_VERSION='10.0.20348.0')

Example 2 - A Visual Studio 2022 build with a specific SDK version for the Universal Windows Platform:

env = Environment(MSVC_VERSION='14.3', MSVC_SDK_VERSION='10.0.20348.0', MSVC_UWP_APP=True)

Important usage details:

  • $MSVC_SDK_VERSION must be passed as an argument to the Environment constructor when an msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment constructor. Otherwise, $MSVC_SDK_VERSION must be set before the first msvc tool is loaded into the environment.

  • Should a SDK 10.0 version be installed that does not follow the naming scheme above, the SDK version will need to be specified via $MSVC_SCRIPT_ARGS until the version number validation format can be extended.

  • Should an exception be raised indicating that the SDK version is not found, verify that the requested SDK version is installed with the necessary platform type components.

  • There is a known issue with the Microsoft libraries when the target architecture is ARM64 and a Windows 11 SDK (version '10.0.22000.0' and later) is used with the v141 build tools and older v142 toolsets (versions '14.28.29333' and earlier). Should build failures arise with these combinations of settings due to unresolved symbols in the Microsoft libraries, $MSVC_SDK_VERSION may be employed to specify a Windows 10 SDK (e.g., '10.0.20348.0') for the build.

New in version 4.4

MSVC_SPECTRE_LIBS

Build with the spectre-mitigated Microsoft Visual C++ libraries.

The valid values for $MSVC_SPECTRE_LIBS are: True, False, or None.

When $MSVC_SPECTRE_LIBS is enabled (i.e., True), the Microsoft Visual C++ environment will include the paths to the spectre-mitigated implementations of the Microsoft Visual C++ libraries.

An exception is raised when any of the following conditions are satisfied:

  • $MSVC_SPECTRE_LIBS is enabled for Visual Studio 2015 and earlier.

  • $MSVC_SPECTRE_LIBS is enabled and a spectre library argument is specified in $MSVC_SCRIPT_ARGS. Multiple spectre library declarations via $MSVC_SPECTRE_LIBS and $MSVC_SCRIPT_ARGS are not allowed.

  • $MSVC_SPECTRE_LIBS is enabled and the platform type is UWP. There are no spectre-mitigated libraries for Universal Windows Platform (UWP) applications or components.

Example - A Visual Studio 2022 build with spectre mitigated Microsoft Visual C++ libraries:

env = Environment(MSVC_VERSION='14.3', MSVC_SPECTRE_LIBS=True)

Important usage details:

  • $MSVC_SPECTRE_LIBS must be passed as an argument to the Environment constructor when an msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment constructor. Otherwise, $MSVC_SPECTRE_LIBS must be set before the first msvc tool is loaded into the environment.

  • Additional compiler switches (e.g., /Qspectre) are necessary for including spectre mitigations when building user artifacts. Refer to the Visual Studio documentation for details.

  • The existence of the spectre libraries host architecture and target architecture folders are not verified when $MSVC_SPECTRE_LIBS is enabled which could result in build failures. The burden is on the user to ensure the requisite libraries with spectre mitigations are installed.

New in version 4.4

MSVC_TOOLSET_VERSION

Build with a specific Microsoft Visual C++ toolset version.

Specifying $MSVC_TOOLSET_VERSION does not affect the autodetection and selection of msvc instances. The $MSVC_TOOLSET_VERSION is applied after an msvc instance is selected. This could be the default version of msvc if $MSVC_VERSION is not specified.

The valid values for $MSVC_TOOLSET_VERSION are: None or a string containing the requested toolset version (e.g., '14.29').

$MSVC_TOOLSET_VERSION is ignored when the value is None and when the value is an empty string. The validation conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:

  • $MSVC_TOOLSET_VERSION is specified for Visual Studio 2015 and earlier.

  • $MSVC_TOOLSET_VERSION is specified and a toolset version argument is specified in $MSVC_SCRIPT_ARGS. Multiple toolset version declarations via $MSVC_TOOLSET_VERSION and $MSVC_SCRIPT_ARGS are not allowed.

  • The $MSVC_TOOLSET_VERSION specified does not match any of the supported formats:

    • 'XX.Y'

    • 'XX.YY'

    • 'XX.YY.ZZZZZ'

    • 'XX.YY.Z' to 'XX.YY.ZZZZ' [scons extension not directly supported by the msvc batch files and may be removed in the future]

    • 'XX.YY.ZZ.N' [SxS format]

    • 'XX.YY.ZZ.NN' [SxS format]

  • The major msvc version prefix (i.e., 'XX.Y') of the $MSVC_TOOLSET_VERSION specified is for Visual Studio 2013 and earlier (e.g., '12.0').

  • The major msvc version prefix (i.e., 'XX.Y') of the $MSVC_TOOLSET_VERSION specified is greater than the msvc version selected (e.g., '99.0').

  • A system folder for the corresponding $MSVC_TOOLSET_VERSION version is not found. The requested toolset version does not appear to be installed.

Toolset selection details:

  • When $MSVC_TOOLSET_VERSION is not an SxS version number or a full toolset version number: the first toolset version, ranked in descending order, that matches the $MSVC_TOOLSET_VERSION prefix is selected.

  • When $MSVC_TOOLSET_VERSION is specified using the major msvc version prefix (i.e., 'XX.Y') and the major msvc version is that of the latest release of Visual Studio, the selected toolset version may not be the same as the default Microsoft Visual C++ toolset version.

    In the latest release of Visual Studio, the default Microsoft Visual C++ toolset version is not necessarily the toolset with the largest version number.

Example 1 - A default Visual Studio build with a partial toolset version specified:

env = Environment(MSVC_TOOLSET_VERSION='14.2')

Example 2 - A default Visual Studio build with a partial toolset version specified:

env = Environment(MSVC_TOOLSET_VERSION='14.29')

Example 3 - A Visual Studio 2022 build with a full toolset version specified:

env = Environment(MSVC_VERSION='14.3', MSVC_TOOLSET_VERSION='14.29.30133')

Example 4 - A Visual Studio 2022 build with an SxS toolset version specified:

env = Environment(MSVC_VERSION='14.3', MSVC_TOOLSET_VERSION='14.29.16.11')

Important usage details:

  • $MSVC_TOOLSET_VERSION must be passed as an argument to the Environment constructor when an msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment constructor. Otherwise, $MSVC_TOOLSET_VERSION must be set before the first msvc tool is loaded into the environment.

  • The existence of the toolset host architecture and target architecture folders are not verified when $MSVC_TOOLSET_VERSION is specified which could result in build failures. The burden is on the user to ensure the requisite toolset target architecture build tools are installed.

New in version 4.4

MSVC_USE_SCRIPT

Use a batch script to set up the Microsoft Visual C++ compiler.

If set to the name of a Visual Studio .bat file (e.g. vcvars.bat), SCons will run that batch file instead of the auto-detected one, and extract the relevant variables from the result (typically %INCLUDE%, %LIB%, and %PATH%) for supplying to the build. This can be useful to force the use of a compiler version that SCons does not detect. $MSVC_USE_SCRIPT_ARGS provides arguments passed to this script.

Setting $MSVC_USE_SCRIPT to None bypasses the Visual Studio autodetection entirely; use this if you are running SCons in a Visual Studio cmd window and importing the shell's environment variables - that is, if you are sure everything is set correctly already and you don't want SCons to change anything.

$MSVC_USE_SCRIPT ignores $MSVC_VERSION and $TARGET_ARCH.

Changed in version 4.4: new $MSVC_USE_SCRIPT_ARGS provides a way to pass arguments.

MSVC_USE_SCRIPT_ARGS

Provides arguments passed to the script $MSVC_USE_SCRIPT.

New in version 4.4

MSVC_USE_SETTINGS

Use a dictionary to set up the Microsoft Visual C++ compiler.

$MSVC_USE_SETTINGS is ignored when $MSVC_USE_SCRIPT is defined and/or when $MSVC_USE_SETTINGS is set to None.

The dictionary is used to populate the environment with the relevant variables (typically %INCLUDE%, %LIB%, and %PATH%) for supplying to the build. This can be useful to force the use of a compiler environment that SCons does not configure correctly. This is an alternative to manually configuring the environment when bypassing Visual Studio autodetection entirely by setting $MSVC_USE_SCRIPT to None.

Here is an example of configuring a build environment using the Microsoft Visual C++ compiler included in the Microsoft SDK on a 64-bit host and building for a 64-bit architecture:

# Microsoft SDK 6.0 (MSVC 8.0): 64-bit host and 64-bit target
msvc_use_settings = {
    "PATH": [
        "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\VC\\Bin\\x64",
        "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Bin\\x64",
        "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Bin",
        "C:\\Windows\\Microsoft.NET\\Framework\\v2.0.50727",
        "C:\\Windows\\system32",
        "C:\\Windows",
        "C:\\Windows\\System32\\Wbem",
        "C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\"
    ],
    "INCLUDE": [
        "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\VC\\Include",
        "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\VC\\Include\\Sys",
        "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Include",
        "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Include\\gl",
    ],
    "LIB": [
        "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\VC\\Lib\\x64",
        "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Lib\\x64",
    ],
    "LIBPATH": [],
    "VSCMD_ARG_app_plat": [],
    "VCINSTALLDIR": [],
    "VCToolsInstallDir": []
}

# Specifying MSVC_VERSION is recommended
env = Environment(MSVC_VERSION='8.0', MSVC_USE_SETTINGS=msvc_use_settings)

Important usage details:

  • $MSVC_USE_SETTINGS must be passed as an argument to the Environment constructor when an msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment constructor. Otherwise, $MSVC_USE_SETTINGS must be set before the first msvc tool is loaded into the environment.

  • The dictionary content requirements are based on the internal msvc implementation and therefore may change at any time. The burden is on the user to ensure the dictionary contents are minimally sufficient to ensure successful builds.

New in version 4.4

MSVC_UWP_APP

Build with the Universal Windows Platform (UWP) application Microsoft Visual C++ libraries.

The valid values for $MSVC_UWP_APP are: True, '1', False, '0', or None.

When $MSVC_UWP_APP is enabled (i.e., True or '1'), the Microsoft Visual C++ environment will be set up to point to the Windows Store compatible libraries and Microsoft Visual C++ runtimes. In doing so, any libraries that are built will be able to be used in a UWP App and published to the Windows Store.

An exception is raised when any of the following conditions are satisfied:

  • $MSVC_UWP_APP is enabled for Visual Studio 2013 and earlier.

  • $MSVC_UWP_APP is enabled and a UWP argument is specified in $MSVC_SCRIPT_ARGS. Multiple UWP declarations via $MSVC_UWP_APP and $MSVC_SCRIPT_ARGS are not allowed.

Example - A Visual Studio 2022 build for the Universal Windows Platform:

env = Environment(MSVC_VERSION='14.3', MSVC_UWP_APP=True)

Important usage details:

  • $MSVC_UWP_APP must be passed as an argument to the Environment constructor when an msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment constructor. Otherwise, $MSVC_UWP_APP must be set before the first msvc tool is loaded into the environment.

  • The existence of the UWP libraries is not verified when $MSVC_UWP_APP is enabled which could result in build failures. The burden is on the user to ensure the requisite UWP libraries are installed.

MSVC_VERSION

A string to select the preferred version of Microsoft Visual C++. If the specified version is unavailable and/or unknown to SCons, a warning is issued showing the versions actually discovered, and the build will eventually fail indicating a missing compiler binary. If $MSVC_VERSION is not set, SCons will (by default) select the latest version of Microsoft Visual C++ installed on your system (excluding any preview versions).

Note

In order to take effect, $MSVC_VERSION must be set before the initial Microsoft Visual C++ compiler discovery takes place. Discovery happens, at the latest, during the first call to the Environment function, unless a tools list is specified which excludes the entire Microsoft Visual C++ toolchain - that is, omits "defaults" and any specific tool module that refers to parts of the toolchain (msvc, mslink, masm, midl and msvs). In this case, detection is deferred until any one of those tool modules is invoked manually. The following two examples illustrate this:

# MSVC_VERSION set as Environment is created
env = Environment(MSVC_VERSION='14.2')

# Initialization deferred with empty tools, triggered manually
env = Environment(tools=[])
env['MSVC_VERSION'] = '14.2
env.Tool('msvc')
env.Tool('mslink')
env.Tool('msvs')
  

The valid values for $MSVC_VERSION represent major versions of the compiler, except that versions ending in Exp refer to "Express" or "Express for Desktop" Visual Studio editions. Values that do not look like a valid compiler version string are not supported.

The following table shows the correspondence of $MSVC_VERSION values to various version indicators ('x' is used as a placeholder for a single digit that can vary).

SCons Key


Visual C++
Version 

_MSVC_VER Visual Studio Product


MSBuild /
Visual Studio 

"14.3" 14.3x 193x Visual Studio 2022 17.x, 17.1x
"14.2" 14.2x 192x Visual Studio 2019 16.x, 16.1x
"14.1" 14.1 or 14.1x 191x Visual Studio 2017 15.x
"14.1Exp" 14.1 or 14.1x 191x Visual Studio 2017 Express 15.x
"14.0" 14.0 1900 Visual Studio 2015 14.0
"14.0Exp" 14.0 1900 Visual Studio 2015 Express 14.0
"12.0" 12.0 1800 Visual Studio 2013 12.0
"12.0Exp" 12.0 1800 Visual Studio 2013 Express 12.0
"11.0" 11.0 1700 Visual Studio 2012 11.0
"11.0Exp" 11.0 1700 Visual Studio 2012 Express 11.0
"10.0" 10.0 1600 Visual Studio 2010 10.0
"10.0Exp" 10.0 1600 Visual C++ Express 2010 10.0
"9.0" 9.0 1500 Visual Studio 2008 9.0
"9.0Exp" 9.0 1500 Visual C++ Express 2008 9.0
"8.0" 8.0 1400 Visual Studio 2005 8.0
"8.0Exp" 8.0 1400 Visual C++ Express 2005 8.0
"7.1" 7.1 1300 Visual Studio .NET 2003 7.1
"7.0" 7.0 1200 Visual Studio .NET 2002 7.0
"6.0" 6.0 1100 Visual Studio 6.0 6.0

Note

  • It is not necessary to install a Visual Studio IDE to build with SCons (for example, you can install only Build Tools), but when a Visual Studio IDE is installed, additional builders such as MSVSSolution and MSVSProject become available and correspond to the specified versions.

  • Versions ending in Exp refer to historical "Express" or "Express for Desktop" Visual Studio editions, which had feature limitations compared to the full editions. It is only necessary to specify the Exp suffix to select the express edition when both express and non-express editions of the same product are installed simulaneously. The Exp suffix is unnecessary, but accepted, when only the express edition is installed.

The compilation environment can be further or more precisely specified through the use of several other construction variables: see the descriptions of $MSVC_TOOLSET_VERSION, $MSVC_SDK_VERSION, $MSVC_USE_SCRIPT, $MSVC_USE_SCRIPT_ARGS, and $MSVC_USE_SETTINGS.

MSVS

When the Microsoft Visual Studio tools are initialized, they set up this dictionary with the following keys:

VERSION

the version of MSVS being used (can be set via $MSVC_VERSION)

VERSIONS

the available versions of MSVS installed

VCINSTALLDIR

installed directory of Microsoft Visual C++

VSINSTALLDIR

installed directory of Visual Studio

FRAMEWORKDIR

installed directory of the .NET framework

FRAMEWORKVERSIONS

list of installed versions of the .NET framework, sorted latest to oldest.

FRAMEWORKVERSION

latest installed version of the .NET framework

FRAMEWORKSDKDIR

installed location of the .NET SDK.

PLATFORMSDKDIR

installed location of the Platform SDK.

PLATFORMSDK_MODULES

dictionary of installed Platform SDK modules, where the dictionary keys are keywords for the various modules, and the values are 2-tuples where the first is the release date, and the second is the version number.

If a value is not set, it was not available in the registry. Visual Studio 2017 and later do not use the registry for primary storage of this information, so typically for these versions only PROJECTSUFFIX and SOLUTIONSUFFIX will be set.

MSVS_ARCH

Sets the architecture for which the generated project(s) should build.

The default value is x86. amd64 is also supported by SCons for most Visual Studio versions. Since Visual Studio 2015 arm is supported, and since Visual Studio 2017 arm64 is supported. Trying to set $MSVS_ARCH to an architecture that's not supported for a given Visual Studio version will generate an error.

MSVS_PROJECT_GUID

The string placed in a generated Microsoft Visual C++ project file as the value of the ProjectGUID attribute. There is no default value. If not defined, a new GUID is generated.

MSVS_SCC_AUX_PATH

The path name placed in a generated Microsoft Visual C++ project file as the value of the SccAuxPath attribute if the MSVS_SCC_PROVIDER construction variable is also set. There is no default value.

MSVS_SCC_CONNECTION_ROOT

The root path of projects in your SCC workspace, i.e the path under which all project and solution files will be generated. It is used as a reference path from which the relative paths of the generated Microsoft Visual C++ project and solution files are computed. The relative project file path is placed as the value of the SccLocalPath attribute of the project file and as the values of the SccProjectFilePathRelativizedFromConnection[i] (where [i] ranges from 0 to the number of projects in the solution) attributes of the GlobalSection(SourceCodeControl) section of the Microsoft Visual Studio solution file. Similarly the relative solution file path is placed as the values of the SccLocalPath[i] (where [i] ranges from 0 to the number of projects in the solution) attributes of the GlobalSection(SourceCodeControl) section of the Microsoft Visual Studio solution file. This is used only if the MSVS_SCC_PROVIDER construction variable is also set. The default value is the current working directory.

MSVS_SCC_PROJECT_NAME

The project name placed in a generated Microsoft Visual C++ project file as the value of the SccProjectName attribute if the MSVS_SCC_PROVIDER construction variable is also set. In this case the string is also placed in the SccProjectName0 attribute of the GlobalSection(SourceCodeControl) section of the Microsoft Visual Studio solution file. There is no default value.

MSVS_SCC_PROVIDER

The string placed in a generated Microsoft Visual C++ project file as the value of the SccProvider attribute. The string is also placed in the SccProvider0 attribute of the GlobalSection(SourceCodeControl) section of the Microsoft Visual Studio solution file. There is no default value.

MSVS_VERSION

Set the preferred version of Microsoft Visual Studio to use.

If $MSVS_VERSION is not set, SCons will (by default) select the latest version of Visual Studio installed on your system. So, if you have version 6 and version 7 (MSVS .NET) installed, it will prefer version 7. You can override this by specifying the $MSVS_VERSION variable when initializing the Environment, setting it to the appropriate version ('6.0' or '7.0', for example). If the specified version isn't installed, tool initialization will fail.

Deprecated since 1.3.0: $MSVS_VERSION is deprecated in favor of $MSVC_VERSION. As a transitional aid, if $MSVS_VERSION is set and $MSVC_VERSION is not, $MSVC_VERSION will be initialized to the value of $MSVS_VERSION. An error is raised if If both are set and have different values,

MSVSBUILDCOM

The build command line placed in a generated Microsoft Visual C++ project file. The default is to have Visual Studio invoke SCons with any specified build targets.

MSVSCLEANCOM

The clean command line placed in a generated Microsoft Visual C++ project file. The default is to have Visual Studio invoke SCons with the -c option to remove any specified targets.

MSVSENCODING

The encoding string placed in a generated Microsoft Visual C++ project file. The default is encoding Windows-1252.

MSVSPROJECTCOM

The action used to generate Microsoft Visual C++ project files.

MSVSPROJECTSUFFIX

The suffix used for Microsoft Visual C++ project (DSP) files. The default value is .vcxproj when using Visual Studio 2010 and later, .vcproj when using Visual Studio versions between 2002 and 2008, and .dsp when using Visual Studio 6.0.

MSVSREBUILDCOM

The rebuild command line placed in a generated Microsoft Visual C++ project file. The default is to have Visual Studio invoke SCons with any specified rebuild targets.

MSVSSCONS

The SCons used in generated Microsoft Visual C++ project files. The default is the version of SCons being used to generate the project file.

MSVSSCONSCOM

The default SCons command used in generated Microsoft Visual C++ project files.

MSVSSCONSCRIPT

The sconscript file (that is, SConstruct or SConscript file) that will be invoked by Microsoft Visual C++ project files (through the $MSVSSCONSCOM variable). The default is the same sconscript file that contains the call to MSVSProject to build the project file.

MSVSSCONSFLAGS

The SCons flags used in generated Microsoft Visual C++ project files.

MSVSSOLUTIONCOM

The action used to generate Microsoft Visual Studio solution files.

MSVSSOLUTIONSUFFIX

The suffix used for Microsoft Visual Studio solution (DSW) files. The default value is .sln when using Visual Studio version 7.x (.NET 2002) and later, and .dsw when using Visual Studio 6.0.

MT

The program used on Windows systems to embed manifests into DLLs and EXEs. See also $WINDOWS_EMBED_MANIFEST.

MTEXECOM

The Windows command line used to embed manifests into executables. See also $MTSHLIBCOM.

MTFLAGS

Flags passed to the $MT manifest embedding program (Windows only).

MTSHLIBCOM

The Windows command line used to embed manifests into shared libraries (DLLs). See also $MTEXECOM.

MWCW_VERSION

The version number of the MetroWerks CodeWarrior C compiler to be used.

MWCW_VERSIONS

A list of installed versions of the MetroWerks CodeWarrior C compiler on this system.

NAME

Specfies the name of the project to package.

See the Package builder.

NINJA_ALIAS_NAME

The name of the alias target which will cause SCons to create the ninja build file, and then (optionally) run ninja. The default value is generate-ninja.

NINJA_CMD_ARGS

A string which will pass arguments through SCons to the ninja command when scons executes ninja. Has no effect if $NINJA_DISABLE_AUTO_RUN is set.

This value can also be passed on the command line:

scons NINJA_CMD_ARGS=-v
or
scons NINJA_CMD_ARGS="-v -j 3"
            
NINJA_COMPDB_EXPAND

Boolean value to instruct ninja to expand the command line arguments normally put into response files. If true, prevents unexpanded lines in the compilation database like gcc @rsp_file and instead yields expanded lines like gcc -c -o myfile.o myfile.c -Ia -DXYZ.

Ninja's compdb tool added the -x flag in Ninja V1.9.0

NINJA_DEPFILE_PARSE_FORMAT

Determines the type of format ninja should expect when parsing header include depfiles. Can be msvc, gcc, or clang. The msvc option corresponds to /showIncludes format, and gcc or clang correspond to -MMD -MF.

NINJA_DIR

The builddir value. Propagates directly into the generated ninja build file. From Ninja's docs: A directory for some Ninja output files. ... (You can also store other build output in this directory.) The default value is .ninja.

NINJA_DISABLE_AUTO_RUN

Boolean. Default: False. If true, SCons will not run ninja automatically after creating the ninja build file.

If not explicitly set, this will be set to True if --disable_execute_ninja or SetOption('disable_execute_ninja', True) is seen.

NINJA_ENV_VAR_CACHE

A string that sets the environment for any environment variables that differ between the OS environment and the SCons execution environment.

It will be compatible with the default shell of the operating system.

If not explicitly set, SCons will generate this dynamically from the execution environment stored in the current construction environment (e.g. env['ENV']) where those values differ from the existing shell..

NINJA_FILE_NAME

The filename for the generated Ninja build file. The default is ninja.build.

NINJA_FORCE_SCONS_BUILD

If true, causes the build nodes to callback to scons instead of using ninja to build them. This is intended to be passed to the environment on the builder invocation. It is useful if you have a build node which does something which is not easily translated into ninja.

NINJA_GENERATED_SOURCE_ALIAS_NAME

A string matching the name of a user defined alias which represents a list of all generated sources. This will prevent the auto-detection of generated sources from $NINJA_GENERATED_SOURCE_SUFFIXES. Then all other source files will be made to depend on this in the ninja build file, forcing the generated sources to be built first.

NINJA_GENERATED_SOURCE_SUFFIXES

The list of source file suffixes which are generated by SCons build steps. All source files which match these suffixes will be added to the _generated_sources alias in the output ninja build file. Then all other source files will be made to depend on this in the ninja build file, forcing the generated sources to be built first.

NINJA_MSVC_DEPS_PREFIX

The msvc_deps_prefix string. Propagates directly into the generated ninja build file. From Ninja's docs: defines the string which should be stripped from msvc's /showIncludes output

NINJA_POOL

Set the ninja_pool for this or all targets in scope for this env var.

NINJA_REGENERATE_DEPS

A generator function used to create a ninja depfile which includes all the files which would require SCons to be invoked if they change. Or a list of said files.

_NINJA_REGENERATE_DEPS_FUNC

Internal value used to specify the function to call with argument env to generate the list of files which if changed would require the ninja build file to be regenerated.

NINJA_SCONS_DAEMON_KEEP_ALIVE

The number of seconds for the SCons deamon launched by ninja to stay alive. (Default: 180000)

NINJA_SCONS_DAEMON_PORT

The TCP/IP port for the SCons daemon to listen on. NOTE: You cannot use a port already being listened to on your build machine. (Default: random number between 10000,60000)

NINJA_SYNTAX

The path to a custom ninja_syntax.py file which is used in generation. The tool currently assumes you have ninja installed as a Python module and grabs the syntax file from that installation if $NINJA_SYNTAX is not explicitly set.

no_import_lib

When set to non-zero, suppresses creation of a corresponding Windows static import lib by the SharedLibrary builder when used with MinGW, Microsoft Visual Studio or Metrowerks. This also suppresses creation of an export (.exp) file when using Microsoft Visual Studio.

OBJPREFIX

The prefix used for (static) object file names.

OBJSUFFIX

The suffix used for (static) object file names.

PACKAGEROOT

Specifies the directory where all files in resulting archive will be placed if applicable. The default value is $NAME-$VERSION.

See the Package builder.

PACKAGETYPE

Selects the package type to build when using the Package builder. May be a string or list of strings. See the docuentation for the builder for the currently supported types.

$PACKAGETYPE may be overridden with the --package-type command line option.

See the Package builder.

PACKAGEVERSION

The version of the package (not the underlying project). This is currently only used by the rpm packager and should reflect changes in the packaging, not the underlying project code itself.

See the Package builder.

PCH

A node for the Microsoft Visual C++ precompiled header that will be used when compiling object files. This variable is ignored by tools other than Microsoft Visual C++. When this variable is defined, SCons will add options to the compiler command line to cause it to use the precompiled header, and will also set up the dependencies for the PCH file. Examples:

env['PCH'] = File('StdAfx.pch')
env['PCH'] = env.PCH('pch.cc')[0]
PCHCOM

The command line used by the PCH builder to generated a precompiled header.

PCHCOMSTR

The string displayed when generating a precompiled header. If not set, then $PCHCOM (the command line) is displayed.

PCHPDBFLAGS

A construction variable that, when expanded, adds the /yD flag to the command line only if the $PDB construction variable is set.

PCHSTOP

This variable specifies how much of a source file is precompiled. This variable is ignored by tools other than Microsoft Visual C++, or when the PCH variable is not being used. When this variable is define it must be a string that is the name of the header that is included at the end of the precompiled portion of the source files, or the empty string if the "#pragma hrdstop" construct is being used:

env['PCHSTOP'] = 'StdAfx.h'
PDB

The Microsoft Visual C++ PDB file that will store debugging information for object files, shared libraries, and programs. This variable is ignored by tools other than Microsoft Visual C++. When this variable is defined SCons will add options to the compiler and linker command line to cause them to generate external debugging information, and will also set up the dependencies for the PDB file. Example:

env['PDB'] = 'hello.pdb'

The Microsoft Visual C++ compiler switch that SCons uses by default to generate PDB information is /Z7. This works correctly with parallel (-j) builds because it embeds the debug information in the intermediate object files, as opposed to sharing a single PDB file between multiple object files. This is also the only way to get debug information embedded into a static library. Using the /Zi instead may yield improved link-time performance, although parallel builds will no longer work. You can generate PDB files with the /Zi switch by overriding the default $CCPDBFLAGS variable; see the entry for that variable for specific examples.

PDFLATEX

The pdflatex utility.

PDFLATEXCOM

The command line used to call the pdflatex utility.

PDFLATEXCOMSTR

The string displayed when calling the pdflatex utility. If this is not set, then $PDFLATEXCOM (the command line) is displayed.

env = Environment(PDFLATEX;COMSTR = "Building $TARGET from LaTeX input $SOURCES")
PDFLATEXFLAGS

General options passed to the pdflatex utility.

PDFPREFIX

The prefix used for PDF file names.

PDFSUFFIX

The suffix used for PDF file names.

PDFTEX

The pdftex utility.

PDFTEXCOM

The command line used to call the pdftex utility.

PDFTEXCOMSTR

The string displayed when calling the pdftex utility. If this is not set, then $PDFTEXCOM (the command line) is displayed.

env = Environment(PDFTEXCOMSTR = "Building $TARGET from TeX input $SOURCES")
PDFTEXFLAGS

General options passed to the pdftex utility.

PKGCHK

On Solaris systems, the package-checking program that will be used (along with $PKGINFO) to look for installed versions of the Sun PRO C++ compiler. The default is /usr/sbin/pgkchk.

PKGINFO

On Solaris systems, the package information program that will be used (along with $PKGCHK) to look for installed versions of the Sun PRO C++ compiler. The default is pkginfo.

PLATFORM

The name of the platform used to create this construction environment. SCons sets this when initializing the platform, which by default is auto-detected (see the platform argument to Environment).

env = Environment(tools=[])
if env['PLATFORM'] == 'cygwin':
    Tool('mingw')(env)
else:
    Tool('msvc')(env)
    
POAUTOINIT

The $POAUTOINIT variable, if set to True (on non-zero numeric value), let the msginit tool to automatically initialize missing PO files with msginit(1). This applies to both, POInit and POUpdate builders (and others that use any of them).

POCREATE_ALIAS

Common alias for all PO files created with POInit builder (default: 'po-create'). See msginit tool and POInit builder.

POSUFFIX

Suffix used for PO files (default: '.po') See msginit tool and POInit builder.

POTDOMAIN

The $POTDOMAIN defines default domain, used to generate POT filename as $POTDOMAIN.pot when no POT file name is provided by the user. This applies to POTUpdate, POInit and POUpdate builders (and builders, that use them, e.g. Translate). Normally (if $POTDOMAIN is not defined), the builders use messages.pot as default POT file name.

POTSUFFIX

Suffix used for PO Template files (default: '.pot'). See xgettext tool and POTUpdate builder.

POTUPDATE_ALIAS

Name of the common phony target for all PO Templates created with POUpdate (default: 'pot-update'). See xgettext tool and POTUpdate builder.

POUPDATE_ALIAS

Common alias for all PO files being defined with POUpdate builder (default: 'po-update'). See msgmerge tool and POUpdate builder.

PRINT_CMD_LINE_FUNC

A Python function used to print the command lines as they are executed (assuming command printing is not disabled by the -q or -s options or their equivalents). The function must accept four arguments: s, target, source and env. s is a string showing the command being executed, target, is the target being built (file node, list, or string name(s)), source, is the source(s) used (file node, list, or string name(s)), and env is the environment being used.

The function must do the printing itself. The default implementation, used if this variable is not set or is None, is to just print the string, as in:

def print_cmd_line(s, target, source, env):
    sys.stdout.write(s + "\n")

Here is an example of a more interesting function:

def print_cmd_line(s, target, source, env):
    sys.stdout.write(
        "Building %s -> %s...\n"
        % (
            ' and '.join([str(x) for x in source]),
            ' and '.join([str(x) for x in target]),
        )
    )

env = Environment(PRINT_CMD_LINE_FUNC=print_cmd_line)
env.Program('foo', ['foo.c', 'bar.c'])

This prints:

...
scons: Building targets ...
Building bar.c -> bar.o...
Building foo.c -> foo.o...
Building foo.o and bar.o -> foo...
scons: done building targets.

Another example could be a function that logs the actual commands to a file.

PROGEMITTER

Contains the emitter specification for the Program builder. The manpage section "Builder Objects" contains general information on specifying emitters.

PROGPREFIX

The prefix used for executable file names.

PROGSUFFIX

The suffix used for executable file names.

PSCOM

The command line used to convert TeX DVI files into a PostScript file.

PSCOMSTR

The string displayed when a TeX DVI file is converted into a PostScript file. If this is not set, then $PSCOM (the command line) is displayed.

PSPREFIX

The prefix used for PostScript file names.

PSSUFFIX

The prefix used for PostScript file names.

QT3_AUTOSCAN

Turn off scanning for mocable files. Use the Moc Builder to explicitly specify files to run moc on.

Changed in 4.5.0: renamed from QT_AUTOSCAN.

QT3_BINPATH

The path where the Qt binaries are installed. The default value is '$QT3DIR/bin'.

Changed in 4.5.0: renamed from QT_BINPATH.

QT3_CPPPATH

The path where the Qt header files are installed. The default value is '$QT3DIR/include'. Note: If you set this variable to None, the tool won't change the $CPPPATH construction variable.

Changed in 4.5.0: renamed from QT_CPPPATH.

QT3_DEBUG

Prints lots of debugging information while scanning for moc files.

Changed in 4.5.0: renamed from QT_DEBUG.

QT3_LIB

Default value is 'qt'. You may want to set this to 'qt-mt'. Note: If you set this variable to None, the tool won't change the $LIBS variable.

Changed in 4.5.0: renamed from QT_LIB.

QT3_LIBPATH

The path where the Qt libraries are installed. The default value is '$QT3DIR/lib'. Note: If you set this variable to None, the tool won't change the $LIBPATH construction variable.

Changed in 4.5.0: renamed from QT_LIBPATH.

QT3_MOC

Default value is '$QT3_BINPATH/moc'.

QT3_MOCCXXPREFIX

Default value is ''. Prefix for moc output files when source is a C++ file.

QT3_MOCCXXSUFFIX

Default value is '.moc'. Suffix for moc output files when source is a C++ file.

Changed in 4.5.0: renamed from QT_MOCCXXSUFFIX.

QT3_MOCFROMCXXCOM

Command to generate a moc file from a C++ file.

Changed in 4.5.0: renamed from QT_MOCFROMCXXCOM.

QT3_MOCFROMCXXCOMSTR

The string displayed when generating a moc file from a C++ file. If this is not set, then $QT3_MOCFROMCXXCOM (the command line) is displayed.

Changed in 4.5.0: renamed from QT_MOCFROMCXXCOMSTR.

QT3_MOCFROMCXXFLAGS

Default value is '-i'. These flags are passed to moc when moccing a C++ file.

Changed in 4.5.0: renamed from QT_MOCFROMCXXFLAGS.

QT3_MOCFROMHCOM

Command to generate a moc file from a header.

Changed in 4.5.0: renamed from QT_MOCFROMSHCOM.

QT3_MOCFROMHCOMSTR

The string displayed when generating a moc file from a C++ file. If this is not set, then $QT3_MOCFROMHCOM (the command line) is displayed.

Changed in 4.5.0: renamed from QT_MOCFROMSHCOMSTR.

QT3_MOCFROMHFLAGS

Default value is ''. These flags are passed to moc when moccing a header file.

Changed in 4.5.0: renamed from QT_MOCFROMSHFLAGS.

QT3_MOCHPREFIX

Default value is 'moc_'. Prefix for moc output files when source is a header.

Changed in 4.5.0: renamed from QT_MOCHPREFIX.

QT3_MOCHSUFFIX

Default value is '$CXXFILESUFFIX'. Suffix for moc output files when source is a header.

Changed in 4.5.0: renamed from QT_MOCHSUFFIX.

QT3_UIC

Default value is '$QT3_BINPATH/uic'.

Changed in 4.5.0: renamed from QT_UIC.

QT3_UICCOM

Command to generate header files from .ui files.

Changed in 4.5.0: renamed from QT_UICCOM.

QT3_UICCOMSTR

The string displayed when generating header files from .ui files. If this is not set, then $QT3_UICCOM (the command line) is displayed.

Changed in 4.5.0: renamed from QT_UICCOMSTR.

QT3_UICDECLFLAGS

Default value is ''. These flags are passed to uic when creating a header file from a .ui file.

Changed in 4.5.0: renamed from QT_UICDECLFLAGS.

QT3_UICDECLPREFIX

Default value is ''. Prefix for uic generated header files.

Changed in 4.5.0: renamed from QT_UICDECLPREFIX.

QT3_UICDECLSUFFIX

Default value is '.h'. Suffix for uic generated header files.

Changed in 4.5.0: renamed from QT_UICDECLSUFFIX.

QT3_UICIMPLFLAGS

Default value is ''. These flags are passed to uic when creating a C++ file from a .ui file.

Changed in 4.5.0: renamed from QT_UICIMPFLAGS.

QT3_UICIMPLPREFIX

Default value is 'uic_'. Prefix for uic generated implementation files.

Changed in 4.5.0: renamed from QT_UICIMPLPREFIX.

QT3_UICIMPLSUFFIX

Default value is '$CXXFILESUFFIX'. Suffix for uic generated implementation files.

Changed in 4.5.0: renamed from QT_UICIMPLSUFFIX.

QT3_UISUFFIX

Default value is '.ui'. Suffix of designer input files.

Changed in 4.5.0: renamed from QT_UISUFFIX.

QT3DIR

The path to the Qt installation to build against. If not already set, qt3 tool tries to obtain this from os.environ; if not found there, it tries to make a guess.

Changed in 4.5.0: renamed from QTDIR.

RANLIB

The archive indexer.

RANLIBCOM

The command line used to index a static library archive.

RANLIBCOMSTR

The string displayed when a static library archive is indexed. If this is not set, then $RANLIBCOM (the command line) is displayed.

env = Environment(RANLIBCOMSTR = "Indexing $TARGET")
RANLIBFLAGS

General options passed to the archive indexer.

RC

The resource compiler used to build a Microsoft Visual C++ resource file.

RCCOM

The command line used to build a Microsoft Visual C++ resource file.

RCCOMSTR

The string displayed when invoking the resource compiler to build a Microsoft Visual C++ resource file. If this is not set, then $RCCOM (the command line) is displayed.

RCFLAGS

The flags passed to the resource compiler by the RES builder.

RCINCFLAGS

An automatically-generated construction variable containing the command-line options for specifying directories to be searched by the resource compiler. The value of $RCINCFLAGS is created by respectively prepending and appending $RCINCPREFIX and $RCINCSUFFIX to the beginning and end of each directory in $CPPPATH.

RCINCPREFIX

The prefix (flag) used to specify an include directory on the resource compiler command line. This will be prepended to the beginning of each directory in the $CPPPATH construction variable when the $RCINCFLAGS variable is expanded.

RCINCSUFFIX

The suffix used to specify an include directory on the resource compiler command line. This will be appended to the end of each directory in the $CPPPATH construction variable when the $RCINCFLAGS variable is expanded.

RDirs

A function that converts a string into a list of Dir instances by searching the repositories.

REGSVR

The program used on Windows systems to register a newly-built DLL library whenever the SharedLibrary builder is passed a keyword argument of register=True.

REGSVRCOM

The command line used on Windows systems to register a newly-built DLL library whenever the SharedLibrary builder is passed a keyword argument of register=True.

REGSVRCOMSTR

The string displayed when registering a newly-built DLL file. If this is not set, then $REGSVRCOM (the command line) is displayed.

REGSVRFLAGS

Flags passed to the DLL registration program on Windows systems when a newly-built DLL library is registered. By default, this includes the /s that prevents dialog boxes from popping up and requiring user attention.

RMIC

The Java RMI stub compiler.

RMICCOM

The command line used to compile stub and skeleton class files from Java classes that contain RMI implementations. Any options specified in the $RMICFLAGS construction variable are included on this command line.

RMICCOMSTR

The string displayed when compiling stub and skeleton class files from Java classes that contain RMI implementations. If this is not set, then $RMICCOM (the command line) is displayed.

env = Environment(
    RMICCOMSTR="Generating stub/skeleton class files $TARGETS from $SOURCES"
)
RMICFLAGS

General options passed to the Java RMI stub compiler.

RPATH

A list of paths to search for shared libraries when running programs. Currently only used in the GNU (gnulink), IRIX (sgilink) and Sun (sunlink) linkers. Ignored on platforms and toolchains that don't support it. Note that the paths added to RPATH are not transformed by scons in any way: if you want an absolute path, you must make it absolute yourself.

_RPATH

An automatically-generated construction variable containing the rpath flags to be used when linking a program with shared libraries. The value of $_RPATH is created by respectively prepending $RPATHPREFIX and appending $RPATHSUFFIX to the beginning and end of each directory in $RPATH.

RPATHPREFIX

The prefix used to specify a directory to be searched for shared libraries when running programs. This will be prepended to the beginning of each directory in the $RPATH construction variable when the $_RPATH variable is automatically generated.

RPATHSUFFIX

The suffix used to specify a directory to be searched for shared libraries when running programs. This will be appended to the end of each directory in the $RPATH construction variable when the $_RPATH variable is automatically generated.

RPCGEN

The RPC protocol compiler.

RPCGENCLIENTFLAGS

Options passed to the RPC protocol compiler when generating client side stubs. These are in addition to any flags specified in the $RPCGENFLAGS construction variable.

RPCGENFLAGS

General options passed to the RPC protocol compiler.

RPCGENHEADERFLAGS

Options passed to the RPC protocol compiler when generating a header file. These are in addition to any flags specified in the $RPCGENFLAGS construction variable.

RPCGENSERVICEFLAGS

Options passed to the RPC protocol compiler when generating server side stubs. These are in addition to any flags specified in the $RPCGENFLAGS construction variable.

RPCGENXDRFLAGS

Options passed to the RPC protocol compiler when generating XDR routines. These are in addition to any flags specified in the $RPCGENFLAGS construction variable.

SCANNERS

A list of the available implicit dependency scanners. New file scanners may be added by appending to this list, although the more flexible approach is to associate scanners with a specific Builder. See the manpage sections "Builder Objects" and "Scanner Objects" for more information.

SCONS_HOME

The (optional) path to the SCons library directory, initialized from the external environment. If set, this is used to construct a shorter and more efficient search path in the $MSVSSCONS command line executed from C++ project files.

SHCC

The C compiler used for generating shared-library objects. See also $CC for compiling to static objects.

SHCCCOM

The command line used to compile a C source file to a shared-library object file. Any options specified in the $SHCFLAGS, $SHCCFLAGS and $CPPFLAGS construction variables are included on this command line. See also $CCCOM for compiling to static objects.

SHCCCOMSTR

If set, the string displayed when a C source file is compiled to a shared object file. If not set, then $SHCCCOM (the command line) is displayed. See also $CCCOMSTR for compiling to static objects.

env = Environment(SHCCCOMSTR = "Compiling shared object $TARGET")
SHCCFLAGS

Options that are passed to the C and C++ compilers to generate shared-library objects. See also $CCFLAGS for compiling to static objects.

SHCFLAGS

Options that are passed to the C compiler (only; not C++) to generate shared-library objects. See also $CFLAGS for compiling to static objects.

SHCXX

The C++ compiler used for generating shared-library objects. See also $CXX for compiling to static objects.

SHCXXCOM

The command line used to compile a C++ source file to a shared-library object file. Any options specified in the $SHCXXFLAGS and $CPPFLAGS construction variables are included on this command line. See also $CXXCOM for compiling to static objects.

SHCXXCOMSTR

If set, the string displayed when a C++ source file is compiled to a shared object file. If not set, then $SHCXXCOM (the command line) is displayed. See also $CXXCOMSTR for compiling to static objects.

env = Environment(SHCXXCOMSTR = "Compiling shared object $TARGET")
SHCXXFLAGS

Options that are passed to the C++ compiler to generate shared-library objects. See also $CXXFLAGS for compiling to static objects.

SHDC

The name of the compiler to use when compiling D source destined to be in a shared objects. See also $DC for compiling to static objects.

SHDCOM

The command line to use when compiling code to be part of shared objects. See also $DCOM for compiling to static objects.

SHDCOMSTR

If set, the string displayed when a D source file is compiled to a (shared) object file. If not set, then $SHDCOM (the command line) is displayed. See also $DCOMSTR for compiling to static objects.

SHDLIBVERSIONFLAGS

Extra flags added to $SHDLINKCOM when building versioned SharedLibrary. These flags are only used when $SHLIBVERSION is set.

SHDLINK

The linker to use when creating shared objects for code bases include D sources. See also $DLINK for linking static objects.

SHDLINKCOM

The command line to use when generating shared objects. See also $DLINKCOM for linking static objects.

SHDLINKFLAGS

The list of flags to use when generating a shared object. See also $DLINKFLAGS for linking static objects.

SHELL

A string naming the shell program that will be passed to the $SPAWN function. See the $SPAWN construction variable for more information.

SHELL_ENV_GENERATORS

A hook allowing the execution environment to be modified prior to the actual execution of a command line from an action via the spawner function defined by $SPAWN. Allows substitution based on targets and sources, as well as values from the construction environment, adding extra environment variables, etc.

The value must be a list (or other iterable) of functions which each generate or alter the execution environment dictionary. The first function will be passed a copy of the initial execution environment ($ENV in the current construction environment); the dictionary returned by that function is passed to the next, until the iterable is exhausted and the result returned for use by the command spawner. The original execution environment is not modified.

Each function provided in $SHELL_ENV_GENERATORS must accept four arguments and return a dictionary: env is the construction environment for this action; target is the list of targets associated with this action; source is the list of sources associated with this action; and shell_env is the current dictionary after iterating any previous $SHELL_ENV_GENERATORS functions (this can be compared to the original execution environment, which is available as env['ENV'], to detect any changes).

Example:

def custom_shell_env(env, target, source, shell_env):
    """customize shell_env if desired"""
    if str(target[0]) == 'special_target':
        shell_env['SPECIAL_VAR'] = env.subst('SOME_VAR', target=target, source=source)
    return shell_env

env["SHELL_ENV_GENERATORS"] = [custom_shell_env]
    

Available since 4.4

SHF03

The Fortran 03 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF03 if you need to use a specific compiler or compiler version for Fortran 03 files.

SHF03COM

The command line used to compile a Fortran 03 source file to a shared-library object file. You only need to set $SHF03COM if you need to use a specific command line for Fortran 03 files. You should normally set the $SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF03COMSTR

If set, the string displayed when a Fortran 03 source file is compiled to a shared-library object file. If not set, then $SHF03COM or $SHFORTRANCOM (the command line) is displayed.

SHF03FLAGS

Options that are passed to the Fortran 03 compiler to generated shared-library objects. You only need to set $SHF03FLAGS if you need to define specific user options for Fortran 03 files. You should normally set the $FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

SHF03PPCOM

The command line used to compile a Fortran 03 source file to a shared-library object file after first running the file through the C preprocessor. Any options specified in the $SHF03FLAGS and $CPPFLAGS construction variables are included on this command line. You only need to set $SHF03PPCOM if you need to use a specific C-preprocessor command line for Fortran 03 files. You should normally set the $SHFORTRANPPCOM variable, which specifies the default C-preprocessor command line for all Fortran versions.

SHF03PPCOMSTR

If set, the string displayed when a Fortran 03 source file is compiled to a shared-library object file after first running the file through the C preprocessor. If not set, then $SHF03PPCOM or $SHFORTRANPPCOM (the command line) is displayed.

SHF08

The Fortran 08 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF08 if you need to use a specific compiler or compiler version for Fortran 08 files.

SHF08COM

The command line used to compile a Fortran 08 source file to a shared-library object file. You only need to set $SHF08COM if you need to use a specific command line for Fortran 08 files. You should normally set the $SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF08COMSTR

If set, the string displayed when a Fortran 08 source file is compiled to a shared-library object file. If not set, then $SHF08COM or $SHFORTRANCOM (the command line) is displayed.

SHF08FLAGS

Options that are passed to the Fortran 08 compiler to generated shared-library objects. You only need to set $SHF08FLAGS if you need to define specific user options for Fortran 08 files. You should normally set the $FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

SHF08PPCOM

The command line used to compile a Fortran 08 source file to a shared-library object file after first running the file through the C preprocessor. Any options specified in the $SHF08FLAGS and $CPPFLAGS construction variables are included on this command line. You only need to set $SHF08PPCOM if you need to use a specific C-preprocessor command line for Fortran 08 files. You should normally set the $SHFORTRANPPCOM variable, which specifies the default C-preprocessor command line for all Fortran versions.

SHF08PPCOMSTR

If set, the string displayed when a Fortran 08 source file is compiled to a shared-library object file after first running the file through the C preprocessor. If not set, then $SHF08PPCOM or $SHFORTRANPPCOM (the command line) is displayed.

SHF77

The Fortran 77 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF77 if you need to use a specific compiler or compiler version for Fortran 77 files.

SHF77COM

The command line used to compile a Fortran 77 source file to a shared-library object file. You only need to set $SHF77COM if you need to use a specific command line for Fortran 77 files. You should normally set the $SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF77COMSTR

If set, the string displayed when a Fortran 77 source file is compiled to a shared-library object file. If not set, then $SHF77COM or $SHFORTRANCOM (the command line) is displayed.

SHF77FLAGS

Options that are passed to the Fortran 77 compiler to generated shared-library objects. You only need to set $SHF77FLAGS if you need to define specific user options for Fortran 77 files. You should normally set the $FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

SHF77PPCOM

The command line used to compile a Fortran 77 source file to a shared-library object file after first running the file through the C preprocessor. Any options specified in the $SHF77FLAGS and $CPPFLAGS construction variables are included on this command line. You only need to set $SHF77PPCOM if you need to use a specific C-preprocessor command line for Fortran 77 files. You should normally set the $SHFORTRANPPCOM variable, which specifies the default C-preprocessor command line for all Fortran versions.

SHF77PPCOMSTR

If set, the string displayed when a Fortran 77 source file is compiled to a shared-library object file after first running the file through the C preprocessor. If not set, then $SHF77PPCOM or $SHFORTRANPPCOM (the command line) is displayed.

SHF90

The Fortran 90 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF90 if you need to use a specific compiler or compiler version for Fortran 90 files.

SHF90COM

The command line used to compile a Fortran 90 source file to a shared-library object file. You only need to set $SHF90COM if you need to use a specific command line for Fortran 90 files. You should normally set the $SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF90COMSTR

If set, the string displayed when a Fortran 90 source file is compiled to a shared-library object file. If not set, then $SHF90COM or $SHFORTRANCOM (the command line) is displayed.

SHF90FLAGS

Options that are passed to the Fortran 90 compiler to generated shared-library objects. You only need to set $SHF90FLAGS if you need to define specific user options for Fortran 90 files. You should normally set the $FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

SHF90PPCOM

The command line used to compile a Fortran 90 source file to a shared-library object file after first running the file through the C preprocessor. Any options specified in the $SHF90FLAGS and $CPPFLAGS construction variables are included on this command line. You only need to set $SHF90PPCOM if you need to use a specific C-preprocessor command line for Fortran 90 files. You should normally set the $SHFORTRANPPCOM variable, which specifies the default C-preprocessor command line for all Fortran versions.

SHF90PPCOMSTR

If set, the string displayed when a Fortran 90 source file is compiled to a shared-library object file after first running the file through the C preprocessor. If not set, then $SHF90PPCOM or $SHFORTRANPPCOM (the command line) is displayed.

SHF95

The Fortran 95 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF95 if you need to use a specific compiler or compiler version for Fortran 95 files.

SHF95COM

The command line used to compile a Fortran 95 source file to a shared-library object file. You only need to set $SHF95COM if you need to use a specific command line for Fortran 95 files. You should normally set the $SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF95COMSTR

If set, the string displayed when a Fortran 95 source file is compiled to a shared-library object file. If not set, then $SHF95COM or $SHFORTRANCOM (the command line) is displayed.

SHF95FLAGS

Options that are passed to the Fortran 95 compiler to generated shared-library objects. You only need to set $SHF95FLAGS if you need to define specific user options for Fortran 95 files. You should normally set the $FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

SHF95PPCOM

The command line used to compile a Fortran 95 source file to a shared-library object file after first running the file through the C preprocessor. Any options specified in the $SHF95FLAGS and $CPPFLAGS construction variables are included on this command line. You only need to set $SHF95PPCOM if you need to use a specific C-preprocessor command line for Fortran 95 files. You should normally set the $SHFORTRANPPCOM variable, which specifies the default C-preprocessor command line for all Fortran versions.

SHF95PPCOMSTR

If set, the string displayed when a Fortran 95 source file is compiled to a shared-library object file after first running the file through the C preprocessor. If not set, then $SHF95PPCOM or $SHFORTRANPPCOM (the command line) is displayed.

SHFORTRAN

The default Fortran compiler used for generating shared-library objects.

SHFORTRANCOM

The command line used to compile a Fortran source file to a shared-library object file. By default, any options specified in the $SHFORTRANFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS construction variables are included on this command line. See also $FORTRANCOM.

SHFORTRANCOMSTR

If set, the string displayed when a Fortran source file is compiled to a shared-library object file. If not set, then $SHFORTRANCOM (the command line) is displayed.

SHFORTRANFLAGS

Options that are passed to the Fortran compiler to generate shared-library objects.

SHFORTRANPPCOM

The command line used to compile a Fortran source file to a shared-library object file after first running the file through the C preprocessor. By default, any options specified in the $SHFORTRANFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS construction variables are included on this command line. See also $SHFORTRANCOM.

SHFORTRANPPCOMSTR

If set, the string displayed when a Fortran source file is compiled to a shared-library object file after first running the file through the C preprocessor. If not set, then $SHFORTRANPPCOM (the command line) is displayed.

SHLIBEMITTER

Contains the emitter specification for the SharedLibrary builder. The manpage section "Builder Objects" contains general information on specifying emitters.

SHLIBNOVERSIONSYMLINKS

Instructs the SharedLibrary builder to not create symlinks for versioned shared libraries.

SHLIBPREFIX

The prefix used for shared library file names.

_SHLIBSONAME

A macro that automatically generates shared library's SONAME based on $TARGET, $SHLIBVERSION and $SHLIBSUFFIX. Used by SharedLibrary builder when the linker tool supports SONAME (e.g. gnulink).

SHLIBSUFFIX

The suffix used for shared library file names.

SHLIBVERSION

When this construction variable is defined, a versioned shared library is created by the SharedLibrary builder. This activates the $_SHLIBVERSIONFLAGS and thus modifies the $SHLINKCOM as required, adds the version number to the library name, and creates the symlinks that are needed. $SHLIBVERSION versions should exist as alpha-numeric, decimal-delimited values as defined by the regular expression "\w+[\.\w+]*". Example $SHLIBVERSION values include '1', '1.2.3', and '1.2.gitaa412c8b'.

_SHLIBVERSIONFLAGS

This macro automatically introduces extra flags to $SHLINKCOM when building versioned SharedLibrary (that is when $SHLIBVERSION is set). _SHLIBVERSIONFLAGS usually adds $SHLIBVERSIONFLAGS and some extra dynamically generated options (such as -Wl,-soname=$_SHLIBSONAME. It is unused by "plain" (unversioned) shared libraries.

SHLIBVERSIONFLAGS

Extra flags added to $SHLINKCOM when building versioned SharedLibrary. These flags are only used when $SHLIBVERSION is set.

SHLINK

The linker for programs that use shared libraries. See also $LINK for linking static objects.

On POSIX systems (those using the link tool), you should normally not change this value as it defaults to a "smart" linker tool which selects a compiler driver matching the type of source files in use. So for example, if you set $SHCXX to a specific compiler name, and are compiling C++ sources, the smartlink function will automatically select the same compiler for linking.

SHLINKCOM

The command line used to link programs using shared libraries. See also $LINKCOM for linking static objects.

SHLINKCOMSTR

The string displayed when programs using shared libraries are linked. If this is not set, then $SHLINKCOM (the command line) is displayed. See also $LINKCOMSTR for linking static objects.

env = Environment(SHLINKCOMSTR = "Linking shared $TARGET")
SHLINKFLAGS

General user options passed to the linker for programs using shared libraries. Note that this variable should not contain -l (or similar) options for linking with the libraries listed in $LIBS, nor -L (or similar) include search path options that scons generates automatically from $LIBPATH. See $_LIBFLAGS above, for the variable that expands to library-link options, and $_LIBDIRFLAGS above, for the variable that expands to library search path options. See also $LINKFLAGS for linking static objects.

SHOBJPREFIX

The prefix used for shared object file names.

SHOBJSUFFIX

The suffix used for shared object file names.

SONAME

Variable used to hard-code SONAME for versioned shared library/loadable module.

env.SharedLibrary('test', 'test.c', SHLIBVERSION='0.1.2', SONAME='libtest.so.2')

The variable is used, for example, by gnulink linker tool.

SOURCE

A reserved variable name that may not be set or used in a construction environment. (See the manpage section "Variable Substitution" for more information).

SOURCE_URL

The URL (web address) of the location from which the project was retrieved. This is used to fill in the Source: field in the controlling information for Ipkg and RPM packages.

See the Package builder.

SOURCES

A reserved variable name that may not be set or used in a construction environment. (See the manpage section "Variable Substitution" for more information).

SOVERSION

This will construct the SONAME using on the base library name (test in the example below) and use specified SOVERSION to create SONAME.

env.SharedLibrary('test', 'test.c', SHLIBVERSION='0.1.2', SOVERSION='2')

The variable is used, for example, by gnulink linker tool.

In the example above SONAME would be libtest.so.2 which would be a symlink and point to libtest.so.0.1.2

SPAWN

A command interpreter function that will be called to execute command line strings. The function must accept five arguments:

def spawn(shell, escape, cmd, args, env):

shell is a string naming the shell program to use, escape is a function that can be called to escape shell special characters in the command line, cmd is the path to the command to be executed, args holds the arguments to the command and env is a dictionary of environment variables defining the execution environment in which the command should be executed.

STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME

When this variable is true, static objects and shared objects are assumed to be the same; that is, SCons does not check for linking static objects into a shared library.

SUBST_DICT

The dictionary used by the Substfile or Textfile builders for substitution values. It can be anything acceptable to the dict() constructor, so in addition to a dictionary, lists of tuples are also acceptable.

SUBSTFILEPREFIX

The prefix used for Substfile file names, an empty string by default.

SUBSTFILESUFFIX

The suffix used for Substfile file names, an empty string by default.

SUMMARY

A short summary of what the project is about. This is used to fill in the Summary: field in the controlling information for Ipkg and RPM packages, and as the Description: field in MSI packages.

See the Package builder.

SWIG

The name of the SWIG compiler to use.

SWIGCFILESUFFIX

The suffix that will be used for intermediate C source files generated by SWIG. The default value is '_wrap$CFILESUFFIX' - that is, the concatenation of the string _wrap and the current C suffix $CFILESUFFIX. By default, this value is used whenever the -c++ option is not specified as part of the $SWIGFLAGS construction variable.

SWIGCOM

The command line used to call SWIG.

SWIGCOMSTR

The string displayed when calling SWIG. If this is not set, then $SWIGCOM (the command line) is displayed.

SWIGCXXFILESUFFIX

The suffix that will be used for intermediate C++ source files generated by SWIG. The default value is '_wrap$CXXFILESUFFIX' - that is, the concatenation of the string _wrap and the current C++ suffix $CXXFILESUFFIX. By default, this value is used whenever the -c++ option is specified as part of the $SWIGFLAGS construction variable.

SWIGDIRECTORSUFFIX

The suffix that will be used for intermediate C++ header files generated by SWIG. These are only generated for C++ code when the SWIG 'directors' feature is turned on. The default value is _wrap.h.

SWIGFLAGS

General options passed to SWIG. This is where you should set the target language (-python, -perl5, -tcl, etc.) and whatever other options you want to specify to SWIG, such as the -c++ to generate C++ code instead of C Code.

_SWIGINCFLAGS

An automatically-generated construction variable containing the SWIG command-line options for specifying directories to be searched for included files. The value of $_SWIGINCFLAGS is created by respectively prepending and appending $SWIGINCPREFIX and $SWIGINCSUFFIX to the beginning and end of each directory in $SWIGPATH.

SWIGINCPREFIX

The prefix used to specify an include directory on the SWIG command line. This will be prepended to the beginning of each directory in the $SWIGPATH construction variable when the $_SWIGINCFLAGS variable is automatically generated.

SWIGINCSUFFIX

The suffix used to specify an include directory on the SWIG command line. This will be appended to the end of each directory in the $SWIGPATH construction variable when the $_SWIGINCFLAGS variable is automatically generated.

SWIGOUTDIR

Specifies the output directory in which SWIG should place generated language-specific files. This will be used by SCons to identify the files that will be generated by the SWIG call, and translated into the swig -outdir option on the command line.

SWIGPATH

The list of directories that SWIG will search for included files. SCons' SWIG implicit dependency scanner will search these directories for include files. The default value is an empty list.

Don't explicitly put include directory arguments in $SWIGFLAGS the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in $SWIGPATH will be looked-up relative to the SConscript directory when they are used in a command. To force scons to look-up a directory relative to the root of the source tree use a top-relative path (#):

env = Environment(SWIGPATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(SWIGPATH=include)

The directory list will be added to command lines through the automatically-generated $_SWIGINCFLAGS construction variable, which is constructed by respectively prepending and appending the values of the $SWIGINCPREFIX and $SWIGINCSUFFIX construction variables to the beginning and end of each directory in $SWIGPATH. Any command lines you define that need the SWIGPATH directory list should include $_SWIGINCFLAGS:

env = Environment(SWIGCOM="my_swig -o $TARGET $_SWIGINCFLAGS $SOURCES")
SWIGVERSION

The detected version string of the SWIG tool.

TAR

The tar archiver.

TARCOM

The command line used to call the tar archiver.

TARCOMSTR

The string displayed when archiving files using the tar archiver. If this is not set, then $TARCOM (the command line) is displayed.

env = Environment(TARCOMSTR = "Archiving $TARGET")
TARFLAGS

General options passed to the tar archiver.

TARGET

A reserved variable name that may not be set or used in a construction environment. (See the manpage section "Variable Substitution" for more information).

TARGET_ARCH

The name of the hardware architecture that objects created using this construction environment should target. Can be set when creating a construction environment by passing as a keyword argument in the Environment call.

On the win32 platform, if the Microsoft Visual C++ compiler is available, msvc tool setup is done using $HOST_ARCH and $TARGET_ARCH. If a value is not specified, will be set to the same value as $HOST_ARCH. Changing the value after the environment is initialized will not cause the tool to be reinitialized. Compiled objects will be in the target architecture if the compilation system supports generating for that target. The latest compiler which can fulfill the requirement will be selected, unless a different version is directed by the value of the $MSVC_VERSION construction variable.

On the win32/msvc combination, valid target arch values are x86, arm, i386 for 32-bit targets and amd64, arm64, x86_64 and ia64 (Itanium) for 64-bit targets. For example, if you want to compile 64-bit binaries, you would set TARGET_ARCH='x86_64' when creating the construction environment. Note that not all target architectures are supported for all Visual Studio / MSVC versions. Check the relevant Microsoft documentation.

$TARGET_ARCH is not currently used by other compilation tools, but the option is reserved to do so in future

TARGET_OS

The name of the operating system that objects created using this construction environment should target. Can be set when creating a construction environment by passing as a keyword argument in the Environment call;.

$TARGET_OS is not currently used by SCons but the option is reserved to do so in future

TARGETS

A reserved variable name that may not be set or used in a construction environment. (See the manpage section "Variable Substitution" for more information).

TARSUFFIX

The suffix used for tar file names.

TEMPFILE

A callable object used to handle overly long command line strings, since operations which call out to a shell will fail if the line is longer than the shell can accept. This tends to particularly impact linking. The tempfile object stores the command line in a temporary file in the appropriate format, and returns an alternate command line so the invoked tool will make use of the contents of the temporary file. If you need to replace the default tempfile object, the callable should take into account the settings of $MAXLINELENGTH, $TEMPFILEPREFIX, $TEMPFILESUFFIX, $TEMPFILEARGJOIN, $TEMPFILEDIR and $TEMPFILEARGESCFUNC.

TEMPFILEARGESCFUNC

The default argument escape function is SCons.Subst.quote_spaces. If you need to apply extra operations on a command argument (to fix Windows slashes, normalize paths, etc.) before writing to the temporary file, you can set the $TEMPFILEARGESCFUNC variable to a custom function. Such a function takes a single string argument and returns a new string with any modifications applied. Example:

import sys
import re
from SCons.Subst import quote_spaces

WINPATHSEP_RE = re.compile(r"\\([^\"'\\]|$)")

def tempfile_arg_esc_func(arg):
    arg = quote_spaces(arg)
    if sys.platform != "win32":
        return arg
    # GCC requires double Windows slashes, let's use UNIX separator
    return WINPATHSEP_RE.sub(r"/\1", arg)

env["TEMPFILEARGESCFUNC"] = tempfile_arg_esc_func
TEMPFILEARGJOIN

The string to use to join the arguments passed to $TEMPFILE when the command line exceeds the limit set by $MAXLINELENGTH. The default value is a space. However for MSVC, MSLINK the default is a line separator as defined by os.linesep. Note this value is used literally and not expanded by the subst logic.

TEMPFILEDIR

The directory to create the long-lines temporary file in.

TEMPFILEPREFIX

The prefix for the name of the temporary file used to store command lines exceeding $MAXLINELENGTH. The default prefix is '@', which works for the Microsoft Visual C++ and GNU toolchains on Windows. Set this appropriately for other toolchains, for example '-@' for the diab compiler or '-via' for ARM toolchain.

TEMPFILESUFFIX

The suffix for the name of the temporary file used to store command lines exceeding $MAXLINELENGTH. The suffix should include the dot ('.') if one is wanted as it will not be added automatically. The default is .lnk.

TEX

The TeX formatter and typesetter.

TEXCOM

The command line used to call the TeX formatter and typesetter.

TEXCOMSTR

The string displayed when calling the TeX formatter and typesetter. If this is not set, then $TEXCOM (the command line) is displayed.

env = Environment(TEXCOMSTR = "Building $TARGET from TeX input $SOURCES")
TEXFLAGS

General options passed to the TeX formatter and typesetter.

TEXINPUTS

List of directories that the LaTeX program will search for include directories. The LaTeX implicit dependency scanner will search these directories for \include and \import files.

TEXTFILEPREFIX

The prefix used for Textfile file names, an empty string by default.

TEXTFILESUFFIX

The suffix used for Textfile file names; .txt by default.

TOOLS

A list of the names of the Tool specification modules that were actually initialized in the current construction environment. This may be useful as a diagnostic aid to see if a tool did (or did not) run. The value is informative and is not guaranteed to be complete.

UNCHANGED_SOURCES

A reserved variable name that may not be set or used in a construction environment. (See the manpage section "Variable Substitution" for more information).

UNCHANGED_TARGETS

A reserved variable name that may not be set or used in a construction environment. (See the manpage section "Variable Substitution" for more information).

VENDOR

The person or organization who supply the packaged software. This is used to fill in the Vendor: field in the controlling information for RPM packages, and the Manufacturer: field in the controlling information for MSI packages.

See the Package builder.

VERSION

The version of the project, specified as a string.

See the Package builder.

VSWHERE

Specify the location of vswhere.exe.

The vswhere.exe executable is distributed with Microsoft Visual Studio and Build Tools since the 2017 edition, but is also available as a standalone installation. It allows queries to obtain detailed information about installations of 2017 and later editions. SCons makes use of this information to determine the state of compiler support for those editions.

Setting the $VSWHERE variable to the path to a specific vswhere.exe binary causes SCons to use that binary. If not set, SCons will search for one, looking in the following locations in order, using the first found ($VSWHERE is updated with the location):

%ProgramFiles(x86)%\Microsoft Visual Studio\Installer
%ProgramFiles%\Microsoft Visual Studio\Installer
%ChocolateyInstall%\bin
%LOCALAPPDATA%\Microsoft\WinGet\Links
%USERPROFILE%\scoop\shims
%SCOOP%\shims

Note

In order to take effect, $VSWHERE must be set before the initial Microsoft Visual C++ compiler discovery takes place. Discovery happens, at the latest, during the first call to the Environment function, unless a tools list is specified which excludes the entire Microsoft Visual C++ toolchain - that is, omits "defaults" and any specific tool module that refers to parts of the toolchain (msvc, mslink, masm, midl and msvs). In this case, detection is deferred until any one of those tool modules is invoked manually. The following two examples illustrate this:

# VSWHERE set as Environment is created
env = Environment(VSWHERE='c:/my/path/to/vswhere')

# Initialization deferred with empty tools, triggered manually
env = Environment(tools=[])
env['VSWHERE'] = r'c:/my/vswhere/install/location/vswhere.exe'
env.Tool('msvc')
env.Tool('mslink')
env.Tool('msvs')
  
WINDOWS_EMBED_MANIFEST

Set to True to embed the compiler-generated manifest (normally ${TARGET}.manifest) into all Windows executables and DLLs built with this environment, as a resource during their link step. This is done using $MT and $MTEXECOM and $MTSHLIBCOM. See also $WINDOWS_INSERT_MANIFEST.

WINDOWS_INSERT_DEF

If set to true, a library build of a Windows shared library (.dll file) will include a reference to the corresponding module-definition file at the same time, if a module-definition file is not already listed as a build target. The name of the module-definition file will be constructed from the base name of the library and the construction variables $WINDOWSDEFSUFFIX and $WINDOWSDEFPREFIX. The default is to not add a module-definition file. The module-definition file is not created by this directive, and must be supplied by the developer.

WINDOWS_INSERT_MANIFEST

If set to true, scons will add the manifest file generated by Microsoft Visual C++ 8.0 and later to the target list so SCons will be aware they were generated. In the case of an executable, the manifest file name is constructed using $WINDOWSPROGMANIFESTSUFFIX and $WINDOWSPROGMANIFESTPREFIX. In the case of a shared library, the manifest file name is constructed using $WINDOWSSHLIBMANIFESTSUFFIX and $WINDOWSSHLIBMANIFESTPREFIX. See also $WINDOWS_EMBED_MANIFEST.

WINDOWSDEFPREFIX

The prefix used for a Windows linker module-definition file name. Defaults to empty.

WINDOWSDEFSUFFIX

The suffix used for a Windows linker module-definition file name. Defaults to .def.

WINDOWSEXPPREFIX

The prefix used for Windows linker exports file names. Defaults to empty.

WINDOWSEXPSUFFIX

The suffix used for Windows linker exports file names. Defaults to .exp.

WINDOWSPROGMANIFESTPREFIX

The prefix used for executable program manifest files generated by Microsoft Visual C++. Defaults to empty.

WINDOWSPROGMANIFESTSUFFIX

The suffix used for executable program manifest files generated by Microsoft Visual C++. Defaults to .manifest.

WINDOWSSHLIBMANIFESTPREFIX

The prefix used for shared library manifest files generated by Microsoft Visual C++. Defaults to empty.

WINDOWSSHLIBMANIFESTSUFFIX

The suffix used for shared library manifest files generated by Microsoft Visual C++. Defaults to .manifest.

X_IPK_DEPENDS

This is used to fill in the Depends: field in the controlling information for Ipkg packages.

See the Package builder.

X_IPK_DESCRIPTION

This is used to fill in the Description: field in the controlling information for Ipkg packages. The default value is $SUMMARY\n$DESCRIPTION

X_IPK_MAINTAINER

This is used to fill in the Maintainer: field in the controlling information for Ipkg packages.

X_IPK_PRIORITY

This is used to fill in the Priority: field in the controlling information for Ipkg packages.

X_IPK_SECTION

This is used to fill in the Section: field in the controlling information for Ipkg packages.

X_MSI_LANGUAGE

This is used to fill in the Language: attribute in the controlling information for MSI packages.

See the Package builder.

X_MSI_LICENSE_TEXT

The text of the software license in RTF format. Carriage return characters will be replaced with the RTF equivalent \\par.

See the Package builder.

X_MSI_UPGRADE_CODE

TODO

X_RPM_AUTOREQPROV

This is used to fill in the AutoReqProv: field in the RPM .spec file.

See the Package builder.

X_RPM_BUILD

internal, but overridable

X_RPM_BUILDREQUIRES

This is used to fill in the BuildRequires: field in the RPM .spec file. Note this should only be used on a host managed by rpm as the dependencies will not be resolvable at build time otherwise.

X_RPM_BUILDROOT

internal, but overridable

X_RPM_CLEAN

internal, but overridable

X_RPM_CONFLICTS

This is used to fill in the Conflicts: field in the RPM .spec file.

X_RPM_DEFATTR

This value is used as the default attributes for the files in the RPM package. The default value is (-,root,root).

X_RPM_DISTRIBUTION

This is used to fill in the Distribution: field in the RPM .spec file.

X_RPM_EPOCH

This is used to fill in the Epoch: field in the RPM .spec file.

X_RPM_EXCLUDEARCH

This is used to fill in the ExcludeArch: field in the RPM .spec file.

X_RPM_EXLUSIVEARCH

This is used to fill in the ExclusiveArch: field in the RPM .spec file.

X_RPM_EXTRADEFS

A list used to supply extra defintions or flags to be added to the RPM .spec file. Each item is added as-is with a carriage return appended. This is useful if some specific RPM feature not otherwise anticipated by SCons needs to be turned on or off. Note if this variable is omitted, SCons will by default supply the value '%global debug_package %{nil}' to disable debug package generation. To enable debug package generation, include this variable set either to None, or to a custom list that does not include the default line.

New in version 3.1.

env.Package(
    NAME="foo",
    ...
    X_RPM_EXTRADEFS=[
        "%define _unpackaged_files_terminate_build 0"
        "%define _missing_doc_files_terminate_build 0"
    ],
    ...
)
X_RPM_GROUP

This is used to fill in the Group: field in the RPM .spec file.

X_RPM_GROUP_lang

This is used to fill in the Group(lang): field in the RPM .spec file. Note that lang is not literal and should be replaced by the appropriate language code.

X_RPM_ICON

This is used to fill in the Icon: field in the RPM .spec file.

X_RPM_INSTALL

internal, but overridable

X_RPM_PACKAGER

This is used to fill in the Packager: field in the RPM .spec file.

X_RPM_POSTINSTALL

This is used to fill in the %post: section in the RPM .spec file.

X_RPM_POSTUNINSTALL

This is used to fill in the %postun: section in the RPM .spec file.

X_RPM_PREFIX

This is used to fill in the Prefix: field in the RPM .spec file.

X_RPM_PREINSTALL

This is used to fill in the %pre: section in the RPM .spec file.

X_RPM_PREP

internal, but overridable

X_RPM_PREUNINSTALL

This is used to fill in the %preun: section in the RPM .spec file.

X_RPM_PROVIDES

This is used to fill in the Provides: field in the RPM .spec file.

X_RPM_REQUIRES

This is used to fill in the Requires: field in the RPM .spec file.

X_RPM_SERIAL

This is used to fill in the Serial: field in the RPM .spec file.

X_RPM_URL

This is used to fill in the Url: field in the RPM .spec file.

XGETTEXT

Path to xgettext(1) program (found via Detect()). See xgettext tool and POTUpdate builder.

XGETTEXTCOM

Complete xgettext command line. See xgettext tool and POTUpdate builder.

XGETTEXTCOMSTR

A string that is shown when xgettext(1) command is invoked (default: '', which means "print $XGETTEXTCOM"). See xgettext tool and POTUpdate builder.

_XGETTEXTDOMAIN

Internal "macro". Generates xgettext domain name form source and target (default: '${TARGET.filebase}').

XGETTEXTFLAGS

Additional flags to xgettext(1). See xgettext tool and POTUpdate builder.

XGETTEXTFROM

Name of file containing list of xgettext(1)'s source files. Autotools' users know this as POTFILES.in so they will in most cases set XGETTEXTFROM="POTFILES.in" here. The $XGETTEXTFROM files have same syntax and semantics as the well known GNU POTFILES.in. See xgettext tool and POTUpdate builder.

_XGETTEXTFROMFLAGS

Internal "macro". Genrates list of -D<dir> flags from the $XGETTEXTPATH list.

XGETTEXTFROMPREFIX

This flag is used to add single $XGETTEXTFROM file to xgettext(1)'s commandline (default: '-f').

XGETTEXTFROMSUFFIX

(default: '')

XGETTEXTPATH

List of directories, there xgettext(1) will look for source files (default: []).

Note

This variable works only together with $XGETTEXTFROM

See also xgettext tool and POTUpdate builder.

_XGETTEXTPATHFLAGS

Internal "macro". Generates list of -f<file> flags from $XGETTEXTFROM.

XGETTEXTPATHPREFIX

This flag is used to add single search path to xgettext(1)'s commandline (default: '-D').

XGETTEXTPATHSUFFIX

(default: '')

YACC

The parser generator.

YACC_GRAPH_FILE

If supplied, write a graph of the automaton to a file with the name taken from this variable. Will be emitted as a --graph= command-line option. Use this in preference to including --graph= in $YACCFLAGS directly.

New in version 4.4.0.

YACC_GRAPH_FILE_SUFFIX

Previously specified by $YACCVCGFILESUFFIX.

The suffix of the file containing a graph of the grammar automaton when the -g option (or --graph= without an option-argument) is used in $YACCFLAGS. Note that setting this variable informs SCons how to construct the graph filename for tracking purposes, it does not affect the actual generated filename. Various yacc tools have emitted various formats at different times. Set this to match what your parser generator produces.

New in version 4.6.0.

YACC_HEADER_FILE

If supplied, generate a header file with the name taken from this variable. Will be emitted as a --header= command-line option. Use this in preference to including --header= in $YACCFLAGS directly.

New in version 4.4.0.

YACCCOM

The command line used to call the parser generator to generate a source file.

YACCCOMSTR

The string displayed when generating a source file using the parser generator. If this is not set, then $YACCCOM (the command line) is displayed.

env = Environment(YACCCOMSTR="Yacc'ing $TARGET from $SOURCES")
YACCFLAGS

General options passed to the parser generator. In addition to passing the value on during invocation, the yacc tool also examines this construction variable for options which cause additional output files to be generated, and adds those to the target list.

If the -d option is present in $YACCFLAGS scons assumes that the call will also create a header file with the suffix defined by $YACCHFILESUFFIX if the yacc source file ends in a .y suffix, or a file with the suffix defined by $YACCHXXFILESUFFIX if the yacc source file ends in a .yy suffix. The header will have the same base name as the requested target. This is only correct if the executable is bison (or win_bison). If using Berkeley yacc (byacc), y.tab.h is always written - avoid the -d in this case and use $YACC_HEADER_FILE instead.

If a -g option is present, scons assumes that the call will also create a graph file with the suffix defined by $YACCVCGFILESUFFIX.

If a -v option is present, scons assumes that the call will also create an output debug file with the suffix .output.

Also recognized are GNU bison options --header (and its deprecated synonym --defines), which is similar to -d but gives the option to explicitly name the output header file through an option argument; and --graph, which is similar to -g but gives the option to explicitly name the output graph file through an option argument. The file suffixes described for -d and -g above are not applied if these are used in the option=argument form.

Note that files specified by --header= and --graph= may not be properly handled by SCons in all situations, and using those in $YACCFLAGS should be considered legacy support only. Consider using $YACC_HEADER_FILE and $YACC_GRAPH_FILE instead if the files need to be explicitly named (new in version 4.4.0).

YACCHFILESUFFIX

The suffix of the C header file generated by the parser generator when the -d option (or --header without an option-argument) is used in $YACCFLAGS. Note that setting this variable informs SCons how to construct the header filename for tracking purposes, it does not affect the actual generated filename. Set this to match what your parser generator produces. The default value is .h.

YACCHXXFILESUFFIX

The suffix of the C++ header file generated by the parser generator when the -d option (or --header without an option-argument) is used in $YACCFLAGS. Note that setting this variable informs SCons how to construct the header filename for tracking purposes, it does not affect the actual generated filename. Set this to match what your parser generator produces. The default value is .hpp.

YACCVCGFILESUFFIX

Obsoleted. Use $YACC_GRAPH_FILE_SUFFIX instead. The value is used only if $YACC_GRAPH_FILE_SUFFIX is not set. The default value is .gv.

Changed in version 4.6.0: deprecated. The default value changed from .vcg (bison stopped generating .vcg output with version 2.4, in 2006).

ZIP

The zip compression and file packaging utility.

ZIP_OVERRIDE_TIMESTAMP

An optional timestamp which overrides the last modification time of the file when stored inside the Zip archive. This is a tuple of six values: Year (>= 1980) Month (one-based) Day of month (one-based) Hours (zero-based) Minutes (zero-based) Seconds (zero-based)

ZIPCOM

The command line used to call the zip utility, or the internal Python function used to create a zip archive.

ZIPCOMPRESSION

The compression flag from the Python zipfile module used by the internal Python function to control whether the zip archive is compressed or not. The default value is zipfile.ZIP_DEFLATED, which creates a compressed zip archive. This value has no effect if the zipfile module is unavailable.

ZIPCOMSTR

The string displayed when archiving files using the zip utility. If this is not set, then $ZIPCOM (the command line or internal Python function) is displayed.

env = Environment(ZIPCOMSTR = "Zipping $TARGET")
ZIPFLAGS

General options passed to the zip utility.

ZIPROOT

An optional zip root directory (default empty). The filenames stored in the zip file will be relative to this directory, if given. Otherwise the filenames are relative to the current directory of the command. For instance:

env = Environment()
env.Zip('foo.zip', 'subdir1/subdir2/file1', ZIPROOT='subdir1')

will produce a zip file foo.zip containing a file with the name subdir2/file1 rather than subdir1/subdir2/file1.

ZIPSUFFIX

The suffix used for zip file names.