SCons API Docs

version 4.5

SCons Project

March 06, 2023

Contents SCons.Scanner.Java 73

module
SCons API Documentation 1 SCons.Scanner.LaTeX 73
module
SCons package 1
SCons.Scanner.Prog 75
Module contents 1 module
Subpackages 1 SCons.Scanner.RC 75
SCons.Node package 1 module
Submodules 1 SCons.Scanner.SWIG 75
module
SCons.Node.Alias module 1
Module contents 75
SCons.Node.FS module 7
SCons.Script package 79
SCons.Node.Python 51
module Submodules 79
Module contents 57 SCons.Script.Interactive 79
module
SCons.Platform package 65
SCons.Script.Main 80
Submodules 65 module
SCons.Platform.aix 65 SCons.Script.SConsOptions 87
module module
SCons.Platform.cygwin 65 SCons.Script.SConscript 92
module module
SCons.Platform.darwin 65 Module contents 98
module
SCons.Taskmaster package 99
SCons.Platform.hpux 65
module Submodules 99
SCons.Platform.irix 65 SCons.Taskmaster.Job 99
module module
SCons.Platform.mingw 66 Module contents 103
module SCons.Tool package 109
SCons.Platform.os2 66 Module contents 109
module
SCons.Variables package 111
SCons.Platform.posix 66 P g
module Submodules 111
SCons.Platform.sunos 66 SCons.Variables.BoolVariable 111
module module
SCons.Platform.virtualenv 66 SCons.Variables.EnumVariable 111
module module
SCons.Platform.win32 67 SCons.Variables.ListVariable 112
module module
Module contents 67 SCons.Variables.PackageVariable 113
module
SCons.Scanner package 68
bmodul SCons.Variables.PathVariable 113
Submodules 68 module
SCons.Scanner.C module 68 Module contents 114
SCons.Scanner.D module 71 SCons.compat package 116
SCons.Scanner.Dir 72 Module contents 116
module
Submodules 116
SCons.Scanner.Fortran 72
module SCons.Action module 116
SCons.Scanner.IDL 73 SCons.Builder module 122
module

SCons.CacheDir module 127

SCons.Conftest module
SCons.Debug module
SCons.Defaults module
SCons.Environment module
SCons.Errors module
SCons.Executor module
SCons.Memoize module
SCons.PathList module
SCons.SConf module
SCons.SConsign module
SCons.Subst module
SCons.Util module
SCons.Warnings module
SCons.cpp module
SCons.dblite module

SCons.exitfuncs module

SCons.compat package

Module contents

SCons.Node package

Submodules
SCons.Node.Alias module
SCons.Node.FS module
SCons.Node.Python module

Module contents

SCons.Platform package

Submodules
SCons.Platform.aix module
SCons.Platform.cygwin module
SCons.Platform.darwin module
SCons.Platform.hpux module
SCons.Platform.irix module
SCons.Platform.mingw module
SCons.Platform.os2 module
SCons.Platform.posix module

SCons.Platform.sunos module

SCons.Platform.virtualenv module

SCons.Platform.win32 module

Module contents

SCons.Scanner package

Submodules
SCons.Scanner.C module
SCons.Scanner.D module

SCons.Scanner.Dir module

127
131
131
133
145
146
150
151
152
157
158
162
169
173
175
179
179
179
179
179
179
186
230
236
244
244
244
244
244
244
244
244
245
245
245
245
245
246
247
247
247
250
251

SCons.Scanner.Fortran module
SCons.Scanner.IDL module
SCons.Scanner.Java module
SCons.Scanner.LaTeX module
SCons.Scanner.Prog module
SCons.Scanner.RC module
SCons.Scanner.SWIG module

Module contents

SCons.Script package

Submodules
SCons.Script.Interactive module

SCons.Script.Main module

SCons.Script.SConsOptions module

SCons.Script.SConscript module

Module contents

SCons.Taskmaster package

Submodules
SCons.Taskmaster.Job module

Module contents

SCons.Tool package

Module contents

SCons.Variables package

Submodules

SCons.Variables.BoolVariable
module

SCons.Variables.EnumVariable
module

SCons.Variables.ListVariable
module

SCons.Variables.PackageVariable

module

SCons.Variables.PathVariable
module

Module contents

Indices and Tables

Python Module Index

251
252
252
252
254
254
254
254
258
258
258
259
266
271
277
278
278
278
282
288
288
290
290
290

290

291

292

292

293
295
297
357

SCons API Documentation

SCons APl Documentation

Attention!

This is the internal APl Documentation for SCons. The documentation is automatically generated for each
release from the source code using the Sphinx tool. Missing information is due to shortcomings in the docstrings
in the code, which are by no means complete (contributions welcomed!).

The target audience is developers working on SCons itself: what is “Public API” is not clearly deliniated here.
The interfaces available for use in SCons configuration scripts, which have a consistency guarantee, are those
documented in the SCons Reference Manual.

SCons package
Module contents
Subpackages
SCons.Node package

Submodules

SCons.Node.Alias module
Alias nodes.

This creates a hash of global Aliases (dummy targets).
class SCons.Node.Alias.Alias (nane)
Bases: SCons.Node.Node
class Attrs
Bases: object
shared
BuildInfo
alias of SCons.Node.Alias.AliasBuildInfo
Decider (f unct i on)
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of SCons.Node.Alias.AliasNodelnfo
Tag (key, val ue)
Add a user-defined tag.
_add_child (col | ection, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset ()
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_memo

https://www.sphinx-doc.org
https://scons.org/doc/production/HTML/scons-man.html

SCons API Documentation

_specific_sources

_tags

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (pr er equi si te)
Adds prerequisites

add_source (sour ce)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build ()
A “builder” for aliases.

builder

builder_set (bui | der)

built ()
Called just after this node is successfully built.

cached

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

SCons API Documentation

convert ()

del_binfo ()
Delete the build info from this node.

depends

depends_set

disambiguate (must _exi st =None)

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
The contents of an alias is the concatenation of the content signatures of all its sources.

get_csig ()
Generate a node’s content signature, the digested signature of its content.
node - the node cache - alternate node to use for the signature cache returns - the content signature

get_env ()

get_env_scanner (env, kw={})

get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)

SCons API Documentation

Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

SCons API Documentation

linked
make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.
missing ()
multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
postprocess ()
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
really_build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
ref _count
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache

SCons API Documentation

This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
sconsign ()
An Alias is not recorded in .sconsign files
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_state (st at e)
side_effect
side_effects
sources
sources_set
state
store_info
str_for_display ()
target_peers
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids
class SCons.Node.Alias.AliasBuildInfo
Bases: SCons.Node.BuildinfoBase
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs

SCons API Documentation

bsources

bsourcesigs

current_version_id = 2

merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons.Node.Alias.AliasNameSpace (di ct =None, / , ** kwar gs)

Bases: collections.UserDict

Alias (nane, ** kw)

_abc_impl = <_abc._abc_data object>

clear () - None. Remove all items from D.

copy ()

classmethod fromkeys (i t er abl e, val ue=None)

get (k[, d]) - D[K] if kin D, else d. d defaults to None.

items () —» a set-like object providing a view on D's items

keys () — a set-like object providing a view on D's keys

lookup (name, ** kw)

pop (k[, d]) - v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem () - (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault (k[, d]) - D.get(k,d), also set D[k]=d if k not in D

update ([, E], **F) - None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[K] = E[K] If E present and lacks .keys() method, does: for
(k, v) in E: D[K] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values () - an object providing a view on D's values

class SCons.Node.Alias.AliasNodelnfo

Bases: SCons.Node.NodelnfoBase

__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state)
Restore the attributes from a pickled state.

convert (node, val)

csig

current_version_id = 2

field_list = [‘csig']

format (fi el d_| i st =None, nanes=0)

merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node)

SCons.Node.FS module
File system nodes.

These Nodes represent the canonical external objects that people think of when they think of building software: files
and directories.

This holds a “default_fs” variable that should be initialized with an FS that can be used by scripts or modules looking for
the canonical default.
class SCons.Node.FS.Base (nanme, di rectory, fs)
Bases: SCons.Node.Node
A generic class for file system entries. This class is for when we don’t know yet whether the entry being looked up is
a file or a directory. Instances of this class can morph into either Dir or File objects by a later, more precise lookup.

SCons API Documentation

Note: this class does not define __cmp__ and __hash__ for efficiency reasons. SCons does a lot of comparing of

Node.FS.{Base,Entry,File,Dir} objects, so those operations must be as fast as possible, which means we want to use

Python’s built-in object identity comparisons.

class Attrs
Bases: object
shared

BuildInfo
alias of SCons.Node.BuildInfoBase

Decider (f uncti on)

GetTag (key)
Return a user-defined tag.

Nodelnfo
alias of SCons.Node.NodelnfoBase

RDirs (pat hl i st)
Search for a list of directories in the Repository list.

Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key, val ue)
Add a user-defined tag.

_Rfindalldirs_key (pat hl i st)

__Qetattr__(attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr__is
only called as fallback when the requested attribute can't be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)
less than operator used by sorting on py3

_str__()
A Node.FS.Base object’s string representation is its path name.

_abspath

_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, i nitial _scanner,root_node_scanner, kw)

_get_str ()

_globl (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False)

_labspath

_local

_memo

_path

_path_elements

_proxy

_save_str ()

_specific_sources

SCons API Documentation

_tags
_tpath
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return a list of alternate targets for this Node.
always_build
attributes
binfo
build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder
builder_set (bui | der)
built ()
Called just after this node is successfully built.
cached

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

SCons API Documentation

10

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

disambiguate (must _exi st =None)

duplicate

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

fs
Reference to parent Node.FS object

get_abspath ()
Get the absolute path of the file.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Fetch the contents of the entry.

get_csig ()

get_dir ()

get_env ()

get_env_scanner (env, kw={})

get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

SCons API Documentation

11

get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath ()
Get the absolute path of the file.

get_ninfo ()

get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

SCons API Documentation

12

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.

isdir ()

isfile ()

islink ()

linked

Istat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

postprocess ()
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites

pseudo

push_to_cache ()

SCons API Documentation

13

Try to push a node into a cache
ref _count
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.
set_state (st at e)
side_effect
side_effects
sources
sources_set

SCons API Documentation

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.FS.Dir (nane, directory, fs)

Bases: SCons.Node.FS.Base

A class for directories in a file system.

class Attrs
Bases: object
shared

BuildInfo
alias of SCons.Node.FS.DirBuildinfo

Decider (f unct i on)

Dir (nane, cr eat e=True)
Looks up or creates a directory node named ‘name’ relative to this directory.

Entry (nane)
Looks up or creates an entry node named ‘name’ relative to this directory.

File (nane)
Looks up or creates a file node named ‘name’ relative to this directory.

GetTag (key)
Return a user-defined tag.

Nodelnfo
alias of SCons.Node.FS.DirNodelnfo

RDirs (pat hl i st)
Search for a list of directories in the Repository list.

Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key, val ue)
Add a user-defined tag.

_Rfindalldirs_key (pat hl i st)

__clearRepositoryCache (dupl i cat e=None)
Called when we change the repository(ies) for a directory. This clears any cached information that is invalidated by
changing the repository.

__Qetattr__ (attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and

14

SCons API Documentation

15

SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr _is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.
_ It (ot her)
less than operator used by sorting on py3
__resetDuplicate (node)
_str__()
A Node.FS.Base object’s string representation is its path name.
_abspath
_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset ()
_create ()
Create this directory, silently and without worrying about whether the builder is the default or not.
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_get_str ()
_globl (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.
TODO: handle pattern with no wildcard. Python’s glob.glob uses a separate _glob0 function to do this.
_labspath
_local
_memo
_morph ()
Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.
Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don’t use
signatures for calculating whether they’re current.
_path
_path_elements
_proxy
_rel_path_key (ot her)
_save_str ()
_sconsign
_specific_sources
_srcdir_find_file_key (fi | enane)
_tags
_tpath
addRepository (di r)
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)

SCons API Documentation

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return any corresponding targets in a variant directory.

always_build

attributes

binfo

build (* * kw)
A null “builder” for directories.

builder

builder_set (bui | der)

built ()
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dir_on_disk (nane)

dirname

16

SCons API Documentation

17

disambiguate (must _exi st =None)

diskcheck_match ()

do_duplicate (sr c)

duplicate

entries

entry_abspath (nane)

entry_exists_on_disk (nhane)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_labspath (nane)

entry_path (nane)

entry_tpath (nane)

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

file_on_disk (namne)

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

fs
Reference to parent Node.FS object

getRepositories ()
Returns a list of repositories for this directory.

get_abspath () - str
Get the absolute path of the file.

get_all_rdirs ()

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.

get_csig ()
Compute the content signature for Directory nodes. In general, this is not needed and the content signature is not
stored in the DirNodelnfo. However, if get_contents on a Dir node is called which has a child directory, the child
directory should return the hash of its contents.

get_dir ()

SCons API Documentation

18

get_env ()

get_env_scanner (env, kw={})

get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, pat h)
Return this directory’s implicit dependencies.
We don't bother caching the results because the scan typically shouldn’t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).

get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath () - str
Get the absolute path of the file.

get_ninfo ()

get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text _contents ()
We already emit things in text, so just return the binary version.

get_timestamp () - int
Return the latest timestamp from among our children

get_tpath ()

getmtime ()

getsize ()

glob (pat hnane, ondi sk=True, sour ce=False, st ri ngs=False, excl ude=None) - list
Returns a list of Nodes (or strings) matching a pathname pattern.

SCons API Documentation

19

Pathname patterns follow POSIX shell syntax:

* mat ches everyt hi ng

? mat ches any singl e character

[seq] matches any character in seq (ranges all owed)
[!seq] matches any char not in seq

The wildcard characters can be escaped by enclosing in brackets. A leading dot is not matched by a wildcard, and
needs to be explicitly included in the pattern to be matched. Matches also do not span directory separators.

The matches take into account Repositories, returning a local Node if a corresponding entry exists in a Repository
(either an in-memory Node or something on disk).

The underlying algorithm is adapted from a rather old version of glob.glob() function in the Python standard library
(heavily modified), and uses fnmatch.fnmatch() under the covers.

This is the internal implementation of the external Glob API.

Parameters:
» pattern — pathname pattern to match.

» ondisk — if false, restricts matches to in-memory Nodes. By defafult, matches entries
that exist on-disk in addition to in-memory Nodes.

* source — if true, corresponding source Nodes are returned if globbing in a variant
directory. The default behavior is to return Nodes local to the variant directory.

 strings — if true, returns the matches as strings instead of Nodes. The strings are path
names relative to this directory.

» exclude — if not None, must be a pattern or a list of patterns following the same POSIX
shell semantics. Elements matching at least one pattern from exclude will be excluded
from the result.

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ...”). When the builder attribute is examined directly, it ends up calling __getattr _ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build signhatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

SCons API Documentation

20

is_up_to_date ()
If any child is not up-to-date, then this directory isn't, either.

isdir ()

isfile ()

islink ()

link (srcdi r, duplicate)
Set this directory as the variant directory for the supplied source directory.

linked

Istat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

must_be_same (k| ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

postprocess ()
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

rdir ()

ref _count

rel_path (ot her)
Return a path to “other” relative to this directory.

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.

SCons API Documentation

@see: built() and File.release_target_info()
released_target_info
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
rentry_exists_on_disk (namne)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk
repositories
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
A directory does not get scanned.
scanner_paths
sconsign ()
Return the .sconsign file info for this directory.
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.

21

SCons API Documentation

set_state (st at e)

side_effect

side_effects

sources

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcdir_duplicate (namne)

srcdir_find_file (fi | enane)

sredir_list ()

srcnode ()
Dir has a special need for srcnode()...if we have a srcdir attribute set, then that is our srcnode.

stat ()

state

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

up ()

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

walk (f unc, ar g)
Walk this directory tree by calling the specified function for each directory in the tree.
This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the same
arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)

Except that “dirname” will actually be the directory Node, not the string. The ‘" and ‘..’ entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a specific
order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing None is
common).

wkids

class SCons.Node.FS.DirBuildinfo

Bases: SCons.Node.BuildinfoBase

__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state)
Restore the attributes from a pickled state.

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

22

SCons API Documentation

current_version_id = 2
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
class SCons.Node.FS.DirNodelnfo
Bases: SCons.Node.NodelnfoBase
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state. The version is discarded.
convert (node, val)
current_version_id = 2
format (fi el d_| i st =None, nanes=0)
fs = None
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
str_to_node (s)
update (node)
class SCons.Node.FS.DiskChecker (di sk_check_t ype, do_check_function,ignore_check_function)
Bases: object
Implement disk check variation.
This Class will hold functions to determine what this particular disk checking implementation should do when enabled
or disabled.
enable (di sk_check_type |ist)
If the current object’s disk_check_type matches any in the list passed :param disk_check_type_list: List of disk
checks to enable :return:
class SCons.Node.FS.Entry (nane, di rectory, fs)
Bases: SCons.Node.FS.Base
This is the class for generic Node.FS entries—that is, things that could be a File or a Dir, but we're just not sure yet.
Consequently, the methods in this class really exist just to transform their associated object into the right class when
the time comes, and then call the same-named method in the transformed class.
class Attrs
Bases: object
shared
BuildInfo
alias of SCons.Node.BuildInfoBase
Decider (f uncti on)
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of SCons.Node.NodelnfoBase
RDirs (pat hl i st)
Search for a list of directories in the Repository list.
Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.
Tag (key, val ue)
Add a user-defined tag.
_Rfindalldirs_key (pat hl i st)
__Qetattr__ (attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to

23

SCons API Documentation

be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr _is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)
less than operator used by sorting on py3

_str__()
A Node.FS.Base object’s string representation is its path name.

_abspath

_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, i nitial _scanner,root_node_scanner, kw)

_get_str ()

_globl (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False)

_labspath

_local

_memo

_path

_path_elements

_proxy

_save_str ()

_sconsign

_specific_sources

_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (pr er equi si te)
Adds prerequisites

add_source (sour ce)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

24

SCons API Documentation

25

binfo

build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder

builder_set (bui | der)

built ()
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored BuildIinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dirname

disambiguate (must _exi st =None)

diskcheck_match ()

duplicate

entries

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()

SCons API Documentation

26

Does this node exists?
explain ()
for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
fs
Reference to parent Node.FS object
get_abspath ()
Get the absolute path of the file.
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Fetch the contents of the entry. Returns the exact binary contents of the file.
get_csig ()
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath ()
Get the absolute path of the file.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

SCons API Documentation

27

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text _contents ()
Fetch the decoded text contents of a Unicode encoded Entry.
Since this should return the text contents from the file system, we check to see into what sort of subclass we
should morph this Entry.

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()

SCons API Documentation

28

Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.

isdir ()

isfile ()

islink ()

linked

Istat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

must_be_same (kl ass)
Called to make sure a Node is a Dir. Since we’re an Entry, we can morph into one.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

postprocess ()
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

ref _count

rel_path (ot her)

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

released_target_info

remove ()
Remove this Node: no-op by default.

SCons API Documentation

29

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
repositories
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
We’'re a generic Entry, but the caller is actually looking for a File at this point, so morph into one.
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
scanner_paths
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.
set_state (st at e)
side_effect
side_effects
sources
sources_set
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcnode ()

SCons API Documentation

If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.
stat ()
state
store_info
str_for_display ()
target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.
target_peers
variant_dirs
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids
class SCons.Node.FS.EntryProxy (subj ect)
Bases: SCons.Util.Proxy
__get_abspath ()
__get_base_path ()
Return the file’s directory and file name, with the suffix stripped.
__get dir ()
__get file ()
__get filebase ()
__get_posix_path ()
Return the path with / as the path separator, regardless of platform.
__get_relpath ()
__get_rsrcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node if
not linked.
__get_rsrcnode ()
__get_srcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node if
not linked.
__get_srcnode ()
__get_suffix ()
__get_windows_path ()
Return the path with as the path separator, regardless of platform.
dictSpecialAttrs = {'abspath’: <function EntryProxy.__get_abspath>, 'base’: <function
EntryProxy.__get base_path>, 'dir': <function EntryProxy.__get_dir>, file": <function EntryProxy. _get file>,
'filebase'": <function EntryProxy.__get_filebase>, 'posix’: <function EntryProxy.__get posix_path>, 'relpath': <function
EntryProxy.__get_relpath>, 'rsrcdir': <function EntryProxy.__get_rsrcdir>, 'rsrcpath’: <function
EntryProxy.__get_rsrcnode>, 'srcdir': <function EntryProxy.__get_srcdir>, 'srcpath’: <function
EntryProxy.__get_srcnode>, 'suffix': <function EntryProxy.__get_suffix>, 'win32": <function
EntryProxy.__get windows_path>, 'windows": <function EntryProxy. _get_windows_path>}
get ()
Retrieve the entire wrapped object
exception SCons.Node.FS.EntryProxyAttributeError (entry_proxy, attri bute)
Bases: AttributeError
An AttributeError subclass for recording and displaying the name of the underlying Entry involved in an AttributeError
exception.
args
name
attribute name
obj
object

30

SCons API Documentation

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

class SCons.Node.FS.FS (pat h=None)

31

Bases: SCons.Node.FS.LocalFS

Dir (nan®e, di r ect or y=None, cr eat e=True)
Look up or create a Dir node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied at
construction time) if no directory is supplied.
This method will raise TypeError if a normal file is found at the specified path.

Entry (name, di r ect or y=None, cr eat e=1)
Look up or create a generic Entry node with the specified name. If the name is a relative path (begins with ./, ../, or
a file name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS
(supplied at construction time) if no directory is supplied.

File (name, di r ect or y=None, cr eat e=1)
Look up or create a File node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied at
construction time) if no directory is supplied.
This method will raise TypeError if a directory is found at the specified path.

Glob (pat hnane, ondi sk=True, sour ce=True, st ri ngs=False, excl ude=None, cwd=None)
Globs
This is mainly a shim layer

PyPackageDir (nodul enane)
Locate the directory of a given python module name
For example scons might resolve to Windows: C:Python27Libsite-packagesscons-2.5.1 Linux: /usr/lib/scons
This can be useful when we want to determine a toolpath based on a python module name

Repository (*di r s)
Specify Repository directories to search.

VariantDir (vari ant _dir,src_dir,duplicate=1)
Link the supplied variant directory to the source directory for purposes of building files.

_lookup (p, directory, fscl ass, creat e=1)
The generic entry point for Node lookup with user-supplied data.
This translates arbitrary input into a canonical Node.FS object of the specified fsclass. The general approach for
strings is to turn it into a fully normalized absolute path and then call the root directory’s lookup_abs() method for
the heavy lifting.
If the path name begins with ‘#, it is unconditionally interpreted relative to the top-level directory of this FS. ‘#' is
treated as a synonym for the top-level SConstruct directory, much like ‘~’ is treated as a synonym for the user’s
home directory in a UNIX shell. So both ‘#foo’ and ‘#/foo’ refer to the ‘foo’ subdirectory underneath the top-level
SConstruct directory.
If the path name is relative, then the path is looked up relative to the specified directory, or the current directory
(self._cwd, typically the SConscript directory) if the specified directory is None.

chdir (di r, change_os_di r =False)
Change the current working directory for lookups. If change_os_dir is true, we will also change the “real” cwd to
match.

chmod (pat h, node)

copy (src, dst)

copy2 (src, dst)

exists (pat h)

get_max_drift ()

get_root (dri ve)
Returns the root directory for the specified drive, creating it if necessary.

getcwd ()

getmtime (pat h)

getsize (pat h)

isdir (pat h)

isfile (pat h)

islink (pat h)

SCons API Documentation

link (src, dst)

listdir (pat h)

Istat (pat h)

makedirs (pat h, rode=511, exi st _ok=False)

mkdir (pat h, node=511)

open (pat h)

readlink (fi | e)

rename (ol d, new)

scandir (pat h)

set_SConstruct_dir (di r)

set_max_drift (max_drift)

stat (pat h)

symlink (src, dst)

unlink (pat h)

variant_dir_target_climb (ori g, dir,tail)
Create targets in corresponding variant directories
Climb the directory tree, and look up path names relative to any linked variant directories we find.
Even though this loops and walks up the tree, we don’'t memoize the return value because this is really only used
to process the command-line targets.

class SCons.Node.FS.File (nane, di rectory, fs)

Bases: SCons.Node.FS.Base

A class for files in a file system.

class Attrs
Bases: object
shared

BuildInfo
alias of SCons.Node.FS.FileBuildInfo

Decider (f unct i on)

Dir (nane, cr eat e=True)
Create a directory node named ‘name’ relative to the directory of this file.

Dirs (pat hl i st)
Create a list of directories relative to the SConscript directory of this file.

Entry (nane)
Create an entry node named ‘name’ relative to the directory of this file.

File (nane)
Create a file node named ‘name’ relative to the directory of this file.

GetTag (key)
Return a user-defined tag.

Nodelnfo
alias of SCons.Node.FS.FileNodelnfo

RDirs (pat hl i st)
Search for a list of directories in the Repository list.

Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key, val ue)
Add a user-defined tag.

_Rfindalldirs_key (pat hl i st)

__dmap_cache = {}

__dmap_sig_cache = {}

__Qetattr__ (attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and

32

SCons API Documentation

SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr _is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)
less than operator used by sorting on py3

_str__()
A Node.FS.Base object’s string representation is its path name.

_abspath

_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_add_strings_to_dependency_map (dmap)
In the case comparing node objects isn't sufficient, we’ll add the strings for the nodes to the dependency map
‘return:

_build_dependency_map (bi nf 0)
Build mapping from file -> signature

Parameters:
* self (self-) —

» considered (binfo - buildinfo from node being) —
Returns: dictionary of file->signature mappings

_children_get ()
_children_reset ()
_createDir ()
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign
_func_target_from_source
_get_found_includes_key (env, scanner, pat h)
_get_previous_signatures (dmap)
Return a list of corresponding csigs from previous build in order of the node/files in children.

Parameters:
* self (self-) —

 csig (dmap - Dictionary of file ->) —
Returns: List of csigs for provided list of children
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_get_str ()
_globl (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False)
_labspath
_local
_memo
_morph ()
Turn a file system node into a File object.
_path
_path_elements
_proxy
_rmv_existing ()
_save_str ()
_sconsign
_specific_sources
_tags
_tpath
add_dependency (depend)
Adds dependencies.

33

SCons API Documentation

34

add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return any corresponding targets in a variant directory.
always_build
attributes
binfo
build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
builder
builder_set (bui | der)
built ()
Called just after this File node is successfully built.
Just like for ‘release_target_info’ we try to release some more target node attributes in order to minimize the overall
memory consumption.
@see: release_target_info
cached
cachedir_csig
cachesig
changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built.
For File nodes this is basically a wrapper around Node.changed(), but we allow the return value to get cached after
the reference to the Executor got released in release_target_info().
@see: Node.changed()
changed_content (t ar get, prev_ni , r epo_node=None)
changed_since_last_build
changed_state (t ar get, prev_ni, repo_node=None)
changed_timestamp_match (t ar get, prev_ni, r epo_node=None)
Return True if the timestamps don’'t match or if there is no previous timestamp :param target: :param prev_ni:
Information about the node from the previous build :return:
changed_timestamp_newer (t ar get, prev_ni , r epo_node=None)
changed_timestamp_then_content (t ar get , pr ev_ni , node=None)
Used when decider for file is Timestamp-MD5

NOTE: If the timestamp hasn’t changed this will skip md5’ing the

file and just copy the prev_ni provided. If the prev_ni is wrong. It will propagate it. See:
https://github.com/SCons/scons/issues/2980

https://github.com/SCons/scons/issues/2980

SCons API Documentation

35

Parameters:
« dependency (self -) —

* target (target -) —
» .sconsign (prev_ni - The Nodelnfo object loaded from previous builds) —

» existence/timestamp (node - Node instance. Check this node for file) — if specified.
Returns: Boolean - Indicates if node(File) has changed.

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

convert_copy_attrs = [‘bsources', 'bimplicit', 'bdepends’, 'bact’, 'bactsig’, 'ninfo’]

convert_old_entry (ol d_entry)

convert_sig_attrs = ['bsourcesigs', 'bimplicitsigs’, 'bdependsigs’]

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dirname

disambiguate (must _exi st =None)

diskcheck_match ()

do_duplicate (sr c)

duplicate

entries

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

find_repo_file ()
For this node, find if there exists a corresponding file in one or more repositories :return: list of corresponding files
in repositories

find_src_builder ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

fs
Reference to parent Node.FS object

SCons API Documentation

36

get_abspath ()
Get the absolute path of the file.
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_bsig ()
Return the signature for a cached file, including its children.
It adds the path of the cached file to the cache signature, because multiple targets built by the same action will all
have the same build signature, and we have to differentiate them somehow.
Signature should normally be string of hex digits.
get_cachedir_csig ()
Fetch a Node’s content signature for purposes of computing another Node’s cachesig.
This is a wrapper around the normal get csig() method that handles the somewhat obscure case of using
CacheDir with the -n option. Any files that don’t exist would normally be “built” by fetching them from the cache, but
the normal get_csig() method will try to open up the local file, which doesn’t exist because the -n option meant we
didn’'t actually pull the file from cachedir. But since the file does actually exist in the cachedir, we can use its
contents for the csig.
get_content_hash () - str
Compute and return the hash for this file.
get_contents () - bytes
Return the contents of the file as bytes.
get_contents_sig ()
A helper method for get_cachedir_bsig.
It computes and returns the signature for this node’s contents.
get_csig () — str
Generate a node’s content signature.
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the included implicit dependencies in this file. Cache results so we only scan the file once per path
regardless of how many times this information is requested.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath ()
Get the absolute path of the file.
get_max_drift_csig () - Optional[str]
Returns the content signature currently stored for this node if it's been unmodified longer than the max_drift value,
or the max_drift value is 0. Returns None otherwise.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

SCons API Documentation

37

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_size () - int

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text contents () — str
Return the contents of the file in text form.
This attempts to figure out what the encoding of the text is based upon the BOM bytes, and then decodes the
contents so that it's a valid python string.

get_timestamp () - int

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

has_src_builder ()
Return whether this Node has a source builder or not.
If this Node doesn’t have an explicit source code builder, this is where we figure out, on the fly, if there’'s a
transparent source code builder for it.
Note that if we found a source builder, we also set the self.builder attribute, so that all of the methods that actually
build this file don’t have to do anything different.

hash_chunksize = 65536

ignore

ignore_set

SCons API Documentation

38

implicit
implicit_set
includes
is_conftest ()
Returns true if this node is an conftest node
is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.
is_explicit
is_literal ()
Always pass the string representation of a Node to the command interpreter literally.
is_sconscript ()
Returns true if this node is an sconscript
is_under (di r)
is_up_to_date ()
Check for whether the Node is current In all cases self is the target we're checking to see if it's up to date
isdir ()
isfile ()
islink ()
linked
Istat ()
make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.
missing ()
multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.
name
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
on_disk_entries
postprocess ()
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this file to be created.
prerequisites
pseudo
push_to_cache ()
Try to push the node into a cache
ref _count
rel_path (ot her)
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.

SCons API Documentation

39

This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
We'd like to remove a lot more attributes like self.sources and self.sources_set, but they might get used in a next
build step. For example, during configuration the source files for a built E{*}.o file are used to figure out which linker
to use for the resulting Program (gcc vs. g++)! That's why we check for the ‘keep_targetinfo’ attribute, config Nodes
and the Interactive mode just don't allow an early release of most variables.
In the same manner, we can't simply remove the self.attributes here. The smart linking relies on the shared flag,
and some parts of the java Tool use it to transport information about nodes...
@see: built() and Node.release_target_info()
released_target_info
remove ()
Remove this file.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
repositories
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
scanner_paths
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.

SCons API Documentation

set_state (st at e)

side_effect

side_effects

sources

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.FS.FileBuildinfo

40

Bases: SCons.Node.BuildInfoBase
This is info loaded from sconsign.

Attributes unique to FileBuildInfo:
dependency_map : Caches file->csig mapping

for all dependencies. Currently this is only used when using MD5-timestamp decider. It's used to ensure that
we copy the correct csig from the previous build to be written to .sconsign when current build is done.
Previously the matching of csig to file was strictly by order they appeared in bdepends, bsources, or
bimplicit, and so a change in order or count of any of these could yield writing wrong csig, and then false
positive rebuilds
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict_’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
convert_from_sconsign (di r, nane)
Converts a newly-read FileBuildInfo object for in-SCons use
For normal up-to-date checking, we don’t have any conversion to perform—but we're leaving this method here to
make that clear.

SCons API Documentation

convert_to_sconsign ()
Converts this FileBuildInfo object for writing to a .sconsign file
This replaces each Node in our various dependency lists with its usual string representation: relative to the
top-level SConstruct directory, or an absolute path if it's outside.
current_version_id = 2
dependency_map
format (nanmes=0)
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
prepare_dependencies ()
Prepares a FileBuildinfo object for explaining what changed
The bsources, bdepends and bimplicit lists have all been stored on disk as paths relative to the top-level
SConstruct directory. Convert the strings to actual Nodes (for use by the —debug=explain code and
—implicit-cache).
exception SCons.Node.FS.FileBuildinfoFileToCsigMappingError
Bases: Exception
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
class SCons.Node.FS.FileFinder
Bases: object
_find_file_key (fi | enane, pat hs, ver bose=None)
filedir_lookup (p, f d=None)
A helper method for find_file() that looks up a directory for a file we're trying to find. This only creates the Dir Node
if it exists on-disk, since if the directory doesn’t exist we know we won't find any files in it... :-)
It would be more compact to just use this as a nested function with a default keyword argument (see the
commented-out version below), but that doesn’t work unless you have nested scopes, so we define it here just so
this work under Python 1.5.2.
find_file (fi | ename, pat hs, ver bose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a tuple,
or a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.
class SCons.Node.FS.FileNodelnfo
Bases: SCons.Node.NodelnfoBase
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
convert (node, val)
csig
current_version_id = 2
field_list = ['csig', 'timestamp’, 'size’]
format (fi el d_| i st =None, nanes=0)
fs = None
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
size
str_to_node (s)
timestamp
update (node)

41

SCons API Documentation

SCons.Node.FS.LinkFunc (t ar get , sour ce, env)

Relative paths cause problems with symbolic links, so we use absolute paths, which may be a problem for people
who want to move their soft-linked src-trees around. Those people should use the ‘hard-copy’ mode, softlinks cannot
be used for that; at least | have no idea how ...

class SCons.Node.FS.LocalFS

Bases: object

This class implements an abstraction layer for operations involving a local file system. Essentially, this wraps any
function in the os, os.path or shutil modules that we use to actually go do anything with or to the local file system.
Note that there’s a very good chance we’ll refactor this part of the architecture in some way as we really implement
the interface(s) for remote file system Nodes. For example, the right architecture might be to have this be a subclass
instead of a base class. Nevertheless, we're using this as a first step in that direction.

We’'re not using chdir() yet because the calling subclass method needs to use os.chdir() directly to avoid recursion.
Will we really need this one?

chmod (pat h, node)

copy (src, dst)

copy2 (src, dst)

exists (pat h)

getmtime (pat h)

getsize (pat h)

isdir (pat h)

isfile (pat h)

islink (pat h)

link (src, dst)

listdir (pat h)

Istat (pat h)

makedirs (pat h, rode=511, exi st _ok=False)

mkdir (pat h, node=511)

open (pat h)

readlink (fi | e)

rename (ol d, new)

scandir (pat h)

stat (pat h)

symlink (src, dst)

unlink (pat h)

SCons.Node.FS.LocalString (t ar get , sour ce, env)
SCons.Node.FS.MkdirFunc (t ar get , sour ce, env)
class SCons.Node.FS.RootDir (dri ve, f s)

42

Bases: SCons.Node.FS.Dir
A class for the root directory of a file system.
This is the same as a Dir class, except that the path separator (*/' or “) is actually part of the name, so we don’t need
to add a separator when creating the path names of entries within this directory.
class Attrs

Bases: object

shared
BuildInfo

alias of SCons.Node.FS.DirBuildinfo
Decider (f uncti on)
Dir (nane, cr eat e=True)

Looks up or creates a directory node named ‘name’ relative to this directory.
Entry (nane)

Looks up or creates an entry node named ‘name’ relative to this directory.
File (nane)

Looks up or creates a file node named ‘name’ relative to this directory.
GetTag (key)

Return a user-defined tag.
Nodelnfo

SCons API Documentation

43

alias of SCons.Node.FS.DirNodelnfo

RDirs (pat hl i st)

Search for a list of directories in the Repository list.

Rfindalldirs (pat hl i st)

Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key, val ue)

Add a user-defined tag.

Rfindalldirs_key (pat hl i st)

getattr __ (attr)

Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr _is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)

less than operator used by sorting on py3

abspath

add_child (col | ecti on, set, chi | d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

children_get ()

children_reset ()

create ()
Create this directory, silently and without worrying about whether the builder is the default or not.

func_exists

func_get_contents

func_is_derived

func_rexists

func_sconsign

func_target_from_source

get_scanner (env, i nitial _scanner,root_node_scanner, kw)

get_str ()

globl (patt er n, ondi sk=True, sour ce=False, stri ngs=False)
Globs for and returns a list of entry names matching a single pattern in this directory.

This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.

TODO: handle pattern with no wildcard. Python’s glob.glob uses a separate _glob0 function to do this.

labspath

local

lookupDict

lookup_abs (p, kl ass, cr eat e=True)
Fast (?) lookup of a normalized absolute path.

This method is intended for use by internal lookups with already-normalized path data. For general-purpose
lookups, use the FS.Entry(), FS.Dir() or FS.File() methods.

The caller is responsible for making sure we’re passed a normalized absolute path; we merely let Python’s
dictionary look up and return the One True Node.FS object for the path.
If a Node for the specified “p” doesn’t already exist, and “create” is specified, the Node may be created after
recursive invocation to find or create the parent directory or directories.

memo

morph ()

Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.

SCons API Documentation

44

Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don’t use
signatures for calculating whether they’re current.

_path

_path_elements

_proxy

_rel_path_key (ot her)

_save_str ()

_sconsign

_specific_sources

_srcdir_find_file_key (fi | enane)

_tags

_tpath

abspath

addRepository (di r)

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (pr er equi si te)
Adds prerequisites

add_source (sour ce)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return any corresponding targets in a variant directory.

always_build

attributes

binfo

build (* * kw)
A null “builder” for directories.

builder

builder_set (bui | der)

built ()
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().

SCons API Documentation

@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dir_on_disk (nane)

dirname

disambiguate (must _exi st =None)

diskcheck_match ()

do_duplicate (sr c)

duplicate

entries

entry_abspath (nane)

entry_exists_on_disk (nane)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_labspath (nane)

entry_path (nane)

entry_tpath (nane)

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

file_on_disk (namne)

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

fs
Reference to parent Node.FS object

getRepositories ()
Returns a list of repositories for this directory.

45

SCons API Documentation

46

get_abspath () - str
Get the absolute path of the file.
get_all_rdirs ()
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.
get_csig ()
Compute the content signature for Directory nodes. In general, this is not needed and the content signature is not
stored in the DirNodelnfo. However, if get_contents on a Dir node is called which has a child directory, the child
directory should return the hash of its contents.
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return this directory’s implicit dependencies.
We don't bother caching the results because the scan typically shouldn’t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath () - str
Get the absolute path of the file.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state ()
get_stored_implicit ()
Fetch the stored implicit dependencies
get_stored_info ()
get_string (f or _si gnat ure)

SCons API Documentation

47

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text _contents ()
We already emit things in text, so just return the binary version.

get_timestamp () - int
Return the latest timestamp from among our children

get_tpath ()

getmtime ()

getsize ()

glob (pat hnane, ondi sk=True, sour ce=False, st ri ngs=False, excl ude=None) - list
Returns a list of Nodes (or strings) matching a pathname pattern.
Pathname patterns follow POSIX shell syntax:

* mat ches everyt hi ng

? mat ches any singl e character

[seq] matches any character in seq (ranges all owed)
[!seq] matches any char not in seq

The wildcard characters can be escaped by enclosing in brackets. A leading dot is not matched by a wildcard, and
needs to be explicitly included in the pattern to be matched. Matches also do not span directory separators.

The matches take into account Repositories, returning a local Node if a corresponding entry exists in a Repository
(either an in-memory Node or something on disk).

The underlying algorithm is adapted from a rather old version of glob.glob() function in the Python standard library
(heavily modified), and uses fnmatch.fnmatch() under the covers.

This is the internal implementation of the external Glob API.

Parameters:
» pattern — pathname pattern to match.

» ondisk — if false, restricts matches to in-memory Nodes. By defafult, matches entries
that exist on-disk in addition to in-memory Nodes.

* source — if true, corresponding source Nodes are returned if globbing in a variant
directory. The default behavior is to return Nodes local to the variant directory.

 strings — if true, returns the matches as strings instead of Nodes. The strings are path
names relative to this directory.

» exclude — if not None, must be a pattern or a list of patterns following the same POSIX
shell semantics. Elements matching at least one pattern from exclude will be excluded
from the result.

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ...”). When the builder attribute is examined directly, it ends up calling __getattr _ for both the

SCons API Documentation

48

__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
If any child is not up-to-date, then this directory isn't, either.

isdir ()

isfile ()

islink ()

link (srcdi r, dupl i cate)
Set this directory as the variant directory for the supplied source directory.

linked

Istat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

path

postprocess ()
Clean up anything we don’t need to hang onto after we've been built.

SCons API Documentation

49

precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
rdir ()
ref _count
rel_path (ot her)
Return a path to “other” relative to this directory.
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
released_target_info
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
rentry_exists_on_disk (namne)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk
repositories
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
A directory does not get scanned.

SCons API Documentation

50

scanner_paths
sconsign ()
Return the .sconsign file info for this directory.
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.
set_state (st at e)
side_effect
side_effects
sources
sources_set
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcdir_duplicate (namne)
srcdir_find_file (fi | enane)
sredir_list ()
srcnode ()
Dir has a special need for srcnode()...if we have a srcdir attribute set, then that is our srcnode.
stat ()
state
store_info
str_for_display ()
target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.
target_peers
up ()
variant_dirs
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
walk (f unc, ar g)

SCons API Documentation

Walk this directory tree by calling the specified function for each directory in the tree.
This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the same
arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)
Except that “dirname” will actually be the directory Node, not the string. The ‘" and ‘.. entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a specific
order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing None is
common).
wkids
SCons.Node.FS.UnlinkFunc (t ar get , sour ce, env)
class SCons.Node.FS. Null
Bases: object
SCons.Node.FS._classEntry
alias of SCons.Node.FS.Entry
SCons.Node.FS._copy_func (f s, src, dest)
SCons.Node.FS._hardlink_func (f s, src, dst)
SCons.Node.FS._my_normcase (x)
SCons.Node.FS._my_splitdrive (p)
SCons.Node.FS._softlink_func (f s, src, dst)
SCons.Node.FS.diskcheck_types ()
SCons.Node.FS.do_diskcheck _match (node, predi cat e, errorfnt)
SCons.Node.FS.find_file (fi | ename, pat hs, ver bose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a tuple, or
a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.
SCons.Node.FS.get_MkdirBuilder ()
SCons.Node.FS.get_default_fs ()
SCons.Node.FS.has_glob_magic (s)
SCons.Node.FS.ignore_diskcheck_match (node, predi cate, errorfnt)
SCons.Node.FS.initialize_do_splitdrive ()
SCons.Node.FS.invalidate_node_memos (t ar get s)
Invalidate the memoized values of all Nodes (files or directories) that are associated with the given entries. Has been
added to clear the cache of nodes affected by a direct execution of an action (e.g. Delete/Copy/Chmod). Existing
Node caches become inconsistent if the action is run through Execute(). The argument targets can be a single Node
object or filename, or a sequence of Nodes/filenames.
SCons.Node.FS.needs_normpath_match (st ri ng, pos=0, endpos=9223372036854775807)
Matches zero or more characters at the beginning of the string.
SCons.Node.FS.save_strings (val)
SCons.Node.FS.sconsign_dir (node)
Return the .sconsign file info for this directory, creating it first if necessary.
SCons.Node.FS.sconsign_none (node)
SCons.Node.FS.set_diskcheck (enabl ed_checker s)
SCons.Node.FS.set_duplicate (dupl i cat e)

SCons.Node.Python module

Python nodes.
class SCons.Node.Python.Value (val ue, bui I t _val ue=None, name=None)
Bases: SCons.Node.Node
A Node class for values represented by Python expressions.
Values are typically passed on the command line or generated by a script, but not from a file or some other source.
Changed in version 4.0: the name parameter was added.
class Attrs
Bases: object

51

SCons API Documentation

shared
BuildInfo
alias of SCons.Node.Python.ValueBuildinfo
Decider (f uncti on)
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of SCons.Node.Python.ValueNodelnfo
Tag (key, val ue)
Add a user-defined tag.
_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset ()
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_memo
_specific_sources
_tags
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return a list of alternate targets for this Node.
always_build
attributes
binfo
build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
builder
builder_set (bui | der)
built ()
Called just after this node is successfully built.

52

SCons API Documentation

53

cached
changed (node=None, al | oncache=False)

Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.

Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.

The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().

@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build
check_attributes (nane)

Simple API to check if the node.attributes for name has been set

children (scan=1)

Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()

Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()

Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()
del_binfo ()

Delete the build info from this node.

depends

depends_set

disambiguate (must _exi st =None)
env

env_set (env, saf e=0)

executor

executor_cleanup ()

Let the executor clean up any cached information.

exists ()

Does this node exists?

explain ()
for_signature ()

Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

get_abspath ()

Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get_binfo ()

Fetch a node’s build information.

node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature

This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.

get_build_env ()

Fetch the appropriate Environment to build this node.

SCons API Documentation

54

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents () — bytes
Get contents for signature calculations.

get_csig (cal c=None)
Because we're a Python value node and don'’t have a real timestamp, we get to ignore the calculator and just use
the value contents.
Returns string. Ideally string of hex digits. (Not bytes)

get_env ()

get_env_scanner (env, kw={})

get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text contents () — str
By the assumption that the node.built_value is a deterministic product of the sources, the contents of a Value are
the concatenation of all the contents of its sources. As the value need not be built when get_contents() is called,
we cannot use the actual node.built_value.

has_builder ()
Return whether this Node has a builder or not.

SCons API Documentation

55

In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

linked

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

postprocess ()
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.

SCons API Documentation

56

(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
read ()
Return the value. If necessary, the value is built.
ref _count
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_state (st at e)
side_effect
side_effects
sources

SCons API Documentation

sources_set
state
store_info
str_for_display ()
target_peers
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids
write (bui I t _val ue)
Set the value of the node.
class SCons.Node.Python.ValueBuildinfo
Bases: SCons.Node.BuildinfoBase
__getstate__ ()

Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all

instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
current_version_id = 2
merge (ot her)

Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s

data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
class SCons.Node.Python.ValueNodelnfo
Bases: SCons.Node.NodelnfoBase
__getstate__ ()

Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all

instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
convert (node, val)
csig
current_version_id = 2
field_list = ['csig']
format (fi el d_| i st =None, nanes=0)
merge (ot her)

Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s

data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
str_to_node (s)
update (node)
SCons.Node.Python.ValueWithMemo (val ue, bui | t _val ue=None, nane=None)
Memoized Value node factory.
Changed in version 4.0: the name parameter was added.

Module contents

The Node package for the SCons software construction utility.

57

SCons API Documentation

This is, in many ways, the heart of SCons.

A Node is where we encapsulate all of the dependency information about any thing that SCons can build, or about any
thing which SCons can use to build some other thing. The canonical “thing,” of course, is a file, but a Node can also
represent something remote (like a web page) or something completely abstract (like an Alias).

Each specific type of “thing” is specifically represented by a subclass of the Node base class: Node.FS.File for files,
Node.Alias for aliases, etc. Dependency information is kept here in the base class, and information specific to
files/aliases/etc. is in the subclass. The goal, if we've done this correctly, is that any type of “thing” should be able to
depend on any other type of “thing.”
SCons.Node.Annotate (node)
class SCons.Node.BuildinfoBase
Bases: object
The generic base class for build information for a Node.
This is what gets stored in a .sconsign file for each target file. It contains a Nodelnfo instance for this node (signature
information that's specific to the type of Node) and direct attributes for the generic build stuff we have to track:
sources, explicit dependencies, implicit dependencies, and action information.
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
current_version_id = 2
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
class SCons.Node.Node
Bases: object
The base Node class, for entities that we know how to build, or use to build other Nodes.
class Attrs
Bases: object
shared
BuildInfo
alias of SCons.Node.BuildInfoBase
Decider (f uncti on)
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of SCons.Node.NodelnfoBase
Tag (key, val ue)
Add a user-defined tag.
_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset ()
_func_exists
_func_get_contents
_func_is_derived

58

SCons API Documentation

59

_func_rexists
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_memo
_specific_sources
_tags
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return a list of alternate targets for this Node.
always_build
attributes
binfo
build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder
builder_set (bui | der)
built ()
Called just after this node is successfully built.
cached

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

SCons API Documentation

60

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).
clear_memoized_values ()
del_binfo ()
Delete the build info from this node.
depends
depends_set
disambiguate (must _exi st =None)
env
env_set (env, saf e=0)
executor
executor_cleanup ()
Let the executor clean up any cached information.
exists ()
Does this node exists?
explain ()
for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Fetch the contents of the entry.
get_csig ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})

SCons API Documentation

61

Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

SCons API Documentation

62

is_up_to_date ()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.
linked
make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.
missing ()
multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
postprocess ()
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
ref _count
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.

SCons API Documentation

rexists ()
Does this node exist locally or in a repository?
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_state (st at e)
side_effect
side_effects
sources
sources_set
state
store_info
target_peers
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids

class SCons.Node.NodelnfoBase

Bases: object

The generic base class for signature information for a Node.

Node subclasses should subclass NodelnfoBase to provide their own logic for dealing with their own Node-specific

signature information.

__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state)
Restore the attributes from a pickled state. The version is discarded.

convert (node, val)

current_version_id = 2

format (fi el d_| i st =None, nanes=0)

merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

update (node)

class SCons.Node.NodelList (i ni t1i st =None)

63

Bases: collections.UserList

SCons API Documentation

_abc_impl = <_abc._abc_data object>
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
class SCons.Node.Walker (node, ki ds_f unc=<functi on get _chil dren>, cycl e_func=<function
i gnore_cycl e>, eval _func=<function do_not hi ng>)
Bases: object
An iterator for walking a Node tree.
This is depth-first, children are visited before the parent. The Walker object can be initialized with any node, and
returns the next node on the descent with each get_next() call. get the children of a node instead of calling ‘children’.
‘cycle_func’ is an optional function that will be called when a cycle is detected.
This class does not get caught in node cycles caused, for example, by C header file include loops.
get_next ()
Return the next node for this walk of the tree.
This function is intentionally iterative, not recursive, to sidestep any issues of stack size limitations.
is_done ()
SCons.Node.changed_since_last_build_alias (node, t ar get , prev_ni , repo_node=None)
SCons.Node.changed_since_last_build_entry (node, t ar get, prev_ni , r epo_node=None)
SCons.Node.changed_since_last _build_node (node, t ar get, prev_ni , r epo_node=None)
Must be overridden in a specific subclass to return True if this Node (a dependency) has changed since the last time
it was used to build the specified target. prev_ni is this Node’s state (for example, its file timestamp, length, maybe
content signature) as of the last time the target was built.
Note that this method is called through the dependency, not the target, because a dependency Node must be able to
use its own logic to decide if it changed. For example, File Nodes need to obey if we're configured to use timestamps,
but Python Value Nodes never use timestamps and always use the content. If this method were called through the
target, then each Node’s implementation of this method would have to have more complicated logic to handle all the
different Node types on which it might depend.
SCons.Node.changed_since_last_build_python (node, t ar get, prev_ni , repo_node=None)
SCons.Node.changed_since_last build_state_changed (node, t ar get , prev_ni , repo_node=None)
SCons.Node.classname (obj)
SCons.Node.decide_source (node, t ar get, prev_ni , repo_node=None)
SCons.Node.decide_target (node, t ar get, prev_ni , repo_node=None)
SCons.Node.do_nothing (node, par ent)
SCons.Node.do_nothing_node (node)
SCons.Node.exists_always (node)
SCons.Node.exists_base (node)
SCons.Node.exists_entry (node)
Return if the Entry exists. Check the file system to see what we should turn into first. Assume a file if there’s no
directory.
SCons.Node.exists_file (node)

64

SCons API Documentation

SCons.Node.exists_none (node)
SCons.Node.get_children (node, par ent)
SCons.Node.get_contents_dir (node)
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.
SCons.Node.get_contents_entry (node)
Fetch the contents of the entry. Returns the exact binary contents of the file.
SCons.Node.get_contents_file (node)
SCons.Node.get_contents_none (node)
SCons.Node.ignore_cycle (node, st ack)
SCons.Node.is_derived_node (node)
Returns true if this node is derived (i.e. built).
SCons.Node.is_derived_none (node)
SCons.Node.rexists_base (node)
SCons.Node.rexists_node (node)
SCons.Node.rexists_none (node)
SCons.Node.store_info_file (node)
SCons.Node.store_info_pass (node)
SCons.Node.target_from_source_base (node, prefi x, suf fi x, splitext)
SCons.Node.target_from_source_none (node, prefi x, suffi x, splitext)

SCons.Platform package
Submodules

SCons.Platform.aix module
Platform-specific initialization for IBM AIX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.aix.generate (env)

SCons.Platform.aix.get_xIc (env, xI c=None, packages=[])

SCons.Platform.cygwin module

Platform-specific initialization for Cygwin systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.cygwin.generate (env)

SCons.Platform.darwin module

Platform-specific initialization for Mac OS X systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.darwin.generate (env)

SCons.Platform.hpux module

Platform-specific initialization for HP-UX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.hpux.generate (env)

SCons.Platform.irix module

Platform-specific initialization for SGI IRIX systems.

65

SCons API Documentation

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.irix.generate (env)

SCons.Platform.mingw module

Platform-specific initialization for the MinGW system.

SCons.Platform.os2 module
Platform-specific initialization for OS/2 systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.os2.generate (env)

SCons.Platform.posix module
Platform-specific initialization for POSIX (Linux, UNIX, etc.) systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.posix.escape (ar g)
escape shell special characters
SCons.Platform.posix.exec_popen3 (I , env, st dout , st derr)
SCons.Platform.posix.exec_subprocess (I , env)
SCons.Platform.posix.generate (env)
SCons.Platform.posix.piped_env_spawn (sh, escape, cnd, ar gs, env, st dout , st derr)
SCons.Platform.posix.subprocess_spawn (sh, escape, cnd, ar gs, env)

SCons.Platform.sunos module
Platform-specific initialization for Sun systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.sunos.generate (env)

SCons.Platform.virtualenv module

‘Platform” support for a Python virtualenv.

SCons.Platform.virtualenv.ImportVirtualenv (env)
Copies virtualenv-related environment variables from OS environment to env[' ENV' | and prepends virtualenv’s
PATHtoenv[' ENV'][' PATH].

SCons.Platform.virtualenv.lsInVirtualenv (pat h)

Returns True, if path is under virtualenv’'s home directory. If not, or if we don’t use virtualenv, returns False.
SCons.Platform.virtualenv.Virtualenv ()

Returns path to the virtualenv home if scons is executing within a virtualenv or None, if not.
SCons.Platform.virtualenv._enable_virtualenv_default ()
SCons.Platform.virtualenv._ignore_virtualenv_default ()

SCons.Platform.virtualenv._inject_venv_path (env, pat h_| i st =None)

Modify environment such that SCons will take into account its virtualenv when running external tools.
SCons.Platform.virtualenv._inject_venv_variables (env)

SCons.Platform.virtualenv._is_path_in (pat h, base)

Returns true if path is located under the base directory.
SCons.Platform.virtualenv._running_in_virtualenv ()

Returns True if scons is executed within a virtualenv
SCons.Platform.virtualenv.select_paths_in_venv (pat h_I i st)

Returns a list of paths from path_list which are under virtualenv’'s home directory.

66

SCons API Documentation

SCons.Platform.win32 module
Platform-specific initialization for Win32 systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
class SCons.Platform.win32.ArchDefinition (ar ch, synonymnms=[])
Bases: object
Determine which windows CPU were running on. A class for defining architecture-specific settings and logic.
SCons.Platform.win32.escape (x)
SCons.Platform.win32.exec_spawn (I , env)
SCons.Platform.win32.generate (env)
SCons.Platform.win32.get_architecture (ar ch=None)
Returns the definition for the specified architecture string.
If no string is specified, the system default is returned (as defined by the PROCESSOR_ARCHITEW6432 or
PROCESSOR_ARCHITECTURE environment variables).
SCons.Platform.win32.get_program_files_dir ()
Get the location of the program files directory
SCons.Platform.win32.get_system_root ()
SCons.Platform.win32.piped_spawn (sh, escape, cnd, ar gs, env, st dout , st derr)
SCons.Platform.win32.spawn (sh, escape, cnd, ar gs, env)
SCons.Platform.win32.spawnve (node, fi |l e, ar gs, env)

Module contents
SCons platform selection.

Looks for modules that define a callable object that can modify a construction environment as appropriate for a given
platform.

Note that we take a more simplistic view of “platform” than Python does. We're looking for a single string that
determines a set of tool-independent variables with which to initialize a construction environment. Consequently, we’ll
examine both sys.platform and os.name (and anything else that might come in to play) in order to return some
specification which is unique enough for our purposes.

Note that because this subsystem just selects a callable that can modify a construction environment, it's possible for
people to define their own “platform specification” in an arbitrary callable function. No one needs to use or tie in to this
subsystem in order to roll their own platform definition.
SCons.Platform.DefaultToolList (pl at f or m env)
Select a default tool list for the specified platform.
SCons.Platform.Platform (hame="darwin’)
Select a canned Platform specification.
class SCons.Platform.PlatformSpec (name, gener at e)
Bases: object
class SCons.Platform. TempFileMunge (cnd, cndst r =None)
Bases: object
Convert long command lines to use a temporary file.
You can set an Environment variable (usually TEMPFI LE) to this, then call it with a string argument, and it will
perform temporary file substitution on it. This is used to circumvent limitations on the length of command lines.
Example:

env[" TEMPFI LE"] = TenpFi | eMunge
env["LINKCOM'] = "${ TEMPFI LE("' $LI NK $TARGET $SOURCES' , ' $LI NKCOMBTR) }"

By default, the name of the temporary file used begins with a prefix of ‘@’. This may be configured for other tool
chains by setting the TEMPFI LEPREFI X variable. Example:

67

SCons API Documentation

env[" TEMPFI LEPREFI X"]
env[" TEMPFI LEPREFI X"]
env[" TEMPFI LEPREFI X"]

'-@ # diab conpiler
"-via' # armtool chain
v # (the enpty string) PC Lint

You can configure the extension of the temporary file through the TEMPFI LESUFFI X variable, which defaults to “.Ink’
(see comments in the code below). Example:

env[" TEMPFI LESUFFI X"] = '.Int' # PC Lint

Entries in the temporary file are separated by the value of the TEMPFI LEARGIQO N variable, which defaults to an
OS-appropriate value.

A default argument escape function is SCons. Subst . quot e_spaces. If you need to apply extra operations on a
command argument before writing to a temporary file(fix Windows slashes, normalize paths, etc.), please set
TEMPFILEARGESCFUNC variable to a custom function. Example:

i nport sys
i nport re
from SCons. Subst inport quote_spaces

W NPATHSEP_RE = re.conpile(r"\([*""'\]|$)")

def tenpfile_arg_esc_func(arg):
arg = quote_spaces(arg)
if sys.platform!= "w n32":
return arg
GCC requires doubl e Wndows slashes, let's use UNl X separ at or
return WNPATHSEP_RE. sub(r"/m", arg)

env[" TEMPFI LEARGESCFUNC'] = tenpfile_arg_esc_func

_print_cmd_str (t ar get , sour ce, env, cndst r)
SCons.Platform.platform_default ()
Return the platform string for our execution environment.
The returned value should map to one of the SCons/Platform/*.py files. Since scons is architecture independent,
though, we don’t care about the machine architecture.
SCons.Platform.platform_module (nane='darwin")
Return the imported module for the platform.
This looks for a module name that matches the specified argument. If the name is unspecified, we fetch the
appropriate default for our execution environment.

SCons.Scanner package
Submodules

SCons.Scanner.C module

Dependency scanner for C/C++ code.
SCons.Scanner.C.CConditionalScanner ()

Return an advanced conditional Scanner instance for scanning source files

Interprets C/C++ Preprocessor conditional syntax (#ifdef, #if, defined, #else, #elif, etc.).
SCons.Scanner.C.CScanner ()

Return a prototype Scanner instance for scanning source files that use the C pre-processor
class SCons.Scanner.C.SConsCPPConditionalScanner (* ar gs, * * kwar gs)

68

SCons API Documentation

Bases: SCons.cpp.PreProcessor
SCons-specific subclass of the cpp.py module’s processing.
We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the files
that are missing.
_call__(file)
Pre-processes a file.
This is the main public entry point.
_do_if_else_condition (condi ti on)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.
_match_tuples (t upl es)
_parse_tuples (cont ent s)
_process_tuples (t upl es, fi | e=None)
all_include (t)
do_define (t)
Default handling of a #define line.
do_elif (t)
Default handling of a #elif line.
do_else (t)
Default handling of a #else line.
do_endif (t)
Default handling of a #endif line.
do_if (t)
Default handling of a #if line.
do_ifdef (t)
Default handling of a #ifdef line.
do_ifndef (t)
Default handling of a #ifndef line.
do_import (t)
Default handling of a #import line.
do_include (t)
Default handling of a #include line.
do_include_next (t)
Default handling of a #include line.
do_nothing (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.
do_undef (t)
Default handling of a #undef line.
eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor nhamespace we use to
track #define values.
finalize_result (f nane)
find_include_file (t)
Finds the #include file for a given preprocessor tuple.
initialize_result (f nane)
process_contents (cont ent s)
Pre-processes a file contents.
Is used by tests
process_file (fi |l e)
Pre-processes a file.
This is the main internal entry point.
read_file (fil e)
resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without *” or <> surrounding the name until an initial ” or < is found, to
handle #include FILE where FILE is a #define somewhere else.

69

SCons API Documentation

restore ()
Pops the previous dispatch table off the stack and makes it the current one.
save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.
scons_current_file (t)
start_handling_includes (t =None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.
stop_handling_includes (t =None)
Causes the Pre