
./ src/ agg_renderer.os

./ agg/ src

./ src/ graphics.os

./ src/ font_set.os

./ agg/ src/ agg_vcgen_markers_term.o

./ src/ params.os

./ agg/ src/ agg_image_filters.o

./ bindings/ python/ mapnik_symbolizer.os

./ src/ memory.os

./ bindings/ python/ mapnik_font_engine.os

./ plugins/ input/ shape/ dbff ile.os

./ agg/ src/ agg_line_aa_basics.o

./ src/ save_map.os

./ bindings/ python/ mapnik_view_transform.os

./ src/ color.os

./ agg/ libagg.a

./ src/ font_engine_freetype.os

./ src/ stroke.os

./ bindings/ python/ mapnik_image.os

./ src/ image_ut il.os

./ bindings/ python/ mapnik_datasource_cache.os

./ agg/ include

./ bindings/ python/ mapnik_rule.os

./ agg/ src/ agg_bezier_arc.o

./ bindings/ python/ mapnik_featureset.os

./ agg/ src/ agg_arc.o

./ plugins/ input/ shape/ shapefile.os

./ plugins/ input/ raster/ raster_datasource.os

./ plugins/ input/ raster/ raster_featureset.os

./ src/ unicode.os

./ bindings/ python/ mapnik/ ogcserver

./ bindings/ python/ mapnik_map.os

./ src/ arrow.os

./ plugins

./ plugins/ input/ raster/ raster.input

./ agg/ src/ agg_vcgen_contour.o

./ agg/ src/ agg_trans_warp_magnif ier.o

./ bindings/ python/ mapnik_datasource.os

./ plugins/ input/ shape/ shape_featureset.os

./ src/ load_map.os

./ bindings/ python/ mapnik_point_symbolizer.os

./ src/ line_pattern_symbolizer.os

./ bindings/ python/ mapnik

./ plugins/ input/ raster

./ src/ map.os
./ src/ wkb.os

./ agg/ src/ agg_vcgen_stroke.o

./ agg/ src/ agg_gsv_text.o

./ plugins/ input/ shape/ shape.os

./ bindings

./ src

./ bindings/ python/ mapnik_filter.os

./ agg/ src/ agg_vcgen_bspline.o

./ bindings/ python/ mapnik_coord.os

./ src/ envelope.os

./ agg/ src/ agg_vpgen_segmentator.o

./ bindings/ python/ mapnik_layer.os

./ bindings/ python/ mapnik_line_symbolizer.os

./ src/ shield_symbolizer.os

./ agg/ src/ agg_trans_double_path.o

./ src/ project ion.os

./ src/ t if f_reader.os

./ bindings/ python/ mapnik_proj_transform.os

./ bindings/ python/ mapnik_style.os

./ bindings/ python/ mapnik_shield_symbolizer.os

./ src/ image_reader.os

./ agg/ src/ agg_bspline.o

./ agg/ src/ agg_trans_single_path.o

./ plugins/ input/ raster/ raster_info.os

./ agg/ src/ agg_vcgen_dash.o

./ bindings/ python/ mapnik_project ion.os

./ bindings/ python/ mapnik_image_view.os

./ src/ distance.os

./ src/ datasource_cache.os

./ bindings/ python/ mapnik_parameters.os

./ src/ plugin.os

./ agg/ src/ agg_arrowhead.o

./ bindings/ python/ mapnik_feature.os

./ agg/ src/ agg_embedded_raster_fonts.o

./ src/ libmapnik.so

./ src/ placement_finder.os

./ agg/ src/ agg_sqrt_tables.o

./ agg/ src/ agg_vpgen_clip_polyline.o

./ bindings/ python/ mapnik_raster_symbolizer.os

./ agg/ src/ agg_line_profile_aa.o

./ bindings/ python/ mapnik_line_pattern_symbolizer.os

./ bindings/ python/ mapnik_color.os

./ src/ proj_transform.os

./ src/ memory_datasource.os

./ plugins/ input

./ bindings/ python/ mapnik_python.os

./ src/ png_reader.os

./ bindings/ python/ mapnik_envelope.os

./ bindings/ python/ mapnik_stroke.os

./ plugins/ input/ shape/ shape.input

./ bindings/ python/ mapnik_query.os

./ src/ point_symbolizer.os

./ src/ f ilter_factory.os

./ bindings/ python/ mapnik_polygon_symbolizer.os

./ agg/ src/ agg_vcgen_smooth_poly1.o

./ plugins/ input/ shape/ shape_index_featureset.os

./ bindings/ python/ python_cairo.os

./ src/ symbolizer.os

./ bindings/ python/ _mapnik.so

./ agg/ src/ agg_trans_aff ine.o

./ src/ polygon_pattern_symbolizer.os

./ bindings/ python/ mapnik_polygon_pattern_symbolizer.os

./ agg/ src/ agg_curves.o

./ src/ tex t_symbolizer.os

./ src/ scale_denominator.os

./ plugins/ input/ shape/ shape_io.os

./ src/ layer.os

./ agg

./ src/ libxml2_loader.os

./ agg/ src/ agg_vpgen_clip_polygon.o

./ plugins/ input/ shape

./ bindings/ python/ mapnik_geometry.os

./ bindings/ python/ mapnik_text_symbolizer.os

./ agg/ src/ agg_rounded_rect.o

./ bindings/ python

SCons 4.4.0
MAN page

The SCons Development Team

Version 4.4.02001 - 2022The SCons FoundationReleased Sat, 30 Jul 2022 14:09:41 -0700

3

Name
scons — a software construction tool

Synopsis

scons [options...] [name=val...] [targets...]

DESCRIPTION

scons orchestrates the construction of software (and other tangible products such as documentation files) by
determining which component pieces must be built or rebuilt and invoking the necessary commands to build them.
SCons offers many features to improve developer productivity such as parallel builds, caching of build artifacts,
automatic dependency scanning, and a database of information about previous builds so details do not have to be
recalculated each run.

scons requires Python 3.6 or later to run; there should be no other dependencies or requirements. unless the
experimental Ninja tool is used. Support for Python 3.5 is removed since SCons 4.3.0. The CPython project has retired
3.5: https://www.python.org/dev/peps/pep-0478.

You set up an SCons build system by writing a script that describes things to build (targets), and, if necessary, the
rules to build those files (actions). SCons comes with a collection of Builder methods which apply premade actions
for building many common software components such as executable programs, object files and libraries, so that for
many software projects, only the targets and input files (sources) need be specified in a call to a builder. SCons thus
can operate at a level of abstraction above that of pure filenames. For example if you specify a library target named
"foo", SCons keeps track of the actual operating system dependent filename (such as libfoo.so on a GNU/Linux
system), and how to refer to that library in later construction steps that want to use it, so you don't have to specify
that precise information yourself. SCons can also scan automatically for dependency information, such as header files
included by source code files (for example, #include preprocessor directives in C or C++ files), so these implicit
dependencies do not have to be specified manually. SCons supports the ability to define new scanners to support
additional input file types.

Information about files involved in the build, including a cryptographic hash of the contents, is cached for later reuse.
By default this hash (the content signature) is used to determine if a file has changed since the last build, but this
can be controlled by selecting an appropriate Decider function. Implicit dependency files are also part of out-of-
date computation. The scanned implicit dependency information can optionally be cached and used to speed up future
builds. A hash of each executed build action (the build signature is cached, so that changes to build instructions
(changing flags, etc.) or to the build tools themselves (new version) can also trigger a rebuild.

When invoked, scons looks for a file named SConstruct in the current directory and reads the build configuration
from that file (other names are allowed, see the section called “SConscript Files” for more information). The
SConstruct file may specify subsidiary configuration files by calling the SConscript function. By convention,
these subsidiary files are named SConscript, although any name may be used. As a result of this naming convention,
the term SConscript files is used to refer generically to the complete set of configuration files for a project (including
the SConstruct file), regardless of the actual file names or number of such files.

Before reading the SConscript files, scons looks for a directory named site_scons in various system directories
and in the directory containing the SConstruct file or, if specified, the directory from the --site-dir option
instead, and prepends the ones it finds to the Python module search path (sys.path), thus allowing modules in such
directories to be imported in the normal Python way in SConscript files. For each found site directory, (1) if it contains
a file site_init.py that file is evaluated, and (2) if it contains a directory site_tools the path to that directory
is prepended to the default toolpath. See the --site-dir and --no-site-dir options for details on default paths
and controlling the site directories.

https://www.python.org/dev/peps/pep-0478

4

SConscript files are written in the Python programming language, although it is normally not necessary to be a Python
programmer to use scons effectively. SConscript files are invoked in a context that makes the facilities described in
this manual page available in their local namespace without any special steps. Standard Python scripting capabilities
such as flow control, data manipulation, and imported Python libraries are available to use to handle complicated build
situations. Other Python files can be made a part of the build system, but they do not automatically have the SCons
context and need to import it if they need access (described later).

scons reads and executes all of the included SConscript files before it begins building any targets. To make this clear,
scons prints the following messages about what it is doing:

$ scons foo.out
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cp foo.in foo.out
scons: done building targets.
$

The status messages (lines beginning with the scons: tag) may be suppressed using the -Q option.

To assure reproducible builds, SCons uses a restricted execution environment for running external commands used
to build targets, rather then propagating the full environment in effect at the time scons was called. This helps avoid
problems like picking up accidental settings, temporary debug values that are no longer needed, or one developer
having different settings than another (or than the CI/CD pipeline). Environment variables that are needed for proper
operation of such commands need to be set explicitly, which can be done either by assigning the desired values, or by
picking values individually out of environment variables using the Python os.environ dictionary. The execution
environment for a given construction environment is contained in its $ENV construction variable. A few environment
variables are picked up automatically - see the section called “ENVIRONMENT”).

In particular, if the compiler or other commands that you want to use to build your target files are not in standard
system locations, scons will not find them unless you explicitly include the locations into the PATH element of the
execution environment. One example approach is to extract the entire PATH environment variable and set that into
the execution environment:

import os
env = Environment(ENV={'PATH': os.environ['PATH']})

Similarly, if the commands use specific external environment variables that scons does not recognize, they can be
propagated into the execution environment:

import os

env = Environment(
 ENV={
 'PATH': os.environ['PATH'],
 'ANDROID_HOME': os.environ['ANDROID_HOME'],
 'ANDROID_NDK_HOME': os.environ['ANDROID_NDK_HOME'],
 }
)

Or you may explicitly propagate the invoking user's complete external environment:

5

import os
env = Environment(ENV=os.environ.copy())

This comes at the expense of making your build dependent on the user's environment being set correctly, but it may be
more convenient for many configurations. It should not cause problems if done in a build setup which tightly controls
how the environment is set up before invoking scons, as in many continuous integration setups.

scons is normally executed in a top-level directory containing an SConstruct file. When scons is invoked, the
command line (including the contents of the SCONSFLAGS environment variable, if set) is processed. Command-line
options (see the section called “OPTIONS”) are consumed. Any variable argument assignments are collected, and
remaining arguments are taken as targets to build.

Values of variables to be passed to the SConscript files may be specified on the command line:

scons debug=1

These variables are available through the ARGUMENTS dictionary, and can be used in the SConscript files to modify
the build in any way:

if ARGUMENTS.get('debug', 0):
 env = Environment(CCFLAGS='-g')
else:
 env = Environment()

The command-line variable arguments are also available in the ARGLIST list, indexed by their order on the command
line. This allows you to process them in order rather than by name, if necessary. Each ARGLIST entry is a tuple
containing (argname, argvalue).

See the section called “Command-Line Construction Variables” for more information.

scons can maintain a cache of target (derived) files that can be shared between multiple builds. When derived-file
caching is enabled in an SConscript file, any target files built by scons will be copied to the cache. If an up-to-date target
file is found in the cache, it will be retrieved from the cache instead of being rebuilt locally. Caching behavior may
be disabled and controlled in other ways by the --cache-force, --cache-disable, --cache-readonly,
and --cache-show command-line options. The --random option is useful to prevent multiple builds from trying
to update the cache simultaneously.

By default, scons searches for known programming tools on various systems and initializes itself based on what is
found. On Windows systems which identify as win32, scons searches in order for the Microsoft Visual C++ tools,
the MinGW tool chain, the Intel compiler tools, and the PharLap ETS compiler. On Windows system which identify
as cygwin (that is, if scons is invoked from a cygwin shell), the order changes to prefer the GCC toolchain over the
MSVC tools. On OS/2 systems, scons searches in order for the OS/2 compiler, the GCC tool chain, and the Microsoft
Visual C++ tools, On SGI IRIX, IBM AIX, Hewlett Packard HP-UX, and Oracle Solaris systems, scons searches for
the native compiler tools (MIPSpro, Visual Age, aCC, and Forte tools respectively) and the GCC tool chain. On all
other platforms, including POSIX (Linux and UNIX) platforms, scons searches in order for the GCC tool chain, and
the Intel compiler tools. These default values may be overridden by appropriate setting of construction variables.

Target Selection

SCons acts on the selected targets, whether the requested operation is build, no-exec or clean. Targets are selected
as follows:

1. Targets specified on the command line. These may be files, directories, or phony targets defined using the Alias
function. Directory targets are scanned by scons for any targets that may be found with a destination in or under
that directory. The targets listed on the command line are made available in the COMMAND_LINE_TARGETS list.

6

2. If no targets are specified on the command line, scons will select those targets specified in the SConscript
files via calls to the Default function. These are known as the default targets, and are made available in the
DEFAULT_TARGETS list.

3. If no targets are selected by the previous steps, scons selects the current directory for scanning, unless command-
line options which affect the target scan are detected (-C, -D, -u, -U). Since targets thus selected were not the
result of user instructions, this target list is not made available for direct inspection; use the --debug=explain
option if they need to be examined.

4. scons always adds to the selected targets any intermediate targets which are necessary to build the specified ones.
For example, if constructing a shared library or dll from C source files, scons will also build the object files which
will make up the library.

To ignore the default targets specified through calls to Default and instead build all target files in or below the
current directory specify the current directory (.) as a command-line target:

scons .

To build all target files, including any files outside of the current directory, supply a command-line target of the root
directory (on POSIX systems):

scons /

or the path name(s) of the volume(s) in which all the targets should be built (on Windows systems):

scons C:\ D:\

A subset of a hierarchical tree may be built by remaining at the top-level directory (where the SConstruct file lives)
and specifying the subdirectory as the target to build:

scons src/subdir

or by changing directory and invoking scons with the -u option, which traverses up the directory hierarchy until it
finds the SConstruct file, and then builds targets relatively to the current subdirectory (see also the related -D and
-U options):

cd src/subdir
scons -u .

In all cases, more files may be built than are requested, as scons needs to make sure any dependent files are built.

Specifying "cleanup" targets in SConscript files is usually not necessary. The -c flag removes all selected targets:

scons -c .

to remove all target files in or under the current directory, or:

scons -c build export

to remove target files under build and export.

7

Additional files or directories to remove can be specified using the Clean function in the SConscript files. Conversely,
targets that would normally be removed by the -c invocation can be retained by calling the NoClean function with
those targets.

scons supports building multiple targets in parallel via a -j option that takes, as its argument, the number of
simultaneous tasks that may be spawned:

scons -j 4

builds four targets in parallel, for example.

OPTIONS
In general, scons supports the same command-line options as GNU Make and many of those supported by cons.

-b
Ignored for compatibility with non-GNU versions of Make

-c, --clean, --remove
Set clean mode. Clean up by removing the selected targets, well as any files or directories associated with a
selected target through calls to the Clean function. Will not remove any targets which are marked for preservation
through calls to the NoClean function.

While clean mode removes targets rather than building them, work which is done directly in Python code in
SConscript files will still be carried out. If it is important to avoid some such work from taking place in clean
mode, it should be protected. An SConscript file can determine which mode is active by querying GetOption,
as in the call if GetOption("clean"):

--cache-debug=file
Write debug information about derived-file caching to the specified file. If file is a hyphen (-), the debug
information is printed to the standard output. The printed messages describe what signature-file names are being
looked for in, retrieved from, or written to the derived-file cache specified by CacheDir.

--cache-disable, --no-cache
Disable derived-file caching. scons will neither retrieve files from the cache nor copy files to the cache. This
option can be used to temporarily disable the cache without modifying the build scripts.

--cache-force, --cache-populate
When using CacheDir, populate a derived-file cache by copying any already-existing, up-to-date derived files
to the cache, in addition to files built by this invocation. This is useful to populate a new cache with all the current
derived files, or to add to the cache any derived files recently built with caching disabled via the --cache-
disable option.

--cache-readonly
Use the derived-file cache, if enabled, to retrieve files, but do not not update the cache with any files actually
built during this invocation.

--cache-show
When using a derived-file cache show the command that would have been executed to build the file (or the
corresponding *COMSTR contents if set) even if the file is retrieved from cache. Without this option, scons shows
a cache retrieval message if the file is fetched from cache. This allows producing consistent output for build logs,
regardless of whether a target file was rebuilt or retrieved from the cache.

--config=mode
Control how the Configure call should use or generate the results of configuration tests. mode should be one
of the following choices:

8

auto
SCons will use its normal dependency mechanisms to decide if a test must be rebuilt or not. This saves time
by not running the same configuration tests every time you invoke scons, but will overlook changes in system
header files or external commands (such as compilers) if you don't specify those dependecies explicitly. This
is the default behavior.

force
If this mode is specified, all configuration tests will be re-run regardless of whether the cached results are out
of date. This can be used to explicitly force the configuration tests to be updated in response to an otherwise
unconfigured change in a system header file or compiler.

cache
If this mode is specified, no configuration tests will be rerun and all results will be taken from cache. scons will
report an error if --config=cache is specified and a necessary test does not have any results in the cache.

-C directory, --directory=directory
Run as if scons was started in directory instead of the current working directory. That is, change directory
before searching for the SConstruct, Sconstruct, sconstruct, SConstruct.py, Sconstruct.py
or sconstruct.py file or doing anything else. When multiple -C options are given, each subsequent non-
absolute -C directory is interpreted relative to the preceding one. This option is similar to using -f
directory/SConstruct, but -f does not search for any of the predefined SConstruct names in the
specified directory. See also options -u, -U and -D to change the SConstruct search behavior when this option
is used.

-D
Works exactly the same way as the -u option except for the way default targets are handled. When this option
is used and no targets are specified on the command line, all default targets are built, whether or not they are
below the current directory.

--debug=type[,type...]
Debug the build process. type specifies the kind of debugging info to emit. Multiple types may be specified,
separated by commas. The following types are recognized:

action-timestamps
Prints additional time profiling information. For each command, shows the absolute start and end times. This
may be useful in debugging parallel builds. Implies the --debug=time option.

Available since scons 3.1.

count
Print how many objects are created of the various classes used internally by SCons before and after reading
the SConscript files and before and after building targets. This is not supported when SCons is executed with
the Python -O (optimized) option or when the SCons modules have been compiled with optimization (that
is, when executing from *.pyo files).

duplicate
Print a line for each unlink/relink (or copy) of a variant file from its source file. Includes debugging info for
unlinking stale variant files, as well as unlinking old targets before building them.

explain
Print an explanation of why scons is deciding to (re-)build the targets it selects for building.

findlibs
Instruct the scanner that searches for libraries to print a message about each potential library name it is
searching for, and about the actual libraries it finds.

9

includes
Print the include tree after each top-level target is built. This is generally used to find out what files are
included by the sources of a given derived file:

$ scons --debug=includes foo.o

memoizer
Prints a summary of hits and misses using the Memoizer, an internal subsystem that counts how often SCons
uses cached values in memory instead of recomputing them each time they're needed.

memory
Prints how much memory SCons uses before and after reading the SConscript files and before and after
building targets.

objects
Prints a list of the various objects of the various classes used internally by SCons.

pdb
Re-run scons under the control of the pdb Python debugger.

prepare
Print a line each time any target (internal or external) is prepared for building. scons prints this for each target
it considers, even if that target is up to date (see also --debug=explain). This can help debug problems
with targets that aren't being built; it shows whether scons is at least considering them or not.

presub
Print the raw command line used to build each target before the construction environment variables are
substituted. Also shows which targets are being built by this command. Output looks something like this:

$ scons --debug=presub
Building myprog.o with action(s):
 $SHCC $SHCFLAGS $SHCCFLAGS $CPPFLAGS $_CPPINCFLAGS -c -o $TARGET $SOURCES
...

stacktrace
Prints an internal Python stack trace when encountering an otherwise unexplained error.

time
Prints various time profiling information:

• The time spent executing each individual build command

• The total build time (time SCons ran from beginning to end)

• The total time spent reading and executing SConscript files

• The total time SCons itself spent running (that is, not counting reading and executing SConscript files)

• The total time spent executing all build commands

• The elapsed wall-clock time spent executing those build commands

• The time spent processing each file passed to the SConscript function

(When scons is executed without the -j option, the elapsed wall-clock time will typically be slightly longer
than the total time spent executing all the build commands, due to the SCons processing that takes place in
between executing each command. When scons is executed with the -j option, and your build configuration

10

allows good parallelization, the elapsed wall-clock time should be significantly smaller than the total time
spent executing all the build commands, since multiple build commands and intervening SCons processing
should take place in parallel.)

--diskcheck=type
Enable specific checks for whether or not there is a file on disk where the SCons configuration expects a directory
(or vice versa) when searching for source and include files. type can be an available diskcheck type or the special
tokens all or none. A comma-separated string can be used to select multiple checks. The default setting is all.

Current available checks are:

match
to check that files and directories on disk match SCons' expected configuration.

Disabling some or all of these checks can provide a performance boost for large configurations, or when the
configuration will check for files and/or directories across networked or shared file systems, at the slight increased
risk of an incorrect build or of not handling errors gracefully.

--duplicate=ORDER
There are three ways to duplicate files in a build tree: hard links, soft (symbolic) links and copies. The default
policy is to prefer hard links to soft links to copies. You can specify a different policy with this option. ORDER
must be one of hard-soft-copy (the default), soft-hard-copy, hard-copy, soft-copy or copy. SCons will attempt to
duplicate files using the mechanisms in the specified order.

--enable-virtualenv
Import virtualenv-related variables to SCons.

--experimental=feature
Enable experimental features and/or tools. feature can be an available feature name or the special tokens all
or none. A comma-separated string can be used to select multiple features. The default setting is none.

Current available features are: ninja.

Caution

No Support offered for any features or tools enabled by this flag.

Available since scons 4.2.

-f file, --file=file, --makefile=file, --sconstruct=file
Use file as the initial SConscript file. Multiple -f options may be specified, in which case scons will read all
of the specified files.

-h, --help
Print a local help message for this project, if one is defined in the SConscript files (see the Help function), plus
a line that refers to the standard SCons help message. If no local help message is defined, prints the standard
SCons help message (as for the -H option) plus help for any local options defined through AddOption. Exits
after displaying the appropriate message.

Note that use of this option requires SCons to process the SConscript files, so syntax errors may cause the help
message not to be displayed.

--hash-chunksize=KILOBYTES
Set the block size used when computing content signatures to KILOBYTES. This value determines the size of
the chunks which are read in at once when computing signature hashes. Files below that size are fully stored in
memory before performing the signature computation while bigger files are read in block-by-block. A huge block-
size leads to high memory consumption while a very small block-size slows down the build considerably.

11

The default value is to use a chunk size of 64 kilobytes, which should be appropriate for most uses.

Available since scons 4.2.

--hash-format=ALGORITHM
Set the hashing algorithm used by SCons to ALGORITHM. This value determines the hashing algorithm used in
generating content signatures or CacheDir keys.

The supported list of values are: md5, sha1, and sha256. However, the Python interpreter used to run SCons must
have the corresponding support available in the hashlib module to use the specified algorithm.

Specifying this value changes the name of the SConsign database. For example, --hash-format=sha256
will create a SConsign database with name .sconsign_sha256.dblite.

If this option is not specified, a the first supported hash format found is selected. Typically this is MD5, however,
if you are on a FIPS-compliant system and using a version of Python less than 3.9, SHA1 or SHA256 will be
chosen as the default. Python 3.9 and onwards clients will always default to MD5, even in FIPS mode, unless
otherwise specified with the --hash-format option.

For MD5 databases (either explicitly specified with --hash-format=md5 or defaulted), the SConsign
database is.sconsign.dblite. The newer SHA1 and SHA256 selections meanwhile store their databases to
.sconsign_algorithmname.dblite

Available since scons 4.2.

-H, --help-options
Print the standard help message about SCons command-line options and exit.

-i, --ignore-errors
Ignore all errors from commands executed to rebuild files.

-I directory, --include-dir=directory
Specifies a directory to search for imported Python modules. If several -I options are used, the directories
are searched in the order specified.

--ignore-virtualenv
Suppress importing virtualenv-related variables to SCons.

--implicit-cache
Cache implicit dependencies. This causes scons to use the implicit (scanned) dependencies from the last time it
was run instead of scanning the files for implicit dependencies. This can significantly speed up SCons, but with
the following limitations:

scons will not detect changes to implicit dependency search paths (e.g. $CPPPATH, $LIBPATH) that would
ordinarily cause different versions of same-named files to be used.

scons will miss changes in the implicit dependencies in cases where a new implicit dependency is added earlier
in the implicit dependency search path (e.g. $CPPPATH, $LIBPATH) than a current implicit dependency with
the same name.

--implicit-deps-changed
Forces SCons to ignore the cached implicit dependencies. This causes the implicit dependencies to be rescanned
and recached. This implies --implicit-cache.

--implicit-deps-unchanged
Force SCons to ignore changes in the implicit dependencies. This causes cached implicit dependencies to always
be used. This implies --implicit-cache.

12

--install-sandbox=sandbox_path
When using the Install builders, prepend sandbox_path to the installation paths such that all installed
files will be placed under that directory. This option is unavailable if one of Install, InstallAs or
InstallVersionedLib is not used in the SConscript files.

--interactive
Starts SCons in interactive mode. The SConscript files are read once and a scons>>> prompt is printed. Targets
may now be rebuilt by typing commands at interactive prompt without having to re-read the SConscript files and
re-initialize the dependency graph from scratch.

SCons interactive mode supports the following commands:

build [OPTIONS] [TARGETS] ...
Builds the specified TARGETS (and their dependencies) with the specified SCons command-line OPTIONS.
b and scons are synonyms for build.

The following SCons command-line options affect the build command:

--cache-debug=FILE
--cache-disable, --no-cache
--cache-force, --cache-populate
--cache-readonly
--cache-show
--debug=TYPE
-i, --ignore-errors
-j N, --jobs=N
-k, --keep-going
-n, --no-exec, --just-print, --dry-run, --recon
-Q
-s, --silent, --quiet
--taskmastertrace=FILE
--tree=OPTIONS

Any other SCons command-line options that are specified do not cause errors but have no effect on the build
command (mainly because they affect how the SConscript files are read, which only happens once at the
beginning of interactive mode).

clean [OPTIONS] [TARGETS] ...
Cleans the specified TARGETS (and their dependencies) with the specified OPTIONS. c is a synonym. This
command is itself a synonym for build --clean

exit
Exits SCons interactive mode. You can also exit by terminating input (Ctrl+D UNIX or Linux systems,
(Ctrl+Z on Windows systems).

help [COMMAND]
Provides a help message about the commands available in SCons interactive mode. If COMMAND is
specified, h and ? are synonyms.

shell [COMMANDLINE]
Executes the specified COMMANDLINE in a subshell. If no COMMANDLINE is specified, executes the
interactive command interpreter specified in the SHELL environment variable (on UNIX and Linux systems)
or the COMSPEC environment variable (on Windows systems). sh and ! are synonyms.

version
Prints SCons version information.

13

An empty line repeats the last typed command. Command-line editing can be used if the readline module is
available.

$ scons --interactive
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons>>> build -n prog
scons>>> exit

-j N, --jobs=N
Specifies the maximum number of comcurrent jobs (commands) to run. If there is more than one -j option, the
last one is effective.

-k, --keep-going
Continue as much as possible after an error. The target that failed and those that depend on it will not be remade,
but other targets specified on the command line will still be processed.

-m
Ignored for compatibility with non-GNU versions of Make.

--max-drift=SECONDS
Set the maximum expected drift in the modification time of files to SECONDS. This value determines how long
a file must be unmodified before its cached content signature will be used instead of calculating a new content
signature (hash) of the file's contents. The default value is 2 days, which means a file must have a modification
time of at least two days ago in order to have its cached content signature used. A negative value means to never
cache the content signature and to ignore the cached value if there already is one. A value of 0 means to always
use the cached signature, no matter how old the file is.

--md5-chunksize=KILOBYTES
A deprecated synonym for --hash-chunksize.

Deprecated since scons 4.2.

-n, --no-exec, --just-print, --dry-run, --recon
Set no execute mode. Print the commands that would be executed to build any out-of-date target files, but do not
execute the commands.

The output is a best effort, as SCons cannot always precisely determine what would be built. For example, if a
file is generated by a builder action that is later used in the build, that file is not available to scan for dependencies
on an unbuilt tree, or may contain out of date information in a built tree.

Work which is done directly in Python code in SConscript files, as opposed to work done by builder actions during
the build phase, will still be carried out. If it is important to avoid some such work from taking place in no execute
mode, it should be protected. An SConscript file can determine which mode is active by querying GetOption,
as in the call if GetOption("no_exec"):

--no-site-dir
Prevents the automatic addition of the standard site_scons dirs to sys.path. Also prevents loading
the site_scons/site_init.py modules if they exist, and prevents adding their site_scons/
site_tools dirs to the toolpath.

--package-type=type
The type or types of package to create when using the Package builder. In the case of multiple types, type
should be a comma-separated string; SCons will try to build for all of those packages. Note this option is only
available if the packaging tool has been enabled.

14

--profile=file
Run SCons under the Python profiler and save the results in the specified file. The results may be analyzed
using the Python pstats module.

-q, --question
Do not run any commands, or print anything. Just return an exit status that is zero if the specified targets are
already up to date, non-zero otherwise.

-Q
Quiets SCons status messages about reading SConscript files, building targets and entering directories. Commands
that are executed to rebuild target files are still printed.

--random
Build dependencies in a random order. This is useful when building multiple trees simultaneously with caching
enabled, to prevent multiple builds from simultaneously trying to build or retrieve the same target files.

-s, --silent, --quiet
Silent. Do not print commands that are executed to rebuild target files. Also suppresses SCons status messages.

-S, --no-keep-going, --stop
Ignored for compatibility with GNU Make

--site-dir=path
Use a specific path as the site directory rather than searching the list of default site directories. This directory
will be prepended to sys.path, the module path/site_init.py will be loaded if it exists, and path/
site_tools will be added to the default toolpath.

The default set of site directories searched when --site-dir is not specified depends on the system platform,
as follows. Users or system administrators can tune site-specific or project-specific SCons behavior by setting up
a site directory in one or more of these locations. Directories are examined in the order given, from most generic
("system" directories) to most specific (in the current project), so the last-executed site_init.py file is the
most specific one, giving it the chance to override everything else), and the directories are prepended to the paths,
again so the last directory examined comes first in the resulting path.

Windows:

%ALLUSERSPROFILE%/scons/site_scons
%LOCALAPPDATA%/scons/site_scons
%APPDATA%/scons/site_scons
%USERPROFILE%/.scons/site_scons
./site_scons

Note earlier versions of the documentation listed a different path for the "system" site directory, this path is
still checked but its use is discouraged:

%ALLUSERSPROFILE%/Application Data/scons/site_scons

Mac OS X:

/Library/Application Support/SCons/site_scons
/opt/local/share/scons/site_scons (for MacPorts)
/sw/share/scons/site_scons (for Fink)

15

$HOME/Library/Application Support/SCons/site_scons
$HOME/.scons/site_scons
./site_scons

Solaris:

/opt/sfw/scons/site_scons
/usr/share/scons/site_scons
$HOME/.scons/site_scons
./site_scons

Linux, HPUX, and other Posix-like systems:

/usr/share/scons/site_scons
$HOME/.scons/site_scons
./site_scons

--stack-size=KILOBYTES
Set the size stack used to run threads to KILOBYTES. This value determines the stack size of the threads used
to run jobs. These threads execute the actions of the builders for the nodes that are out-of-date. This option has
no effect unless the number of concurrent build jobs is larger than one (as set by -j N or --jobs=N on the
command line or SetOption in a script).

Using a stack size that is too small may cause stack overflow errors. This usually shows up as segmentation faults
that cause scons to abort before building anything. Using a stack size that is too large will cause scons to use more
memory than required and may slow down the entire build process. The default value is to use a stack size of
256 kilobytes, which should be appropriate for most uses. You should not need to increase this value unless you
encounter stack overflow errors.

-t, --touch
Ignored for compatibility with GNU Make. (Touching a file to make it appear up-to-date is unnecessary when
using scons.)

--taskmastertrace=file
Prints trace information to the specified file about how the internal Taskmaster object evaluates and controls
the order in which Nodes are built. A file name of - may be used to specify the standard output.

--tree=type[,type...]
Prints a tree of the dependencies after each top-level target is built. This prints out some or all of the tree, in various
formats, depending on the type specified:

all
Print the entire dependency tree after each top-level target is built. This prints out the complete dependency
tree, including implicit dependencies and ignored dependencies.

derived
Restricts the tree output to only derived (target) files, not source files.

linedraw
Draw the tree output using Unicode line-drawing characters instead of plain ASCII text. This option acts as a
modifier to the selected type(s). If specified alone, without any type, it behaves as if all had been specified.

Available since scons 4.0.

16

status
Prints status information for each displayed node.

prune
Prunes the tree to avoid repeating dependency information for nodes that have already been displayed. Any
node that has already been displayed will have its name printed in [square brackets], as an indication that
the dependencies for that node can be found by searching for the relevant output higher up in the tree.

Multiple type choices may be specified, separated by commas:

Prints only derived files, with status information:
scons --tree=derived,status

Prints all dependencies of target, with status information
and pruning dependencies of already-visited Nodes:
scons --tree=all,prune,status target

-u, --up, --search-up
Walks up the directory structure until an SConstruct, Sconstruct, sconstruct, SConstruct.py,
Sconstruct.py or sconstruct.py file is found, and uses that as the top of the directory tree. If no targets
are specified on the command line, only targets at or below the current directory will be built.

-U
Works exactly the same way as the -u option except for the way default targets are handled. When this option is
used and no targets are specified on the command line, all default targets that are defined in the SConscript(s) in
the current directory are built, regardless of what directory the resultant targets end up in.

-v, --version
Print the scons version, copyright information, list of authors, and any other relevant information. Then exit.

-w, --print-directory
Print a message containing the working directory before and after other processing.

--no-print-directory
Turn off -w, even if it was turned on implicitly.

--warn=type, --warn=no-type
Enable or disable (with the prefix "no-") warnings (--warning is a synonym). type specifies the type of
warnings to be enabled or disabled:

all
All warnings.

cache-version
Warnings about the derived-file cache directory specified by CacheDir not using the latest configuration
information. These warnings are enabled by default.

cache-write-error
Warnings about errors trying to write a copy of a built file to a specified derived-file cache specified by
CacheDir. These warnings are disabled by default.

corrupt-sconsign
Warnings about unfamiliar signature data in .sconsign files. These warnings are enabled by default.

dependency
Warnings about dependencies. These warnings are disabled by default.

17

deprecated
Warnings about use of currently deprecated features. These warnings are enabled by default. Not all
deprecation warnings can be disabled with the --warn=no-deprecated option as some deprecated
features which are late in the deprecation cycle may have been designated as mandatory warnings, and these
will still display. Warnings for certain deprecated features may also be enabled or disabled individually; see
below.

duplicate-environment
Warnings about attempts to specify a build of a target with two different construction environments that use
the same action. These warnings are enabled by default.

fortran-cxx-mix
Warnings about linking Fortran and C++ object files in a single executable, which can yield unpredictable
behavior with some compilers.

future-deprecated
Warnings about features that will be deprecated in the future. Such warnings are disabled by default. Enabling
future deprecation warnings is recommended for projects that redistribute SCons configurations for other
users to build, so that the project can be warned as soon as possible about to-be-deprecated features that may
require changes to the configuration.

link
Warnings about link steps.

misleading-keywords
Warnings about the use of two commonly misspelled keywords targets and sources to Builder calls.
The correct spelling is the singular form, even though target and source can themselves refer to lists
of names or nodes.

tool-qt-deprecated
Warnings about the qt tool being deprecated. These warnings are disabled by default for the first phase of
deprecation. Enable to be reminded about use of this tool module. Available since SCons 4.3.

missing-sconscript
Warnings about missing SConscript files. These warnings are enabled by default.

no-object-count
Warnings about the --debug=object feature not working when scons is run with the Python -O option
or from optimized Python (.pyo) modules.

no-parallel-support
Warnings about the version of Python not being able to support parallel builds when the -j option is used.
These warnings are enabled by default.

python-version
Warnings about running SCons with a deprecated version of Python. These warnings are enabled by default.

reserved-variable
Warnings about attempts to set the reserved construction variable names $CHANGED_SOURCES,
$CHANGED_TARGETS, $TARGET, $TARGETS, $SOURCE, $SOURCES, $UNCHANGED_SOURCES or
$UNCHANGED_TARGETS. These warnings are disabled by default.

stack-size
Warnings about requests to set the stack size that could not be honored. These warnings are enabled by default.

target_not_build
Warnings about a build rule not building the expected targets. These warnings are disabled by default.

18

-Y repository, --repository=repository, --srcdir=repository
Search the specified repository for any input and target files not found in the local directory hierarchy.
Multiple -Y options may be specified, in which case the repositories are searched in the order specified.

SCONSCRIPT FILE REFERENCE

SConscript Files

The build configuration is described by one or more files, known as SConscript files. There must be at least one file
for a valid build (scons will quit if it does not find one). scons by default looks for this file by the name SConstruct
in the directory from which you run scons, though if necessary, also looks for alternative file names Sconstruct,
sconstruct, SConstruct.py, Sconstruct.py and sconstruct.py in that order. A different file name
(which can include a pathname part) may be specified via the -f option. Except for the SConstruct file, these files
are not searched for automatically; you add additional configuration files to the build by calling the SConscript
function. This allows parts of the build to be conditionally included or excluded at run-time depending on how scons
is invoked.

Each SConscript file in a build configuration is invoked independently in a separate context. This provides necessary
isolation so that different parts of the build don't accidentally step on each other. You have to be explicit about sharing
information, by using the Export function or the exports argument to the SConscript function, as well as the
Return function in a called SConscript file, and comsume shared information by using the Import function.

The following sections describe the various SCons facilities that can be used in SConscript files. Quick links:

Construction Environments
Tools
Builder Methods
Methods and Functions to do Things
SConscript Variables
Construction Variables
Configure Contexts
Command-Line Construction Variables
Node Objects

Construction Environments

A Construction Environment is the basic means by which you communicate build information to SCons. A new
construction environment is created using the Environment function:

env = Environment()

Construction environment attributes called Construction Variables may be set either by specifying them as keyword
arguments when the object is created or by assigning them a value after the object is created. These two are nominally
equivalent:

env = Environment(FOO='foo')
env['FOO'] = 'foo'

Note that certain settings which affect tool detection are referenced only when the tools are initializided, so you either
need either to supply them as part of the call to Environment, or defer tool initialization. For example, initializing
the Microsoft Visual C++ version you wish to use:

19

initializes msvc to v14.1
env = Environment(MSVC_VERSION="14.1")

env = Environment()
msvc tool was initialized to default, does not reinitialize
env['MSVC_VERSION'] = "14.1"

env = Environment(tools=[])
env['MSVC_VERSION'] = "14.1"
msvc tool initialization was deferred, so will pick up new value
env.Tool('default')

As a convenience, construction variables may also be set or modified by the parse_flags keyword argument during
object creation, which has the effect of the env.MergeFlags method being applied to the argument value after all
other processing is completed. This is useful either if the exact content of the flags is unknown (for example, read
from a control file) or if the flags need to be distributed to a number of construction variables. env.ParseFlags
describes how these arguments are distributed to construction variables.

env = Environment(parse_flags='-Iinclude -DEBUG -lm')

This example adds 'include' to the $CPPPATH construction variable, 'EBUG' to $CPPDEFINES, and 'm' to $LIBS.

An existing construction environment can be duplicated by calling the env.Clone method. Without arguments, it
will be a copy with the same settings. Otherwise, env.Clone takes the same arguments as Environment, and
uses the arguments to create a modified copy.

SCons provides a special construction environment called the Default Environment. The default environment is
used only for global functions, that is, construction activities called without the context of a regular construction
environment. See DefaultEnvironment for more information.

By default, a new construction environment is initialized with a set of builder methods and construction variables that
are appropriate for the current platform. The optional platform keyword argument may be used to specify that the
construction environment should be initialized for a different platform:

env = Environment(platform='cygwin')

Specifying a platform initializes the appropriate construction variables in the environment to use and generate file
names with prefixes and suffixes appropriate for that platform.

Note that the win32 platform adds the SystemDrive and SystemRoot variables from the user's external
environment to the construction environment's ENV dictionary. This is so that any executed commands that use sockets
to connect with other systems will work on Windows systems.

The platform argument may be a string value representing one of the pre-defined platforms (aix, cygwin,
darwin, hpux, irix, os2, posix, sunos or win32), or it may be be a callable platform object returned by a call
to Platform selecting a pre-defined platform, or it may be a user-supplied callable, in which case the Environment
method will call it to update the new construction environment:

def my_platform(env):
 env['VAR'] = 'xyzzy'

env = Environment(platform=my_platform)

20

Note that supplying a non-default platform or custom fuction for initialization may bypass settings that should happen
for the host system and should be used with care. It is most useful in the case where the platform is an alternative for
the one that would be auto-detected, such as platform="cygwin" on a system which would otherwise identify
as win32.

The optional tools and toolpath keyword arguments affect the way tools available to the environment are
initialized. See the section called “Tools” for details.

The optional variables keyword argument allows passing a Variables object which will be used in the initialization
of the construction environment See the section called “Command-Line Construction Variables” for details.

Tools

SCons has a large number of predefined tool modules (more properly, tool specification modules) which are used to
help initialize the construction environment. An SCons tool is only responsible for setup. For example, if an SConscript
file declares the need to construct an object file from a C-language source file by calling the Object builder, then a
tool representing an available C compiler needs to have run first, to set up that builder and all the construction variables
it needs in the associated construction environment; the tool itself is not called in the process of the build. Normally
this happens invisibly as scons has per-platform lists of default tools, and it steps through those tools, calling the ones
which are actually applicable, skipping those where necessary programs are not installed on the build system, or other
preconditions are not met.

A specific set of tools with which to initialize an environment when creating it may be specified using the optional
keyword argument tools, which takes a list of tool names. This is useful to override the defaults, to specify non-
default built-in tools, and to supply added tools:

env = Environment(tools=['msvc', 'lex'])

Tools can also be directly called by using the Tool method (see below).

The tools argument overrides the default tool list, it does not add to it, so be sure to include all the tools you need.
For example if you are building a c/c++ program you must specify a tool for at least a compiler and a linker, as in
tools=['clang', 'link']. The tool name 'default' can be used to retain the default list.

If no tools argument is specified, or if tools includes 'default', then scons will auto-detect usable tools, using
the execution environment value of PATH (that is, env['ENV']['PATH'] - the external evironment PATH from
os.environ is not used) for looking up any backing programs, and the platform name in effect to determine the
default tools for that platform. Changing the PATH variable after the construction environment is constructed will not
cause the tools to be re-detected.

Additional tools can be added, see the Extending SCons section and specifically Tool Modules.

SCons supports the following tool specifications out of the box:

386asm
Sets construction variables for the 386ASM assembler for the Phar Lap ETS embedded operating system.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

aixc++
Sets construction variables for the IMB xlc / Visual Age C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXX, $SHOBJSUFFIX.

21

aixcc
Sets construction variables for the IBM xlc / Visual Age C compiler.

Sets: $CC, $CCVERSION, $SHCC.

aixf77
Sets construction variables for the IBM Visual Age f77 Fortran compiler.

Sets: $F77, $SHF77.

aixlink
Sets construction variables for the IBM Visual Age linker.

Sets: $LINKFLAGS, $SHLIBSUFFIX, $SHLINKFLAGS.

applelink
Sets construction variables for the Apple linker (similar to the GNU linker).

Sets: $APPLELINK_COMPATIBILITY_VERSION, $APPLELINK_CURRENT_VERSION,
$APPLELINK_NO_COMPATIBILITY_VERSION, $APPLELINK_NO_CURRENT_VERSION,
$FRAMEWORKPATHPREFIX, $LDMODULECOM, $LDMODULEFLAGS, $LDMODULEPREFIX,
$LDMODULESUFFIX, $LINKCOM, $SHLINKCOM, $SHLINKFLAGS,
$_APPLELINK_COMPATIBILITY_VERSION, $_APPLELINK_CURRENT_VERSION,
$_FRAMEWORKPATH, $_FRAMEWORKS.

Uses: $FRAMEWORKSFLAGS.

ar
Sets construction variables for the ar library archiver.

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX, $RANLIB, $RANLIBCOM, $RANLIBFLAGS.

as
Sets construction variables for the as assembler.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

bcc32
Sets construction variables for the bcc32 compiler.

Sets: $CC, $CCCOM, $CCFLAGS, $CFILESUFFIX, $CFLAGS, $CPPDEFPREFIX, $CPPDEFSUFFIX,
$INCPREFIX, $INCSUFFIX, $SHCC, $SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHOBJSUFFIX.

Uses: $_CPPDEFFLAGS, $_CPPINCFLAGS.

cc
Sets construction variables for generic POSIX C compilers.

Sets: $CC, $CCCOM, $CCDEPFLAGS, $CCFLAGS, $CFILESUFFIX, $CFLAGS, $CPPDEFPREFIX,
$CPPDEFSUFFIX, $FRAMEWORKPATH, $FRAMEWORKS, $INCPREFIX, $INCSUFFIX, $SHCC,
$SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHOBJSUFFIX.

Uses: $CCCOMSTR, $PLATFORM, $SHCCCOMSTR.

clang
Set construction variables for the Clang C compiler.

22

Sets: $CC, $CCDEPFLAGS, $CCVERSION, $SHCCFLAGS.

clangxx
Set construction variables for the Clang C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXXFLAGS, $SHOBJSUFFIX,
$STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME.

compilation_db
Sets up CompilationDatabase builder which generates a clang tooling compatible compilation database.

Sets: $COMPILATIONDB_COMSTR, $COMPILATIONDB_PATH_FILTER,
$COMPILATIONDB_USE_ABSPATH.

cvf
Sets construction variables for the Compaq Visual Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM, $FORTRANMODDIR, $FORTRANMODDIRPREFIX,
$FORTRANMODDIRSUFFIX, $FORTRANPPCOM, $OBJSUFFIX, $SHFORTRANCOM, $SHFORTRANPPCOM.

Uses: $CPPFLAGS, $FORTRANFLAGS, $SHFORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANINCFLAGS,
$_FORTRANMODFLAG.

cXX
Sets construction variables for generic POSIX C++ compilers.

Sets: $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX, $CXXCOM, $CXXFILESUFFIX, $CXXFLAGS,
$INCPREFIX, $INCSUFFIX, $OBJSUFFIX, $SHCXX, $SHCXXCOM, $SHCXXFLAGS, $SHOBJSUFFIX.

Uses: $CXXCOMSTR, $SHCXXCOMSTR.

cyglink
Set construction variables for cygwin linker/loader.

Sets: $IMPLIBPREFIX, $IMPLIBSUFFIX, $LDMODULEVERSIONFLAGS, $LINKFLAGS,
$RPATHPREFIX, $RPATHSUFFIX, $SHLIBPREFIX, $SHLIBSUFFIX, $SHLIBVERSIONFLAGS,
$SHLINKCOM, $SHLINKFLAGS, $_LDMODULEVERSIONFLAGS, $_SHLIBVERSIONFLAGS.

default
Sets construction variables for a default list of Tool modules. Use default in the tools list to retain the original
defaults, since the tools parameter is treated as a literal statement of the tools to be made available in that
construction environment, not an addition.

The list of tools selected by default is not static, but is dependent both on the platform and on the software installed
on the platform. Some tools will not initialize if an underlying command is not found, and some tools are selected
from a list of choices on a first-found basis. The finished tool list can be examined by inspecting the $TOOLS
construction variable in the construction environment.

On all platforms, the tools from the following list are selected if their respective conditions are met: filesystem;,
wix, lex, yacc, rpcgen, swig, jar, javac, javah, rmic, dvipdf, dvips, gs, tex, latex,
pdflatex, pdftex, tar, zip, textfile.

On Linux systems, the default tools list selects (first-found): a C compiler from gcc, intelc, icc, cc; a C
++ compiler from g++, intelc, icc, cXX; an assembler from gas, nasm, masm; a linker from gnulink,
ilink; a Fortran compiler from gfortran, g77, ifort, ifl, f95, f90, f77; and a static archiver ar. It
also selects all found from the list m4 rpm.

23

On Windows systems, the default tools list selects (first-found): a C compiler from msvc, mingw, gcc, intelc,
icl, icc, cc, bcc32; a C++ compiler from msvc, intelc, icc, g++, cXX, bcc32; an assembler from masm,
nasm, gas, 386asm; a linker from mslink, gnulink, ilink, linkloc, ilink32; a Fortran compiler
from gfortran, g77, ifl, cvf, f95, f90, fortran; and a static archiver from mslib, ar, tlib; It also
selects all found from the list msvs, midl.

On MacOS systems, the default tools list selects (first-found): a C compiler from gcc, cc; a C++ compiler from
g++, cXX; an assembler as; a linker from applelink, gnulink; a Fortran compiler from gfortran, f95,
f90, g77; and a static archiver ar. It also selects all found from the list m4, rpm.

Default lists for other platforms can be found by examining the scons source code (see SCons/Tool/
__init__.py).

dmd
Sets construction variables for D language compiler DMD.

Sets: $DC, $DCOM, $DDEBUG, $DDEBUGPREFIX, $DDEBUGSUFFIX, $DFILESUFFIX,
$DFLAGPREFIX, $DFLAGS, $DFLAGSUFFIX, $DINCPREFIX, $DINCSUFFIX, $DLIB,
$DLIBCOM, $DLIBDIRPREFIX, $DLIBDIRSUFFIX, $DLIBFLAGPREFIX, $DLIBFLAGSUFFIX,
$DLIBLINKPREFIX, $DLIBLINKSUFFIX, $DLINK, $DLINKCOM, $DLINKFLAGPREFIX,
$DLINKFLAGS, $DLINKFLAGSUFFIX, $DPATH, $DRPATHPREFIX, $DRPATHSUFFIX, $DVERPREFIX,
$DVERSIONS, $DVERSUFFIX, $SHDC, $SHDCOM, $SHDLIBVERSIONFLAGS, $SHDLINK,
$SHDLINKCOM, $SHDLINKFLAGS.

docbook
This tool tries to make working with Docbook in SCons a little easier. It provides several toolchains for creating
different output formats, like HTML or PDF. Contained in the package is a distribution of the Docbook XSL
stylesheets as of version 1.76.1. As long as you don't specify your own stylesheets for customization, these official
versions are picked as default...which should reduce the inevitable setup hassles for you.

Implicit dependencies to images and XIncludes are detected automatically if you meet the HTML requirements.
The additional stylesheet utils/xmldepend.xsl by Paul DuBois is used for this purpose.

Note, that there is no support for XML catalog resolving offered! This tool calls the XSLT processors and PDF
renderers with the stylesheets you specified, that's it. The rest lies in your hands and you still have to know what
you're doing when resolving names via a catalog.

For activating the tool "docbook", you have to add its name to the Environment constructor, like this

env = Environment(tools=['docbook'])

On its startup, the docbook tool tries to find a required xsltproc processor, and a PDF renderer, e.g. fop. So
make sure that these are added to your system's environment PATH and can be called directly without specifying
their full path.

For the most basic processing of Docbook to HTML, you need to have installed

• the Python lxml binding to libxml2, or

• a standalone XSLT processor, currently detected are xsltproc, saxon, saxon-xslt and xalan.

Rendering to PDF requires you to have one of the applications fop or xep installed.

Creating a HTML or PDF document is very simple and straightforward. Say

env = Environment(tools=['docbook'])

24

env.DocbookHtml('manual.html', 'manual.xml')
env.DocbookPdf('manual.pdf', 'manual.xml')

to get both outputs from your XML source manual.xml. As a shortcut, you can give the stem of the filenames
alone, like this:

env = Environment(tools=['docbook'])
env.DocbookHtml('manual')
env.DocbookPdf('manual')

and get the same result. Target and source lists are also supported:

env = Environment(tools=['docbook'])
env.DocbookHtml(['manual.html','reference.html'], ['manual.xml','reference.xml'])

or even

env = Environment(tools=['docbook'])
env.DocbookHtml(['manual','reference'])

Important

Whenever you leave out the list of sources, you may not specify a file extension! The Tool uses the given
names as file stems, and adds the suffixes for target and source files accordingly.

The rules given above are valid for the Builders DocbookHtml, DocbookPdf, DocbookEpub,
DocbookSlidesPdf and DocbookXInclude. For the DocbookMan transformation you can specify a
target name, but the actual output names are automatically set from the refname entries in your XML source.

The Builders DocbookHtmlChunked, DocbookHtmlhelp and DocbookSlidesHtml are special, in that:

1. they create a large set of files, where the exact names and their number depend on the content of the source
file, and

2. the main target is always named index.html, i.e. the output name for the XSL transformation is not picked
up by the stylesheets.

As a result, there is simply no use in specifying a target HTML name. So the basic syntax for these builders is
always:

env = Environment(tools=['docbook'])
env.DocbookHtmlhelp('manual')

If you want to use a specific XSL file, you can set the additional xsl parameter to your Builder call as follows:

env.DocbookHtml('other.html', 'manual.xml', xsl='html.xsl')

Since this may get tedious if you always use the same local naming for your customized XSL files, e.g. html.xsl
for HTML and pdf.xsl for PDF output, a set of variables for setting the default XSL name is provided. These
are:

DOCBOOK_DEFAULT_XSL_HTML
DOCBOOK_DEFAULT_XSL_HTMLCHUNKED
DOCBOOK_DEFAULT_XSL_HTMLHELP
DOCBOOK_DEFAULT_XSL_PDF
DOCBOOK_DEFAULT_XSL_EPUB

25

DOCBOOK_DEFAULT_XSL_MAN
DOCBOOK_DEFAULT_XSL_SLIDESPDF
DOCBOOK_DEFAULT_XSL_SLIDESHTML

and you can set them when constructing your environment:

env = Environment(
 tools=['docbook'],
 DOCBOOK_DEFAULT_XSL_HTML='html.xsl',
 DOCBOOK_DEFAULT_XSL_PDF='pdf.xsl',
)
env.DocbookHtml('manual') # now uses html.xsl

Sets: $DOCBOOK_DEFAULT_XSL_EPUB, $DOCBOOK_DEFAULT_XSL_HTML,
$DOCBOOK_DEFAULT_XSL_HTMLCHUNKED, $DOCBOOK_DEFAULT_XSL_HTMLHELP,
$DOCBOOK_DEFAULT_XSL_MAN, $DOCBOOK_DEFAULT_XSL_PDF,
$DOCBOOK_DEFAULT_XSL_SLIDESHTML, $DOCBOOK_DEFAULT_XSL_SLIDESPDF, $DOCBOOK_FOP,
$DOCBOOK_FOPCOM, $DOCBOOK_FOPFLAGS, $DOCBOOK_XMLLINT, $DOCBOOK_XMLLINTCOM,
$DOCBOOK_XMLLINTFLAGS, $DOCBOOK_XSLTPROC, $DOCBOOK_XSLTPROCCOM,
$DOCBOOK_XSLTPROCFLAGS, $DOCBOOK_XSLTPROCPARAMS.

Uses: $DOCBOOK_FOPCOMSTR, $DOCBOOK_XMLLINTCOMSTR, $DOCBOOK_XSLTPROCCOMSTR.

dvi
Attaches the DVI builder to the construction environment.

dvipdf
Sets construction variables for the dvipdf utility.

Sets: $DVIPDF, $DVIPDFCOM, $DVIPDFFLAGS.

Uses: $DVIPDFCOMSTR.

dvips
Sets construction variables for the dvips utility.

Sets: $DVIPS, $DVIPSFLAGS, $PSCOM, $PSPREFIX, $PSSUFFIX.

Uses: $PSCOMSTR.

f03
Set construction variables for generic POSIX Fortran 03 compilers.

Sets: $F03, $F03COM, $F03FLAGS, $F03PPCOM, $SHF03, $SHF03COM, $SHF03FLAGS, $SHF03PPCOM,
$_F03INCFLAGS.

Uses: $F03COMSTR, $F03PPCOMSTR, $FORTRANCOMMONFLAGS, $SHF03COMSTR, $SHF03PPCOMSTR.

f08
Set construction variables for generic POSIX Fortran 08 compilers.

Sets: $F08, $F08COM, $F08FLAGS, $F08PPCOM, $SHF08, $SHF08COM, $SHF08FLAGS, $SHF08PPCOM,
$_F08INCFLAGS.

Uses: $F08COMSTR, $F08PPCOMSTR, $FORTRANCOMMONFLAGS, $SHF08COMSTR, $SHF08PPCOMSTR.

26

f77
Set construction variables for generic POSIX Fortran 77 compilers.

Sets: $F77, $F77COM, $F77FILESUFFIXES, $F77FLAGS, $F77PPCOM, $F77PPFILESUFFIXES,
$FORTRAN, $FORTRANCOM, $FORTRANFLAGS, $SHF77, $SHF77COM, $SHF77FLAGS, $SHF77PPCOM,
$SHFORTRAN, $SHFORTRANCOM, $SHFORTRANFLAGS, $SHFORTRANPPCOM, $_F77INCFLAGS.

Uses: $F77COMSTR, $F77PPCOMSTR, $FORTRANCOMMONFLAGS, $FORTRANCOMSTR,
$FORTRANFLAGS, $FORTRANPPCOMSTR, $SHF77COMSTR, $SHF77PPCOMSTR, $SHFORTRANCOMSTR,
$SHFORTRANFLAGS, $SHFORTRANPPCOMSTR.

f90
Set construction variables for generic POSIX Fortran 90 compilers.

Sets: $F90, $F90COM, $F90FLAGS, $F90PPCOM, $SHF90, $SHF90COM, $SHF90FLAGS, $SHF90PPCOM,
$_F90INCFLAGS.

Uses: $F90COMSTR, $F90PPCOMSTR, $FORTRANCOMMONFLAGS, $SHF90COMSTR, $SHF90PPCOMSTR.

f95
Set construction variables for generic POSIX Fortran 95 compilers.

Sets: $F95, $F95COM, $F95FLAGS, $F95PPCOM, $SHF95, $SHF95COM, $SHF95FLAGS, $SHF95PPCOM,
$_F95INCFLAGS.

Uses: $F95COMSTR, $F95PPCOMSTR, $FORTRANCOMMONFLAGS, $SHF95COMSTR, $SHF95PPCOMSTR.

fortran
Set construction variables for generic POSIX Fortran compilers.

Sets: $FORTRAN, $FORTRANCOM, $FORTRANFLAGS, $SHFORTRAN, $SHFORTRANCOM,
$SHFORTRANFLAGS, $SHFORTRANPPCOM.

Uses: $CPPFLAGS, $FORTRANCOMSTR, $FORTRANPPCOMSTR, $SHFORTRANCOMSTR,
$SHFORTRANPPCOMSTR, $_CPPDEFFLAGS.

g++
Set construction variables for the g++ C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXXFLAGS, $SHOBJSUFFIX.

g77
Set construction variables for the g77 Fortran compiler.

Sets: $F77, $F77COM, $F77FILESUFFIXES, $F77PPCOM, $F77PPFILESUFFIXES, $FORTRAN,
$FORTRANCOM, $FORTRANPPCOM, $SHF77, $SHF77COM, $SHF77FLAGS, $SHF77PPCOM,
$SHFORTRAN, $SHFORTRANCOM, $SHFORTRANFLAGS, $SHFORTRANPPCOM.

Uses: $F77FLAGS, $FORTRANCOMMONFLAGS, $FORTRANFLAGS.

gas
Sets construction variables for the gas assembler. Calls the as tool.

Sets: $AS.

gcc
Set construction variables for the gcc C compiler.

27

Sets: $CC, $CCDEPFLAGS, $CCVERSION, $SHCCFLAGS.

gdc
Sets construction variables for the D language compiler GDC.

Sets: $DC, $DCOM, $DDEBUG, $DDEBUGPREFIX, $DDEBUGSUFFIX, $DFILESUFFIX,
$DFLAGPREFIX, $DFLAGS, $DFLAGSUFFIX, $DINCPREFIX, $DINCSUFFIX, $DLIB,
$DLIBCOM, $DLIBDIRPREFIX, $DLIBDIRSUFFIX, $DLIBFLAGPREFIX, $DLIBFLAGSUFFIX,
$DLIBLINKPREFIX, $DLIBLINKSUFFIX, $DLINK, $DLINKCOM, $DLINKFLAGPREFIX,
$DLINKFLAGS, $DLINKFLAGSUFFIX, $DPATH, $DRPATHPREFIX, $DRPATHSUFFIX, $DVERPREFIX,
$DVERSIONS, $DVERSUFFIX, $SHDC, $SHDCOM, $SHDLIBVERSIONFLAGS, $SHDLINK,
$SHDLINKCOM, $SHDLINKFLAGS.

gettext
This is actually a toolset, which supports internationalization and localization of software being constructed with
SCons. The toolset loads following tools:

• xgettext - to extract internationalized messages from source code to POT file(s),

• msginit - may be optionally used to initialize PO files,

• msgmerge - to update PO files, that already contain translated messages,

• msgfmt - to compile textual PO file to binary installable MO file.

When you enable gettext, it internally loads all abovementioned tools, so you're encouraged to see their
individual documentation.

Each of the above tools provides its own builder(s) which may be used to perform particular activities related to
software internationalization. You may be however interested in top-level Translate builder.

To use gettext tools add 'gettext' tool to your environment:

 env = Environment(tools = ['default', 'gettext'])

gfortran
Sets construction variables for the GNU Fortran compiler. Calls the fortran Tool module to set variables.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHF90FLAGS, $SHF95,
$SHF95FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

gnulink
Set construction variables for GNU linker/loader.

Sets: $LDMODULEVERSIONFLAGS, $RPATHPREFIX, $RPATHSUFFIX, $SHLIBVERSIONFLAGS,
$SHLINKFLAGS, $_LDMODULESONAME, $_SHLIBSONAME.

gs
This Tool sets the required construction variables for working with the Ghostscript software. It also registers an
appropriate Action with the PDF Builder, such that the conversion from PS/EPS to PDF happens automatically
for the TeX/LaTeX toolchain. Finally, it adds an explicit Gs Builder for Ghostscript to the environment.

Sets: $GS, $GSCOM, $GSFLAGS.

Uses: $GSCOMSTR.

28

hpc++
Set construction variables for the compilers aCC on HP/UX systems.

hpcc
Set construction variables for aCC compilers on HP/UX systems. Calls the cXX tool for additional variables.

Sets: $CXX, $CXXVERSION, $SHCXXFLAGS.

hplink
Sets construction variables for the linker on HP/UX systems.

Sets: $LINKFLAGS, $SHLIBSUFFIX, $SHLINKFLAGS.

icc
Sets construction variables for the icc compiler on OS/2 systems.

Sets: $CC, $CCCOM, $CFILESUFFIX, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXXCOM,
$CXXFILESUFFIX, $INCPREFIX, $INCSUFFIX.

Uses: $CCFLAGS, $CFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

icl
Sets construction variables for the Intel C/C++ compiler. Calls the intelc Tool module to set its variables.

ifl
Sets construction variables for the Intel Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM, $FORTRANPPCOM, $SHFORTRANCOM, $SHFORTRANPPCOM.

Uses: $CPPFLAGS, $FORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANINCFLAGS.

ifort
Sets construction variables for newer versions of the Intel Fortran compiler for Linux.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHF90FLAGS, $SHF95,
$SHF95FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

ilink
Sets construction variables for the ilink linker on OS/2 systems.

Sets: $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK, $LINKCOM,
$LINKFLAGS.

ilink32
Sets construction variables for the Borland ilink32 linker.

Sets: $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK, $LINKCOM,
$LINKFLAGS.

install
Sets construction variables for file and directory installation.

Sets: $INSTALL, $INSTALLSTR.

intelc
Sets construction variables for the Intel C/C++ compiler (Linux and Windows, version 7 and later). Calls the gcc
or msvc (on Linux and Windows, respectively) tool to set underlying variables.

29

Sets: $AR, $CC, $CXX, $INTEL_C_COMPILER_VERSION, $LINK.

jar
Sets construction variables for the jar utility.

Sets: $JAR, $JARCOM, $JARFLAGS, $JARSUFFIX.

Uses: $JARCOMSTR.

javac
Sets construction variables for the javac compiler.

Sets: $JAVABOOTCLASSPATH, $JAVAC, $JAVACCOM, $JAVACFLAGS, $JAVACLASSPATH,
$JAVACLASSSUFFIX, $JAVAINCLUDES, $JAVASOURCEPATH, $JAVASUFFIX.

Uses: $JAVACCOMSTR.

javah
Sets construction variables for the javah tool.

Sets: $JAVACLASSSUFFIX, $JAVAH, $JAVAHCOM, $JAVAHFLAGS.

Uses: $JAVACLASSPATH, $JAVAHCOMSTR.

latex
Sets construction variables for the latex utility.

Sets: $LATEX, $LATEXCOM, $LATEXFLAGS.

Uses: $LATEXCOMSTR.

ldc
Sets construction variables for the D language compiler LDC2.

Sets: $DC, $DCOM, $DDEBUG, $DDEBUGPREFIX, $DDEBUGSUFFIX, $DFILESUFFIX,
$DFLAGPREFIX, $DFLAGS, $DFLAGSUFFIX, $DINCPREFIX, $DINCSUFFIX, $DLIB,
$DLIBCOM, $DLIBDIRPREFIX, $DLIBDIRSUFFIX, $DLIBFLAGPREFIX, $DLIBFLAGSUFFIX,
$DLIBLINKPREFIX, $DLIBLINKSUFFIX, $DLINK, $DLINKCOM, $DLINKFLAGPREFIX,
$DLINKFLAGS, $DLINKFLAGSUFFIX, $DPATH, $DRPATHPREFIX, $DRPATHSUFFIX, $DVERPREFIX,
$DVERSIONS, $DVERSUFFIX, $SHDC, $SHDCOM, $SHDLIBVERSIONFLAGS, $SHDLINK,
$SHDLINKCOM, $SHDLINKFLAGS.

lex
Sets construction variables for the lex lexical analyser.

Sets: $LEX, $LEXCOM, $LEXFLAGS, $LEXUNISTD.

Uses: $LEXCOMSTR, $LEXFLAGS, $LEX_HEADER_FILE, $LEX_TABLES_FILE.

link
Sets construction variables for generic POSIX linkers. This is a "smart" linker tool which selects a compiler to
complete the linking based on the types of source files.

Sets: $LDMODULE, $LDMODULECOM, $LDMODULEFLAGS, $LDMODULENOVERSIONSYMLINKS,
$LDMODULEPREFIX, $LDMODULESUFFIX, $LDMODULEVERSION, $LDMODULEVERSIONFLAGS,
$LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK,

30

$LINKCOM, $LINKFLAGS, $SHLIBSUFFIX, $SHLINK, $SHLINKCOM, $SHLINKFLAGS,
$__LDMODULEVERSIONFLAGS, $__SHLIBVERSIONFLAGS.

Uses: $LDMODULECOMSTR, $LINKCOMSTR, $SHLINKCOMSTR.

linkloc
Sets construction variables for the LinkLoc linker for the Phar Lap ETS embedded operating system.

Sets: $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK, $LINKCOM,
$LINKFLAGS, $SHLINK, $SHLINKCOM, $SHLINKFLAGS.

Uses: $LINKCOMSTR, $SHLINKCOMSTR.

m4
Sets construction variables for the m4 macro processor.

Sets: $M4, $M4COM, $M4FLAGS.

Uses: $M4COMSTR.

masm
Sets construction variables for the Microsoft assembler.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $ASCOMSTR, $ASPPCOMSTR, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

midl
Sets construction variables for the Microsoft IDL compiler.

Sets: $MIDL, $MIDLCOM, $MIDLFLAGS.

Uses: $MIDLCOMSTR.

mingw
Sets construction variables for MinGW (Minimal Gnu on Windows).

Sets: $AS, $CC, $CXX, $LDMODULECOM, $LIBPREFIX, $LIBSUFFIX, $OBJSUFFIX, $RC,
$RCCOM, $RCFLAGS, $RCINCFLAGS, $RCINCPREFIX, $RCINCSUFFIX, $SHCCFLAGS, $SHCXXFLAGS,
$SHLINKCOM, $SHLINKFLAGS, $SHOBJSUFFIX, $WINDOWSDEFPREFIX, $WINDOWSDEFSUFFIX.

Uses: $RCCOMSTR, $SHLINKCOMSTR.

msgfmt
This scons tool is a part of scons gettext toolset. It provides scons interface to msgfmt(1) command, which
generates binary message catalog (MO) from a textual translation description (PO).

Sets: $MOSUFFIX, $MSGFMT, $MSGFMTCOM, $MSGFMTCOMSTR, $MSGFMTFLAGS, $POSUFFIX.

Uses: $LINGUAS_FILE.

msginit
This scons tool is a part of scons gettext toolset. It provides scons interface to msginit(1) program, which
creates new PO file, initializing the meta information with values from user's environment (or options).

Sets: $MSGINIT, $MSGINITCOM, $MSGINITCOMSTR, $MSGINITFLAGS, $POAUTOINIT,
$POCREATE_ALIAS, $POSUFFIX, $POTSUFFIX, $_MSGINITLOCALE.

31

Uses: $LINGUAS_FILE, $POAUTOINIT, $POTDOMAIN.

msgmerge
This scons tool is a part of scons gettext toolset. It provides scons interface to msgmerge(1) command, which
merges two Uniform style .po files together.

Sets: $MSGMERGE, $MSGMERGECOM, $MSGMERGECOMSTR, $MSGMERGEFLAGS, $POSUFFIX,
$POTSUFFIX, $POUPDATE_ALIAS.

Uses: $LINGUAS_FILE, $POAUTOINIT, $POTDOMAIN.

mslib
Sets construction variables for the Microsoft mslib library archiver.

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX.

Uses: $ARCOMSTR.

mslink
Sets construction variables for the Microsoft linker.

Sets: $LDMODULE, $LDMODULECOM, $LDMODULEFLAGS, $LDMODULEPREFIX, $LDMODULESUFFIX,
$LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK, $LINKCOM,
$LINKFLAGS, $REGSVR, $REGSVRCOM, $REGSVRFLAGS, $SHLINK, $SHLINKCOM,
$SHLINKFLAGS, $WINDOWSDEFPREFIX, $WINDOWSDEFSUFFIX, $WINDOWSEXPPREFIX,
$WINDOWSEXPSUFFIX, $WINDOWSPROGMANIFESTPREFIX, $WINDOWSPROGMANIFESTSUFFIX,
$WINDOWSSHLIBMANIFESTPREFIX, $WINDOWSSHLIBMANIFESTSUFFIX, $WINDOWS_INSERT_DEF.

Uses: $LDMODULECOMSTR, $LINKCOMSTR, $REGSVRCOMSTR, $SHLINKCOMSTR.

mssdk
Sets variables for Microsoft Platform SDK and/or Windows SDK. Note that unlike most other Tool modules,
mssdk does not set construction variables, but sets the environment variables in the environment SCons uses to
execute the Microsoft toolchain: %INCLUDE%, %LIB%, %LIBPATH% and %PATH%.

Uses: $MSSDK_DIR, $MSSDK_VERSION, $MSVS_VERSION.

msvc
Sets construction variables for the Microsoft Visual C/C++ compiler.

Sets: $BUILDERS, $CC, $CCCOM, $CCDEPFLAGS, $CCFLAGS, $CCPCHFLAGS, $CCPDBFLAGS,
$CFILESUFFIX, $CFLAGS, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX, $CXXCOM, $CXXFILESUFFIX,
$CXXFLAGS, $INCPREFIX, $INCSUFFIX, $OBJPREFIX, $OBJSUFFIX, $PCHCOM, $PCHPDBFLAGS,
$RC, $RCCOM, $RCFLAGS, $SHCC, $SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM,
$SHCXXFLAGS, $SHOBJPREFIX, $SHOBJSUFFIX.

Uses: $CCCOMSTR, $CXXCOMSTR, $MSVC_NOTFOUND_POLICY, $PCH, $PCHSTOP, $PDB,
$SHCCCOMSTR, $SHCXXCOMSTR.

msvs
Sets construction variables for Microsoft Visual Studio.

Sets: $MSVSBUILDCOM, $MSVSCLEANCOM, $MSVSENCODING, $MSVSPROJECTCOM,
$MSVSREBUILDCOM, $MSVSSCONS, $MSVSSCONSCOM, $MSVSSCONSCRIPT, $MSVSSCONSFLAGS,
$MSVSSOLUTIONCOM.

32

mwcc
Sets construction variables for the Metrowerks CodeWarrior compiler.

Sets: $CC, $CCCOM, $CFILESUFFIX, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX, $CXXCOM,
$CXXFILESUFFIX, $INCPREFIX, $INCSUFFIX, $MWCW_VERSION, $MWCW_VERSIONS, $SHCC,
$SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM, $SHCXXFLAGS.

Uses: $CCCOMSTR, $CXXCOMSTR, $SHCCCOMSTR, $SHCXXCOMSTR.

mwld
Sets construction variables for the Metrowerks CodeWarrior linker.

Sets: $AR, $ARCOM, $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX,
$LINK, $LINKCOM, $SHLINK, $SHLINKCOM, $SHLINKFLAGS.

nasm
Sets construction variables for the nasm Netwide Assembler.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $ASCOMSTR, $ASPPCOMSTR.

ninja
Sets up the Ninja builder, which generates a ninja build file, and then optionally runs ninja.

Note

This is an experimental feature. This functionality is subject to change and/or removal without a
deprecation cycle.

Sets: $IMPLICIT_COMMAND_DEPENDENCIES, $NINJA_ALIAS_NAME, $NINJA_CMD_ARGS,
$NINJA_COMPDB_EXPAND, $NINJA_DEPFILE_PARSE_FORMAT, $NINJA_DIR,
$NINJA_DISABLE_AUTO_RUN, $NINJA_ENV_VAR_CACHE, $NINJA_FILE_NAME,
$NINJA_FORCE_SCONS_BUILD, $NINJA_GENERATED_SOURCE_ALIAS_NAME,
$NINJA_GENERATED_SOURCE_SUFFIXES, $NINJA_MSVC_DEPS_PREFIX, $NINJA_POOL,
$NINJA_REGENERATE_DEPS, $NINJA_SCONS_DAEMON_KEEP_ALIVE,
$NINJA_SCONS_DAEMON_PORT, $NINJA_SYNTAX, $_NINJA_REGENERATE_DEPS_FUNC.

Uses: $AR, $ARCOM, $ARFLAGS, $CC, $CCCOM, $CCDEPFLAGS, $CCFLAGS, $CXX, $CXXCOM, $ESCAPE,
$LINK, $LINKCOM, $PLATFORM, $PRINT_CMD_LINE_FUNC, $PROGSUFFIX, $RANLIB, $RANLIBCOM,
$SHCCCOM, $SHCXXCOM, $SHLINK, $SHLINKCOM.

packaging
Sets construction variables for the Package Builder. If this tool is enabled, the --package-type command-
line option is also enabled.

pdf
Sets construction variables for the Portable Document Format builder.

Sets: $PDFPREFIX, $PDFSUFFIX.

pdflatex
Sets construction variables for the pdflatex utility.

Sets: $LATEXRETRIES, $PDFLATEX, $PDFLATEXCOM, $PDFLATEXFLAGS.

33

Uses: $PDFLATEXCOMSTR.

pdftex
Sets construction variables for the pdftex utility.

Sets: $LATEXRETRIES, $PDFLATEX, $PDFLATEXCOM, $PDFLATEXFLAGS, $PDFTEX, $PDFTEXCOM,
$PDFTEXFLAGS.

Uses: $PDFLATEXCOMSTR, $PDFTEXCOMSTR.

python
Loads the Python source scanner into the invoking environment. When loaded, the scanner will attempt to find
implicit dependencies for any Python source files in the list of sources provided to an Action that uses this
environment.

Available since scons 4.0..

qt
Sets construction variables for building Qt3 applications.

Note

This tool is only suitable for building targeted to Qt3, which is obsolete (the tool is deprecated since
4.3). There are contributed tools for Qt4 and Qt5, see https://github.com/SCons/scons-contrib [https://
github.com/SCons/scons-contrib]. Qt4 has also passed end of life for standard support (in Dec 2015).

Note paths for these construction variables are assembled using the os.path.join method so they will have
the appropriate separator at runtime, but are listed here in the various entries only with the '/' separator for
simplicity.

In addition, the construction variables $CPPPATH, $LIBPATH and $LIBS may be modified and the variables
$PROGEMITTER, $SHLIBEMITTER and $LIBEMITTER are modified. Because the build-performance is
affected when using this tool, you have to explicitly specify it at Environment creation:

Environment(tools=['default','qt'])

The qt tool supports the following operations:

Automatic moc file generation from header files. You do not have to specify moc files explicitly, the tool does
it for you. However, there are a few preconditions to do so: Your header file must have the same filebase as
your implementation file and must stay in the same directory. It must have one of the suffixes .h, .hpp, .H,
.hxx, .hh. You can turn off automatic moc file generation by setting $QT_AUTOSCAN to False. See also the
corresponding Moc Builder.

Automatic moc file generation from C++ files. As described in the Qt documentation, include the moc file
at the end of the C++ file. Note that you have to include the file, which is generated by the transformation
${QT_MOCCXXPREFIX}<basename>${QT_MOCCXXSUFFIX}, by default <basename>.mo. A warning
is generated after building the moc file if you do not include the correct file. If you are using VariantDir,
you may need to specify duplicate=True. You can turn off automatic moc file generation by setting
$QT_AUTOSCAN to False. See also the corresponding Moc Builder.

Automatic handling of .ui files. The implementation files generated from .ui files are handled much the same
as yacc or lex files. Each .ui file given as a source of Program, Library or SharedLibrary will generate
three files: the declaration file, the implementation file and a moc file. Because there are also generated headers,
you may need to specify duplicate=True in calls to VariantDir. See also the corresponding Uic Builder.

https://github.com/SCons/scons-contrib
https://github.com/SCons/scons-contrib
https://github.com/SCons/scons-contrib

34

Sets: $QTDIR, $QT_AUTOSCAN, $QT_BINPATH, $QT_CPPPATH, $QT_LIB, $QT_LIBPATH, $QT_MOC,
$QT_MOCCXXPREFIX, $QT_MOCCXXSUFFIX, $QT_MOCFROMCXXCOM, $QT_MOCFROMCXXFLAGS,
$QT_MOCFROMHCOM, $QT_MOCFROMHFLAGS, $QT_MOCHPREFIX, $QT_MOCHSUFFIX,
$QT_UIC, $QT_UICCOM, $QT_UICDECLFLAGS, $QT_UICDECLPREFIX, $QT_UICDECLSUFFIX,
$QT_UICIMPLFLAGS, $QT_UICIMPLPREFIX, $QT_UICIMPLSUFFIX, $QT_UISUFFIX.

Uses: $QTDIR.

rmic
Sets construction variables for the rmic utility.

Sets: $JAVACLASSSUFFIX, $RMIC, $RMICCOM, $RMICFLAGS.

Uses: $RMICCOMSTR.

rpcgen
Sets construction variables for building with RPCGEN.

Sets: $RPCGEN, $RPCGENCLIENTFLAGS, $RPCGENFLAGS, $RPCGENHEADERFLAGS,
$RPCGENSERVICEFLAGS, $RPCGENXDRFLAGS.

sgiar
Sets construction variables for the SGI library archiver.

Sets: $AR, $ARCOMSTR, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX, $SHLINK, $SHLINKFLAGS.

Uses: $ARCOMSTR, $SHLINKCOMSTR.

sgic++
Sets construction variables for the SGI C++ compiler.

Sets: $CXX, $CXXFLAGS, $SHCXX, $SHOBJSUFFIX.

sgicc
Sets construction variables for the SGI C compiler.

Sets: $CXX, $SHOBJSUFFIX.

sgilink
Sets construction variables for the SGI linker.

Sets: $LINK, $RPATHPREFIX, $RPATHSUFFIX, $SHLINKFLAGS.

sunar
Sets construction variables for the Sun library archiver.

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX.

Uses: $ARCOMSTR.

sunc++
Sets construction variables for the Sun C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXX, $SHCXXFLAGS, $SHOBJPREFIX, $SHOBJSUFFIX.

suncc
Sets construction variables for the Sun C compiler.

35

Sets: $CXX, $SHCCFLAGS, $SHOBJPREFIX, $SHOBJSUFFIX.

sunf77
Set construction variables for the Sun f77 Fortran compiler.

Sets: $F77, $FORTRAN, $SHF77, $SHF77FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf90
Set construction variables for the Sun f90 Fortran compiler.

Sets: $F90, $FORTRAN, $SHF90, $SHF90FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf95
Set construction variables for the Sun f95 Fortran compiler.

Sets: $F95, $FORTRAN, $SHF95, $SHF95FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunlink
Sets construction variables for the Sun linker.

Sets: $RPATHPREFIX, $RPATHSUFFIX, $SHLINKFLAGS.

swig
Sets construction variables for the SWIG interface compiler.

Sets: $SWIG, $SWIGCFILESUFFIX, $SWIGCOM, $SWIGCXXFILESUFFIX, $SWIGDIRECTORSUFFIX,
$SWIGFLAGS, $SWIGINCPREFIX, $SWIGINCSUFFIX, $SWIGPATH, $SWIGVERSION,
$_SWIGINCFLAGS.

Uses: $SWIGCOMSTR.

tar
Sets construction variables for the tar archiver.

Sets: $TAR, $TARCOM, $TARFLAGS, $TARSUFFIX.

Uses: $TARCOMSTR.

tex
Sets construction variables for the TeX formatter and typesetter.

Sets: $BIBTEX, $BIBTEXCOM, $BIBTEXFLAGS, $LATEX, $LATEXCOM, $LATEXFLAGS, $MAKEINDEX,
$MAKEINDEXCOM, $MAKEINDEXFLAGS, $TEX, $TEXCOM, $TEXFLAGS.

Uses: $BIBTEXCOMSTR, $LATEXCOMSTR, $MAKEINDEXCOMSTR, $TEXCOMSTR.

textfile
Set construction variables for the Textfile and Substfile builders.

Sets: $LINESEPARATOR, $SUBSTFILEPREFIX, $SUBSTFILESUFFIX, $TEXTFILEPREFIX,
$TEXTFILESUFFIX.

Uses: $SUBST_DICT.

tlib
Sets construction variables for the Borlan tib library archiver.

36

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX.

Uses: $ARCOMSTR.

xgettext
This scons tool is a part of scons gettext toolset. It provides scons interface to xgettext(1) program, which
extracts internationalized messages from source code. The tool provides POTUpdate builder to make PO
Template files.

Sets: $POTSUFFIX, $POTUPDATE_ALIAS, $XGETTEXTCOM, $XGETTEXTCOMSTR,
$XGETTEXTFLAGS, $XGETTEXTFROM, $XGETTEXTFROMPREFIX, $XGETTEXTFROMSUFFIX,
$XGETTEXTPATH, $XGETTEXTPATHPREFIX, $XGETTEXTPATHSUFFIX, $_XGETTEXTDOMAIN,
$_XGETTEXTFROMFLAGS, $_XGETTEXTPATHFLAGS.

Uses: $POTDOMAIN.

yacc
Sets construction variables for the yacc parse generator.

Sets: $YACC, $YACCCOM, $YACCFLAGS, $YACCHFILESUFFIX, $YACCHXXFILESUFFIX,
$YACCVCGFILESUFFIX.

Uses: $YACCCOMSTR, $YACCFLAGS, $YACC_GRAPH_FILE, $YACC_HEADER_FILE.

zip
Sets construction variables for the zip archiver.

Sets: $ZIP, $ZIPCOM, $ZIPCOMPRESSION, $ZIPFLAGS, $ZIPSUFFIX.

Uses: $ZIPCOMSTR.

Builder Methods

You tell SCons what to build by calling Builders, functions which take particular action(s) to produce target(s) of a
particular type (conventionally hinted at by the builder name, e.g. Program) from the specified source files. A builder
call is a declaration: SCons enters the specified relationship into its internal dependency node graph, and only later
makes the decision on whether anything is actually built, since this depends on command-line options, target selection
rules, and whether the target(s) are out of date with respect to the sources.

SCons provides a number of builders, and you can also write your own (see Builder Objects). Builders are created
dynamically at run-time, often (though not always) by tools which determine whether the external dependencies for
the builder are satisfied, and which perform the necessary setup (see Tools). Builders are attached to a construction
environment as methods. The available builder methods are registered as key-value pairs in the $BUILDERS attribute
of the construction environment, so the available builders can be examined. This example displays them for debugging
purposes:

env = Environment()
print("Builders:", list(env['BUILDERS']))

Builder methods take two required arguments: target and source. The target and source arguments can be
specified either as positional arguments, in which case target comes first, or as keyword arguments, using target=
and source=. Although both arguments are nominally required, if there is a single source and the target can be
inferred the target argument can be omitted (see below). Builder methods also take a variety of keyword arguments,
described below.

37

Because long lists of file names can lead to a lot of quoting in a builder call, SCons supplies a Split global function
and a same-named environment method that splits a single string into a list, using strings of white-space characters as
the delimiter (similar to the Python string split method, but succeeds even if the input isn't a string).

The following are equivalent examples of calling the Program builder method:

env.Program('bar', ['bar.c', 'foo.c'])
env.Program('bar', Split('bar.c foo.c'))
env.Program('bar', env.Split('bar.c foo.c'))
env.Program(source=['bar.c', 'foo.c'], target='bar')
env.Program(target='bar', source=Split('bar.c foo.c'))
env.Program(target='bar', source=env.Split('bar.c foo.c'))
env.Program('bar', source='bar.c foo.c'.split())

Sources and targets can be specified as a scalar or as a list, composed of either strings or nodes (more on nodes below).
When specifying path strings, Python follows the POSIX pathname convention: if a string begins with the operating
system pathname separator (on Windows both the slash and backslash separator are accepted, and any leading drive
specifier is ignored for the determination) it is considered an absolute path, otherwise it is a relative path. If the path
string contains no separator characters, it is searched for as a file in the current directory. If it contains separator
characters, the search follows down from the starting point, which is the top of the directory tree for an absolute path
and the current directory for a relative path. The "current directory" in this context is the directory of the SConscript
file currently being processed.

SCons also recognizes a third way to specify path strings: if the string begins with the # character it is top-relative -
it works like a relative path but the search follows down from the directory containing the top-level SConstruct
rather than from the current directory. The # can optionally be followed by a pathname separator, which is ignored if
found in that position. Top-relative paths only work in places where scons will interpret the path (see some examples
below). To be used in other contexts the string will need to be converted to a relative or absolute path first.

Examples:

The comments describing the targets that will be built
assume these calls are in a SConscript file in the
a subdirectory named "subdir".

Builds the program "subdir/foo" from "subdir/foo.c":
env.Program('foo', 'foo.c')

Builds the program "/tmp/bar" from "subdir/bar.c":
env.Program('/tmp/bar', 'bar.c')

An initial '#' or '#/' are equivalent; the following
calls build the programs "foo" and "bar" (in the
top-level SConstruct directory) from "subdir/foo.c" and
"subdir/bar.c", respectively:
env.Program('#foo', 'foo.c')
env.Program('#/bar', 'bar.c')

Builds the program "other/foo" (relative to the top-level
SConstruct directory) from "subdir/foo.c":
env.Program('#other/foo', 'foo.c')

This will not work, only SCons interfaces understand '#',

38

os.path.exists is pure Python:
if os.path.exists('#inc/foo.h'):
 env.Append(CPPPATH='#inc')

When the target shares the same base name as the source and only the suffix varies, and if the builder method has a
suffix defined for the target file type, then the target argument may be omitted completely, and scons will deduce the
target file name from the source file name. The following examples all build the executable program bar (on POSIX
systems) or bar.exe (on Windows systems) from the bar.c source file:

env.Program(target='bar', source='bar.c')
env.Program('bar', source='bar.c')
env.Program(source='bar.c')
env.Program('bar.c')

The optional srcdir keyword argument specifies that all source file strings that are not absolute paths or top-relative
paths shall be interpreted relative to the specified srcdir. The following example will build the build/prog (or
build/prog.exe on Windows) program from the files src/f1.c and src/f2.c:

env.Program('build/prog', ['f1.c', 'f2.c'], srcdir='src')

The optional parse_flags keyword argument causes behavior similar to the env.MergeFlags method, where
the argument value is broken into individual settings and merged into the appropriate construction variables.

env.Program('hello', 'hello.c', parse_flags='-Iinclude -DEBUG -lm')

This example adds 'include' to the $CPPPATH construction variable, 'EBUG' to $CPPDEFINES, and 'm' to $LIBS.

The optional chdir keyword argument specifies that the Builder's action(s) should be executed after changing
directory. If the chdir argument is a path string or a directory Node, scons will change to the specified directory. If
the chdir is not a string or Node and evaluates true, then scons will change to the target file's directory.

Warning

Python only keeps one current directory location even if there are multiple threads. This means that use of
the chdir argument will not work with the SCons -j option, because individual worker threads spawned
by SCons interfere with each other when they start changing directory.

scons will change to the "sub" subdirectory
before executing the "cp" command.
env.Command(
 target='sub/dir/foo.out',
 source='sub/dir/foo.in',
 action="cp dir/foo.in dir/foo.out",
 chdir='sub',
)

Because chdir is not a string, scons will change to the
target's directory ("sub/dir") before executing the
"cp" command.
env.Command('sub/dir/foo.out', 'sub/dir/foo.in', "cp foo.in foo.out", chdir=True)

Note that SCons will not automatically modify its expansion of construction variables like $TARGET and $SOURCE
when using the chdir keyword argument--that is, the expanded file names will still be relative to the top-level

39

directory where the SConstruct was found, and consequently incorrect relative to the chdir directory. If you use
the chdir keyword argument, you will typically need to supply a different command line using expansions like
${TARGET.file} and ${SOURCE.file} to use just the filename portion of the target and source.

Keyword arguments that are not specifically recognized are treated as construction variable overrides, which replace
or add those variables on a limited basis. These overrides will only be in effect when building the target of the builder
call, and will not affect other parts of the build. For example, if you want to specify some libraries needed by just
one program:

env.Program('hello', 'hello.c', LIBS=['gl', 'glut'])

or generate a shared library with a non-standard suffix:

env.SharedLibrary(
 target='word',
 source='word.cpp',
 SHLIBSUFFIX='.ocx',
 LIBSUFFIXES=['.ocx'],
)

Note that both the $SHLIBSUFFIX and $LIBSUFFIXES construction variables must be set if you want scons to
search automatically for dependencies on the non-standard library names; see the descriptions of these variables for
more information.

Although the builder methods defined by scons are, in fact, methods of a construction environment object, many may
also be called without an explicit environment:

Program('hello', 'hello.c')
SharedLibrary('word', 'word.cpp')

If called this way, the builder will internally use the Default Environment that consists of the tools and values that
scons has determined are appropriate for the local system.

Builder methods that can be called without an explicit environment (indicated in the listing of builders below without
a leading env.) may be called from custom Python modules that you import into an SConscript file by adding the
following to the Python module:

from SCons.Script import *

A builder may add additional targets beyond those requested if an attached Emitter chooses to do so (see the section
called “Builder Objects” for more information. $PROGEMITTER is an example). For example, the GNU linker takes
a command-line argument -Map=mapfile, which causes it to produce a linker map file in addition to the executable
file actually being linked. If the Program builder's emitter is configured to add this mapfile if the option is set, then
two targets will be returned when you only provided for one.

For this reason, builder methods always return a NodeList, a list-like object whose elements are Nodes. Nodes are
the internal representation of build targets or sources (see the section called “Node Objects” for more information).
The returned NodeList object can be passed to other builder methods as source(s) or to other SCons functions or
methods where a path string would normally be accepted.

For example, to add a specific preprocessor define when compiling one specific object file but not the others:

40

bar_obj_list = env.StaticObject('bar.c', CPPDEFINES='-DBAR')
env.Program("prog", ['foo.c', bar_obj_list, 'main.c'])

Using a Node as in this example makes for a more portable build by avoiding having to specify a platform-specific
object suffix when calling the Program builder method.

The NodeList object is also convenient to pass to the Default function, for the same reason of avoiding a platform-
specific name:

tgt = env.Program("prog", ["foo.c", "bar.c", "main.c"])
Default(tgt)

Builder calls will automatically "flatten" lists passed as source and target, so they are free to contain elements which
are themselves lists, such as bar_obj_list returned by the StaticObject call. If you need to manipulate a list
of lists returned by builders directly in Python code, you can either build a new list by hand:

foo = Object('foo.c')
bar = Object('bar.c')
objects = ['begin.o'] + foo + ['middle.o'] + bar + ['end.o']
for obj in objects:
 print(str(obj))

Or you can use the Flatten function supplied by SCons to create a list containing just the Nodes, which may be
more convenient:

foo = Object('foo.c')
bar = Object('bar.c')
objects = Flatten(['begin.o', foo, 'middle.o', bar, 'end.o'])
for obj in objects:
 print(str(obj))

Since builder calls return a list-like object, not an actual Python list, it is not appropriate to use the Python add operator
(+ or +=) to append builder results to a Python list. Because the list and the object are different types, Python will not
update the original list in place, but will instead create a new NodeList object containing the concatenation of the list
elements and the builder results. This will cause problems for any other Python variables in your SCons configuration
that still hold on to a reference to the original list. Instead, use the Python list extend method to make sure the list
is updated in-place. Example:

object_files = []

Do NOT use += here:
object_files += Object('bar.c')
#
It will not update the object_files list in place.
#
Instead, use the list extend method:
object_files.extend(Object('bar.c'))

The path name for a Node's file may be used by passing the Node to Python's builtin str function:

41

bar_obj_list = env.StaticObject('bar.c', CPPDEFINES='-DBAR')
print("The path to bar_obj is:", str(bar_obj_list[0]))

Note that because the Builder call returns a NodeList, you have to access the first element in the list
(bar_obj_list[0] in the example) to get at the Node that actually represents the object file.

When trying to handle errors that may occur in a builder method, consider that the corresponding Action is executed at a
different time than the SConscript file statement calling the builder. It is not useful to wrap a builder call in a try block,
since success in the builder call is not the same as the builder itself succeeding. If necessary, a Builder's Action should
be coded to exit with a useful exception message indicating the problem in the SConscript files - programmatically
recovering from build errors is rarely useful.

The following builder methods are predefined in the SCons core software distribution. Depending on the setup of a
particular construction environment and on the type and software installation status of the underlying system, not all
builders may be available in that construction environment. Since the function calling signature is the same for all
builders:

Buildername(target, source, [key=val, ...])

it is omitted in this listing for brevity.

CFile()
env.CFile()

Builds a C source file given a lex (.l) or yacc (.y) input file. The suffix specified by the $CFILESUFFIX
construction variable (.c by default) is automatically added to the target if it is not already present. Example:

builds foo.c
env.CFile(target = 'foo.c', source = 'foo.l')
builds bar.c
env.CFile(target = 'bar', source = 'bar.y')

Command()
env.Command()

The Command "Builder" is actually a function that looks like a Builder, but takes a required third argument,
which is the action to take to construct the target from the source, used for "one-off" builds where a full builder
is not needed. Thus it does not follow the builder calling rules described at the start of this section. See instead
the Command function description for the calling syntax and details.

CompilationDatabase()
env.CompilationDatabase()

CompilationDatabase is a special builder which adds a target to create a JSON formatted
compilation database compatible with clang tooling (see the LLVM specification [https://clang.llvm.org/docs/
JSONCompilationDatabase.html]). This database is suitable for consumption by various tools and editors who
can use it to obtain build and dependency information which otherwise would be internal to SCons. The
builder does not require any source files to be specified, rather it arranges to emit information about all of the
C, C++ and assembler source/output pairs identified in the build that are not excluded by the optional filter
$COMPILATIONDB_PATH_FILTER. The target is subject to the usual SCons target selection rules.

If called with no arguments, the builder will default to a target name of compile_commands.json.

If called with a single positional argument, scons will "deduce" the target name from that source argument, giving
it the same name, and then ignore the source. This is the usual way to call the builder if a non-default target name
is wanted.

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

42

If called with either the target= or source= keyword arguments, the value of the argument is taken as the
target name. If called with both, the target= value is used and source= is ignored. If called with multiple
sources, the source list will be ignored, since there is no way to deduce what the intent was; in this case the default
target name will be used.

Note

You must load the compilation_db tool prior to specifying any part of your build or some source/
output files will not show up in the compilation database.

Available since scons 4.0.

CXXFile()
env.CXXFile()

Builds a C++ source file given a lex (.ll) or yacc (.yy) input file. The suffix specified by the
$CXXFILESUFFIX construction variable (.cc by default) is automatically added to the target if it is not already
present. Example:

builds foo.cc
env.CXXFile(target = 'foo.cc', source = 'foo.ll')
builds bar.cc
env.CXXFile(target = 'bar', source = 'bar.yy')

DocbookEpub()
env.DocbookEpub()

A pseudo-Builder, providing a Docbook toolchain for EPUB output.

env = Environment(tools=['docbook'])
env.DocbookEpub('manual.epub', 'manual.xml')

or simply

env = Environment(tools=['docbook'])
env.DocbookEpub('manual')

DocbookHtml()
env.DocbookHtml()

A pseudo-Builder, providing a Docbook toolchain for HTML output.

env = Environment(tools=['docbook'])
env.DocbookHtml('manual.html', 'manual.xml')

or simply

env = Environment(tools=['docbook'])
env.DocbookHtml('manual')

DocbookHtmlChunked()
env.DocbookHtmlChunked()

A pseudo-Builder providing a Docbook toolchain for chunked HTML output. It supports the base.dir
parameter. The chunkfast.xsl file (requires "EXSLT") is used as the default stylesheet. Basic syntax:

env = Environment(tools=['docbook'])
env.DocbookHtmlChunked('manual')

43

where manual.xml is the input file.

If you use the root.filename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via “scons -c”:

env = Environment(tools=['docbook'])
env.DocbookHtmlChunked('mymanual.html', 'manual', xsl='htmlchunk.xsl')

Some basic support for the base.dir parameter is provided. You can add the base_dir keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environment(tools=['docbook'])
env.DocbookHtmlChunked('manual', xsl='htmlchunk.xsl', base_dir='output/')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookHtmlhelp()
env.DocbookHtmlhelp()

A pseudo-Builder, providing a Docbook toolchain for HTMLHELP output. Its basic syntax is:

env = Environment(tools=['docbook'])
env.DocbookHtmlhelp('manual')

where manual.xml is the input file.

If you use the root.filename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via “scons -c”:

env = Environment(tools=['docbook'])
env.DocbookHtmlhelp('mymanual.html', 'manual', xsl='htmlhelp.xsl')

Some basic support for the base.dir parameter is provided. You can add the base_dir keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environment(tools=['docbook'])
env.DocbookHtmlhelp('manual', xsl='htmlhelp.xsl', base_dir='output/')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookMan()
env.DocbookMan()

A pseudo-Builder, providing a Docbook toolchain for Man page output. Its basic syntax is:

env = Environment(tools=['docbook'])
env.DocbookMan('manual')

where manual.xml is the input file. Note, that you can specify a target name, but the actual output names are
automatically set from the refname entries in your XML source.

DocbookPdf()
env.DocbookPdf()

A pseudo-Builder, providing a Docbook toolchain for PDF output.

env = Environment(tools=['docbook'])
env.DocbookPdf('manual.pdf', 'manual.xml')

or simply

44

env = Environment(tools=['docbook'])
env.DocbookPdf('manual')

DocbookSlidesHtml()
env.DocbookSlidesHtml()

A pseudo-Builder, providing a Docbook toolchain for HTML slides output.

env = Environment(tools=['docbook'])
env.DocbookSlidesHtml('manual')

If you use the titlefoil.html parameter in your own stylesheets you have to give the new target name. This
ensures that the dependencies get correct, especially for the cleanup via “scons -c”:

env = Environment(tools=['docbook'])
env.DocbookSlidesHtml('mymanual.html','manual', xsl='slideshtml.xsl')

Some basic support for the base.dir parameter is provided. You can add the base_dir keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environment(tools=['docbook'])
env.DocbookSlidesHtml('manual', xsl='slideshtml.xsl', base_dir='output/')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookSlidesPdf()
env.DocbookSlidesPdf()

A pseudo-Builder, providing a Docbook toolchain for PDF slides output.

env = Environment(tools=['docbook'])
env.DocbookSlidesPdf('manual.pdf', 'manual.xml')

or simply

env = Environment(tools=['docbook'])
env.DocbookSlidesPdf('manual')

DocbookXInclude()
env.DocbookXInclude()

A pseudo-Builder, for resolving XIncludes in a separate processing step.

env = Environment(tools=['docbook'])
env.DocbookXInclude('manual_xincluded.xml', 'manual.xml')

DocbookXslt()
env.DocbookXslt()

A pseudo-Builder, applying a given XSL transformation to the input file.

env = Environment(tools=['docbook'])
env.DocbookXslt('manual_transformed.xml', 'manual.xml', xsl='transform.xslt')

Note, that this builder requires the xsl parameter to be set.

DVI()
env.DVI()

Builds a .dvi file from a .tex, .ltx or .latex input file. If the source file suffix is .tex, scons will examine
the contents of the file; if the string \documentclass or \documentstyle is found, the file is assumed

45

to be a LaTeX file and the target is built by invoking the $LATEXCOM command line; otherwise, the $TEXCOM
command line is used. If the file is a LaTeX file, the DVI builder method will also examine the contents of
the .aux file and invoke the $BIBTEX command line if the string bibdata is found, start $MAKEINDEX to
generate an index if a .ind file is found and will examine the contents .log file and re-run the $LATEXCOM
command if the log file says it is necessary.

The suffix .dvi (hard-coded within TeX itself) is automatically added to the target if it is not already present.
Examples:

builds from aaa.tex
env.DVI(target = 'aaa.dvi', source = 'aaa.tex')
builds bbb.dvi
env.DVI(target = 'bbb', source = 'bbb.ltx')
builds from ccc.latex
env.DVI(target = 'ccc.dvi', source = 'ccc.latex')

Gs()
env.Gs()

A Builder for explicitly calling the gs executable. Depending on the underlying OS, the different names gs, gsos2
and gswin32c are tried.

env = Environment(tools=['gs'])
env.Gs(
 'cover.jpg',
 'scons-scons.pdf',
 GSFLAGS='-dNOPAUSE -dBATCH -sDEVICE=jpeg -dFirstPage=1 -dLastPage=1 -q',
)

Install()
env.Install()

Installs one or more source files or directories in the specified target, which must be a directory. The names of the
specified source files or directories remain the same within the destination directory. The sources may be given
as a string or as a node returned by a builder.

env.Install(target='/usr/local/bin', source=['foo', 'bar'])

Note that if target paths chosen for the Install builder (and the related InstallAs and
InstallVersionedLib builders) are outside the project tree, such as in the example above, they may not be
selected for "building" by default, since in the absence of other instructions scons builds targets that are underneath
the top directory (the directory that contains the SConstruct file, usually the current directory). Use command
line targets or the Default function in this case.

If the --install-sandbox command line option is given, the target directory will be prefixed by the directory
path specified. This is useful to test installs without installing to a "live" location in the system.

See also FindInstalledFiles. For more thoughts on installation, see the User Guide (particularly the section
on Command-Line Targets and the chapters on Installing Files and on Alias Targets).

InstallAs()
env.InstallAs()

Installs one or more source files or directories to specific names, allowing changing a file or directory name as
part of the installation. It is an error if the target and source arguments list different numbers of files or directories.

46

env.InstallAs(target='/usr/local/bin/foo',
 source='foo_debug')
env.InstallAs(target=['../lib/libfoo.a', '../lib/libbar.a'],
 source=['libFOO.a', 'libBAR.a'])

See the note under Install.

InstallVersionedLib()
env.InstallVersionedLib()

Installs a versioned shared library. The symlinks appropriate to the architecture will be generated based on
symlinks of the source library.

env.InstallVersionedLib(target='/usr/local/bin/foo',
 source='libxyz.1.5.2.so')

See the note under Install.

Jar()
env.Jar()

Builds a Java archive (.jar) file from the specified list of sources. Any directories in the source list will be
searched for .class files). Any .java files in the source list will be compiled to .class files by calling the
Java Builder.

If the $JARCHDIR value is set, the jar command will change to the specified directory using the -C option. If
$JARCHDIR is not set explicitly, SCons will use the top of any subdirectory tree in which Java .class were
built by the Java Builder.

If the contents any of the source files begin with the string Manifest-Version, the file is assumed to be a
manifest and is passed to the jar command with the m option set.

env.Jar(target = 'foo.jar', source = 'classes')

env.Jar(target = 'bar.jar',
 source = ['bar1.java', 'bar2.java'])

Java()
env.Java()

Builds one or more Java class files. The sources may be any combination of explicit .java files, or directory
trees which will be scanned for .java files.

SCons will parse each source .java file to find the classes (including inner classes) defined within that file, and
from that figure out the target .class files that will be created. The class files will be placed underneath the
specified target directory.

SCons will also search each Java file for the Java package name, which it assumes can be found on a line beginning
with the string package in the first column; the resulting .class files will be placed in a directory reflecting
the specified package name. For example, the file Foo.java defining a single public Foo class and containing
a package name of sub.dir will generate a corresponding sub/dir/Foo.class class file.

Examples:

env.Java(target = 'classes', source = 'src')

47

env.Java(target = 'classes', source = ['src1', 'src2'])
env.Java(target = 'classes', source = ['File1.java', 'File2.java'])

Java source files can use the native encoding for the underlying OS. Since SCons compiles in simple ASCII mode
by default, the compiler will generate warnings about unmappable characters, which may lead to errors as the file
is processed further. In this case, the user must specify the LANG environment variable to tell the compiler what
encoding is used. For portibility, it's best if the encoding is hard-coded so that the compile will work if it is done
on a system with a different encoding.

env = Environment()
env['ENV']['LANG'] = 'en_GB.UTF-8'

JavaH()
env.JavaH()

Builds C header and source files for implementing Java native methods. The target can be either a directory in
which the header files will be written, or a header file name which will contain all of the definitions. The source
can be the names of .class files, the names of .java files to be compiled into .class files by calling the
Java builder method, or the objects returned from the Java builder method.

If the construction variable $JAVACLASSDIR is set, either in the environment or in the call to the JavaH builder
method itself, then the value of the variable will be stripped from the beginning of any .class file names.

Examples:

builds java_native.h
classes = env.Java(target="classdir", source="src")
env.JavaH(target="java_native.h", source=classes)

builds include/package_foo.h and include/package_bar.h
env.JavaH(target="include", source=["package/foo.class", "package/bar.class"])

builds export/foo.h and export/bar.h
env.JavaH(
 target="export",
 source=["classes/foo.class", "classes/bar.class"],
 JAVACLASSDIR="classes",
)

Note

Java versions starting with 10.0 no longer use the javah command for generating JNI headers/
sources, and indeed have removed the command entirely (see Java Enhancement Proposal JEP
313 [https:openjdk.java.net/jeps/313]), making this tool harder to use for that purpose. SCons may
autodiscover a javah belonging to an older release if there are multiple Java versions on the system,
which will lead to incorrect results. To use with a newer Java, override the default values of $JAVAH (to
contain the path to the javac) and $JAVAHFLAGS (to contain at least a -h flag) and note that generating
headers with javac requires supplying source .java files only, not .class files.

Library()
env.Library()

A synonym for the StaticLibrary builder method.

https:openjdk.java.net/jeps/313
https:openjdk.java.net/jeps/313
https:openjdk.java.net/jeps/313

48

LoadableModule()
env.LoadableModule()

On most systems, this is the same as SharedLibrary. On Mac OS X (Darwin) platforms, this creates a loadable
module bundle.

M4()
env.M4()

Builds an output file from an M4 input file. This uses a default $M4FLAGS value of -E, which considers all
warnings to be fatal and stops on the first warning when using the GNU version of m4. Example:

env.M4(target = 'foo.c', source = 'foo.c.m4')

Moc()
env.Moc()

Builds an output file from a moc input file. moc input files are either header files or C++ files. This builder is
only available after using the tool qt. See the $QTDIR variable for more information. Example:

env.Moc('foo.h') # generates moc_foo.cc
env.Moc('foo.cpp') # generates foo.moc

MOFiles()
env.MOFiles()

This builder belongs to msgfmt tool. The builder compiles PO files to MO files.

Example 1. Create pl.mo and en.mo by compiling pl.po and en.po:

 # ...
 env.MOFiles(['pl', 'en'])

Example 2. Compile files for languages defined in LINGUAS file:

 # ...
 env.MOFiles(LINGUAS_FILE = 1)

Example 3. Create pl.mo and en.mo by compiling pl.po and en.po plus files for languages defined in
LINGUAS file:

 # ...
 env.MOFiles(['pl', 'en'], LINGUAS_FILE = 1)

Example 4. Compile files for languages defined in LINGUAS file (another version):

 # ...
 env['LINGUAS_FILE'] = 1
 env.MOFiles()

MSVSProject()
env.MSVSProject()

Builds a Microsoft Visual Studio project file, and by default builds a solution file as well.

49

This builds a Visual Studio project file, based on the version of Visual Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSION in the Environment constructor). For Visual
Studio 6, it will generate a .dsp file. For Visual Studio 7, 8, and 9, it will generate a .vcproj file. For Visual
Studio 10 and later, it will generate a .vcxproj file.

By default, this also generates a solution file for the specified project, a .dsw file for Visual Studio 6 or a .sln
file for Visual Studio 7 and later. This behavior may be disabled by specifying auto_build_solution=0
when you call MSVSProject, in which case you presumably want to build the solution file(s) by calling the
MSVSSolution Builder (see below).

The MSVSProject builder takes several lists of filenames to be placed into the project file. These are currently
limited to srcs, incs, localincs, resources, and misc. These are pretty self-explanatory, but it should
be noted that these lists are added to the $SOURCES construction variable as strings, NOT as SCons File Nodes.
This is because they represent file names to be added to the project file, not the source files used to build the
project file.

The above filename lists are all optional, although at least one must be specified for the resulting project file to
be non-empty.

In addition to the above lists of values, the following values may be specified:

target
The name of the target .dsp or .vcproj file. The correct suffix for the version of Visual Studio must
be used, but the $MSVSPROJECTSUFFIX construction variable will be defined to the correct value (see
example below).

variant
The name of this particular variant. For Visual Studio 7 projects, this can also be a list of variant names.
These are typically things like "Debug" or "Release", but really can be anything you want. For Visual Studio
7 projects, they may also specify a target platform separated from the variant name by a | (vertical pipe)
character: Debug|Xbox. The default target platform is Win32. Multiple calls to MSVSProject with
different variants are allowed; all variants will be added to the project file with their appropriate build targets
and sources.

cmdargs
Additional command line arguments for the different variants. The number of cmdargs entries must match
the number of variant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants.

cppdefines
Preprocessor definitions for the different variants. The number of cppdefines entries must match the
number of variant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants. If you don't give this parameter, SCons will use the invoking environment's
CPPDEFINES entry for all variants.

cppflags
Compiler flags for the different variants. If a /std:c++ flag is found then /Zc:__cplusplus is appended to the
flags if not already found, this ensures that intellisense uses the /std:c++ switch. The number of cppflags
entries must match the number of variant entries, or be empty (not specified). If you give only one, it will
automatically be propagated to all variants. If you don't give this parameter, SCons will combine the invoking
environment's CCFLAGS, CXXFLAGS, CPPFLAGS entries for all variants.

cpppaths
Compiler include paths for the different variants. The number of cpppaths entries must match the number
of variant entries, or be empty (not specified). If you give only one, it will automatically be propagated

50

to all variants. If you don't give this parameter, SCons will use the invoking environment's CPPPATH entry
for all variants.

buildtarget
An optional string, node, or list of strings or nodes (one per build variant), to tell the Visual Studio debugger
what output target to use in what build variant. The number of buildtarget entries must match the number
of variant entries.

runfile
The name of the file that Visual Studio 7 and later will run and debug. This appears as the value of the
Output field in the resulting Visual Studio project file. If this is not specified, the default is the same as
the specified buildtarget value.

Note that because SCons always executes its build commands from the directory in which the SConstruct file
is located, if you generate a project file in a different directory than the SConstruct directory, users will not be
able to double-click on the file name in compilation error messages displayed in the Visual Studio console output
window. This can be remedied by adding the Visual C/C++ /FC compiler option to the $CCFLAGS variable so
that the compiler will print the full path name of any files that cause compilation errors.

Example usage:

barsrcs = ['bar.cpp']
barincs = ['bar.h']
barlocalincs = ['StdAfx.h']
barresources = ['bar.rc','resource.h']
barmisc = ['bar_readme.txt']

dll = env.SharedLibrary(target='bar.dll',
 source=barsrcs)
buildtarget = [s for s in dll if str(s).endswith('dll')]
env.MSVSProject(target='Bar' + env['MSVSPROJECTSUFFIX'],
 srcs=barsrcs,
 incs=barincs,
 localincs=barlocalincs,
 resources=barresources,
 misc=barmisc,
 buildtarget=buildtarget,
 variant='Release')

Starting with version 2.4 of SCons it is also possible to specify the optional argument DebugSettings, which
creates files for debugging under Visual Studio:

DebugSettings
A dictionary of debug settings that get written to the .vcproj.user or the .vcxproj.user
file, depending on the version installed. As it is done for cmdargs (see above), you can specify a
DebugSettings dictionary per variant. If you give only one, it will be propagated to all variants.

Currently, only Visual Studio v9.0 and Visual Studio version v11 are implemented, for other versions no file is
generated. To generate the user file, you just need to add a DebugSettings dictionary to the environment with
the right parameters for your MSVS version. If the dictionary is empty, or does not contain any good value, no
file will be generated.

Following is a more contrived example, involving the setup of a project for variants and DebugSettings:

51

Assuming you store your defaults in a file
vars = Variables('variables.py')
msvcver = vars.args.get('vc', '9')

Check command args to force one Microsoft Visual Studio version
if msvcver == '9' or msvcver == '11':
 env = Environment(MSVC_VERSION=msvcver+'.0', MSVC_BATCH=False)
else:
 env = Environment()

AddOption('--userfile', action='store_true', dest='userfile', default=False,
 help="Create Visual Studio Project user file")

#
1. Configure your Debug Setting dictionary with options you want in the list
of allowed options, for instance if you want to create a user file to launch
a specific application for testing your dll with Microsoft Visual Studio 2008 (v9):
#
V9DebugSettings = {
 'Command':'c:\\myapp\\using\\thisdll.exe',
 'WorkingDirectory': 'c:\\myapp\\using\\',
 'CommandArguments': '-p password',
'Attach':'false',
'DebuggerType':'3',
'Remote':'1',
'RemoteMachine': None,
'RemoteCommand': None,
'HttpUrl': None,
'PDBPath': None,
'SQLDebugging': None,
'Environment': '',
'EnvironmentMerge':'true',
'DebuggerFlavor': None,
'MPIRunCommand': None,
'MPIRunArguments': None,
'MPIRunWorkingDirectory': None,
'ApplicationCommand': None,
'ApplicationArguments': None,
'ShimCommand': None,
'MPIAcceptMode': None,
'MPIAcceptFilter': None,
}

#
2. Because there are a lot of different options depending on the Microsoft
Visual Studio version, if you use more than one version you have to
define a dictionary per version, for instance if you want to create a user
file to launch a specific application for testing your dll with Microsoft
Visual Studio 2012 (v11):
#
V10DebugSettings = {
 'LocalDebuggerCommand': 'c:\\myapp\\using\\thisdll.exe',
 'LocalDebuggerWorkingDirectory': 'c:\\myapp\\using\\',

52

 'LocalDebuggerCommandArguments': '-p password',
'LocalDebuggerEnvironment': None,
'DebuggerFlavor': 'WindowsLocalDebugger',
'LocalDebuggerAttach': None,
'LocalDebuggerDebuggerType': None,
'LocalDebuggerMergeEnvironment': None,
'LocalDebuggerSQLDebugging': None,
'RemoteDebuggerCommand': None,
'RemoteDebuggerCommandArguments': None,
'RemoteDebuggerWorkingDirectory': None,
'RemoteDebuggerServerName': None,
'RemoteDebuggerConnection': None,
'RemoteDebuggerDebuggerType': None,
'RemoteDebuggerAttach': None,
'RemoteDebuggerSQLDebugging': None,
'DeploymentDirectory': None,
'AdditionalFiles': None,
'RemoteDebuggerDeployDebugCppRuntime': None,
'WebBrowserDebuggerHttpUrl': None,
'WebBrowserDebuggerDebuggerType': None,
'WebServiceDebuggerHttpUrl': None,
'WebServiceDebuggerDebuggerType': None,
'WebServiceDebuggerSQLDebugging': None,
}

#
3. Select the dictionary you want depending on the version of visual Studio
Files you want to generate.
#
if not env.GetOption('userfile'):
 dbgSettings = None
elif env.get('MSVC_VERSION', None) == '9.0':
 dbgSettings = V9DebugSettings
elif env.get('MSVC_VERSION', None) == '11.0':
 dbgSettings = V10DebugSettings
else:
 dbgSettings = None

#
4. Add the dictionary to the DebugSettings keyword.
#
barsrcs = ['bar.cpp', 'dllmain.cpp', 'stdafx.cpp']
barincs = ['targetver.h']
barlocalincs = ['StdAfx.h']
barresources = ['bar.rc','resource.h']
barmisc = ['ReadMe.txt']

dll = env.SharedLibrary(target='bar.dll',
 source=barsrcs)

env.MSVSProject(target='Bar' + env['MSVSPROJECTSUFFIX'],
 srcs=barsrcs,
 incs=barincs,
 localincs=barlocalincs,

53

 resources=barresources,
 misc=barmisc,
 buildtarget=[dll[0]] * 2,
 variant=('Debug|Win32', 'Release|Win32'),
 cmdargs='vc=%s' % msvcver,
 DebugSettings=(dbgSettings, {}))

MSVSSolution()
env.MSVSSolution()

Builds a Microsoft Visual Studio solution file.

This builds a Visual Studio solution file, based on the version of Visual Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSION in the construction environment). For Visual
Studio 6, it will generate a .dsw file. For Visual Studio 7 (.NET), it will generate a .sln file.

The following values must be specified:

target
The name of the target .dsw or .sln file. The correct suffix for the version of Visual Studio must be used, but
the value $MSVSSOLUTIONSUFFIX will be defined to the correct value (see example below).

variant
The name of this particular variant, or a list of variant names (the latter is only supported for MSVS 7
solutions). These are typically things like "Debug" or "Release", but really can be anything you want. For
MSVS 7 they may also specify target platform, like this "Debug|Xbox". Default platform is Win32.

projects
A list of project file names, or Project nodes returned by calls to the MSVSProject Builder, to be placed
into the solution file. It should be noted that these file names are NOT added to the $SOURCES environment
variable in form of files, but rather as strings. This is because they represent file names to be added to the
solution file, not the source files used to build the solution file.

Example Usage:

env.MSVSSolution(
 target="Bar" + env["MSVSSOLUTIONSUFFIX"],
 projects=["bar" + env["MSVSPROJECTSUFFIX"]],
 variant="Release",
)

Ninja()
env.Ninja()

A special builder which adds a target to create a Ninja build file. The builder does not require any source files
to be specified.

Note

This is an experimental feature. To enable it you must use one of the following methods

On the command line
--experimental=ninja

54

Or in your SConstruct
SetOption('experimental', 'ninja')

This functionality is subject to change and/or removal without deprecation cycle.

To use this tool you need to install the Python ninja package, as the tool by default depends on being
able to do an import of the package This can be done via:

python -m pip install ninja

If called with no arguments, the builder will default to a target name of ninja.build.

If called with a single positional argument, scons will "deduce" the target name from that source argument, giving
it the same name, and then ignore the source. This is the usual way to call the builder if a non-default target name
is wanted.

If called with either the target= or source= keyword arguments, the value of the argument is taken as the
target name. If called with both, the target= value is used and source= is ignored. If called with multiple
sources, the source list will be ignored, since there is no way to deduce what the intent was; in this case the default
target name will be used.

Available since scons 4.2.

Object()
env.Object()

A synonym for the StaticObject builder method.

Package()
env.Package()

Builds software distribution packages. A package is a container format which includes files to install along with
metadata. Packaging is optional, and must be enabled by specifying the packaging tool. For example:

env = Environment(tools=['default', 'packaging'])

SCons can build packages in a number of well known packaging formats. The target package type may be
selected with the the $PACKAGETYPE construction variable or the --package-type command line option.
The package type may be a list, in which case SCons will attempt to build packages for each type in the list.
Example:

env.Package(PACKAGETYPE=['src_zip', 'src_targz'], ...other args...)

The currently supported packagers are:

msi Microsoft Installer package

rpm RPM Package Manger package

ipkg Itsy Package Management package

tarbz2 bzip2-compressed tar file

targz gzip-compressed tar file

tarxz xz-compressed tar file

55

zip zip file

src_tarbz2 bzip2-compressed tar file suitable as source to another
packager

src_targz gzip-compressed tar file suitable as source to another
packager

src_tarxz xz-compressed tar file suitable as source to another
packager

src_zip zip file suitable as source to another packager

The file list to include in the package may be specified with the source keyword argument. If omitted,
the FindInstalledFiles function is called behind the scenes to select all files that have an Install,
InstallAs or InstallVersionedLib Builder attached. If the target keyword argument is omitted, the
target name(s) will be deduced from the package type(s).

The metadata comes partly from attributes of the files to be packaged, and partly from packaging tags. Tags can be
passed as keyword arguments to the Package builder call, and may also be attached to files (or more accurately,
Nodes representing files) with the Tag function. Some package-level tags are mandatory, and will lead to errors
if omitted. The mandatory tags vary depending on the package type.

While packaging, the builder uses a temporary location named by the value of the $PACKAGEROOT variable -
the package sources are copied there before packaging.

Packaging example:

env = Environment(tools=["default", "packaging"])
env.Install("/bin/", "my_program")
env.Package(
 NAME="foo",
 VERSION="1.2.3",
 PACKAGEVERSION=0,
 PACKAGETYPE="rpm",
 LICENSE="gpl",
 SUMMARY="balalalalal",
 DESCRIPTION="this should be really really long",
 X_RPM_GROUP="Application/fu",
 SOURCE_URL="https://foo.org/foo-1.2.3.tar.gz",
)

In this example, the target /bin/my_program created by the Install call would not be built by default since
it is not under the project top directory. However, since no source is specified to the Package builder, it is
selected for packaging by the default sources rule. Since packaging is done using $PACKAGEROOT, no write is
actually done to the system's /bin directory, and the target will be selected since after rebasing to underneath
$PACKAGEROOT it is now under the top directory of the project.

PCH()
env.PCH()

Builds a Microsoft Visual C++ precompiled header. Calling this builder returns a list of two targets: the PCH as
the first element, and the object file as the second element. Normally the object file is ignored. This builder is
only provided when Microsoft Visual C++ is being used as the compiler. The PCH builder is generally used in
conjunction with the $PCH construction variable to force object files to use the precompiled header:

env['PCH'] = env.PCH('StdAfx.cpp')[0]

56

PDF()
env.PDF()

Builds a .pdf file from a .dvi input file (or, by extension, a .tex, .ltx, or .latex input file). The suffix
specified by the $PDFSUFFIX construction variable (.pdf by default) is added automatically to the target if it
is not already present. Example:

builds from aaa.tex
env.PDF(target = 'aaa.pdf', source = 'aaa.tex')
builds bbb.pdf from bbb.dvi
env.PDF(target = 'bbb', source = 'bbb.dvi')

POInit()
env.POInit()

This builder belongs to msginit tool. The builder initializes missing PO file(s) if $POAUTOINIT is set. If
$POAUTOINIT is not set (default), POInit prints instruction for user (that is supposed to be a translator), telling
how the PO file should be initialized. In normal projects you should not use POInit and use POUpdate instead.
POUpdate chooses intelligently between msgmerge(1) and msginit(1). POInit always uses msginit(1) and
should be regarded as builder for special purposes or for temporary use (e.g. for quick, one time initialization of
a bunch of PO files) or for tests.

Target nodes defined through POInit are not built by default (they're Ignored from '.' node) but are added to
special Alias ('po-create' by default). The alias name may be changed through the $POCREATE_ALIAS
construction variable. All PO files defined through POInit may be easily initialized by scons po-create.

Example 1. Initialize en.po and pl.po from messages.pot:

 # ...
 env.POInit(['en', 'pl']) # messages.pot --> [en.po, pl.po]

Example 2. Initialize en.po and pl.po from foo.pot:

 # ...
 env.POInit(['en', 'pl'], ['foo']) # foo.pot --> [en.po, pl.po]

Example 3. Initialize en.po and pl.po from foo.pot but using $POTDOMAIN construction variable:

 # ...
 env.POInit(['en', 'pl'], POTDOMAIN='foo') # foo.pot --> [en.po, pl.po]

Example 4. Initialize PO files for languages defined in LINGUAS file. The files will be initialized from template
messages.pot:

 # ...
 env.POInit(LINGUAS_FILE = 1) # needs 'LINGUAS' file

Example 5. Initialize en.po and pl.pl PO files plus files for languages defined in LINGUAS file. The files will
be initialized from template messages.pot:

 # ...
 env.POInit(['en', 'pl'], LINGUAS_FILE = 1)

57

Example 6. You may preconfigure your environment first, and then initialize PO files:

 # ...
 env['POAUTOINIT'] = 1
 env['LINGUAS_FILE'] = 1
 env['POTDOMAIN'] = 'foo'
 env.POInit()

which has same efect as:

 # ...
 env.POInit(POAUTOINIT = 1, LINGUAS_FILE = 1, POTDOMAIN = 'foo')

PostScript()
env.PostScript()

Builds a .ps file from a .dvi input file (or, by extension, a .tex, .ltx, or .latex input file). The suffix
specified by the $PSSUFFIX construction variable (.ps by default) is added automatically to the target if it is
not already present. Example:

builds from aaa.tex
env.PostScript(target = 'aaa.ps', source = 'aaa.tex')
builds bbb.ps from bbb.dvi
env.PostScript(target = 'bbb', source = 'bbb.dvi')

POTUpdate()
env.POTUpdate()

The builder belongs to xgettext tool. The builder updates target POT file if exists or creates one if it doesn't.
The node is not built by default (i.e. it is Ignored from '.'), but only on demand (i.e. when given POT file is
required or when special alias is invoked). This builder adds its targe node (messages.pot, say) to a special
alias (pot-update by default, see $POTUPDATE_ALIAS) so you can update/create them easily with scons
pot-update. The file is not written until there is no real change in internationalized messages (or in comments
that enter POT file).

Note

You may see xgettext(1) being invoked by the xgettext tool even if there is no real change in
internationalized messages (so the POT file is not being updated). This happens every time a source file
has changed. In such case we invoke xgettext(1) and compare its output with the content of POT file to
decide whether the file should be updated or not.

Example 1. Let's create po/ directory and place following SConstruct script there:

 # SConstruct in 'po/' subdir
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(['foo'], ['../a.cpp', '../b.cpp'])
 env.POTUpdate(['bar'], ['../c.cpp', '../d.cpp'])

Then invoke scons few times:

 user@host:$ scons # Does not create foo.pot nor bar.pot
 user@host:$ scons foo.pot # Updates or creates foo.pot

58

 user@host:$ scons pot-update # Updates or creates foo.pot and bar.pot
 user@host:$ scons -c # Does not clean foo.pot nor bar.pot.

the results shall be as the comments above say.

Example 2. The POTUpdate builder may be used with no target specified, in which case default target
messages.pot will be used. The default target may also be overridden by setting $POTDOMAIN construction
variable or providing it as an override to POTUpdate builder:

 # SConstruct script
 env = Environment(tools = ['default', 'xgettext'])
 env['POTDOMAIN'] = "foo"
 env.POTUpdate(source = ["a.cpp", "b.cpp"]) # Creates foo.pot ...
 env.POTUpdate(POTDOMAIN = "bar", source = ["c.cpp", "d.cpp"]) # and bar.pot

Example 3. The sources may be specified within separate file, for example POTFILES.in:

 # POTFILES.in in 'po/' subdirectory
 ../a.cpp
 ../b.cpp
 # end of file

The name of the file (POTFILES.in) containing the list of sources is provided via $XGETTEXTFROM:

 # SConstruct file in 'po/' subdirectory
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(XGETTEXTFROM = 'POTFILES.in')

Example 4. You may use $XGETTEXTPATH to define source search path. Assume, for example, that you have
files a.cpp, b.cpp, po/SConstruct, po/POTFILES.in. Then your POT-related files could look as below:

 # POTFILES.in in 'po/' subdirectory
 a.cpp
 b.cpp
 # end of file

 # SConstruct file in 'po/' subdirectory
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(XGETTEXTFROM = 'POTFILES.in', XGETTEXTPATH='../')

Example 5. Multiple search directories may be defined within a list, i.e. XGETTEXTPATH = ['dir1',
'dir2', ...]. The order in the list determines the search order of source files. The path to the first file found
is used.

Let's create 0/1/po/SConstruct script:

 # SConstruct file in '0/1/po/' subdirectory
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(XGETTEXTFROM = 'POTFILES.in', XGETTEXTPATH=['../', '../../'])

and 0/1/po/POTFILES.in:

59

 # POTFILES.in in '0/1/po/' subdirectory
 a.cpp
 # end of file

Write two *.cpp files, the first one is 0/a.cpp:

 /* 0/a.cpp */
 gettext("Hello from ../../a.cpp")

and the second is 0/1/a.cpp:

 /* 0/1/a.cpp */
 gettext("Hello from ../a.cpp")

then run scons. You'll obtain 0/1/po/messages.pot with the message "Hello from ../a.cpp". When
you reverse order in $XGETTEXTFOM, i.e. when you write SConscript as

 # SConstruct file in '0/1/po/' subdirectory
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(XGETTEXTFROM = 'POTFILES.in', XGETTEXTPATH=['../../', '../'])

then the messages.pot will contain msgid "Hello from ../../a.cpp" line and not msgid "Hello
from ../a.cpp".

POUpdate()
env.POUpdate()

The builder belongs to msgmerge tool. The builder updates PO files with msgmerge(1), or initializes missing
PO files as described in documentation of msginit tool and POInit builder (see also $POAUTOINIT). Note,
that POUpdate does not add its targets to po-create alias as POInit does.

Target nodes defined through POUpdate are not built by default (they're Ignored from '.' node). Instead,
they are added automatically to special Alias ('po-update' by default). The alias name may be changed
through the $POUPDATE_ALIAS construction variable. You can easily update PO files in your project by scons
po-update.

Example 1. Update en.po and pl.po from messages.pot template (see also $POTDOMAIN), assuming that
the later one exists or there is rule to build it (see POTUpdate):

 # ...
 env.POUpdate(['en','pl']) # messages.pot --> [en.po, pl.po]

Example 2. Update en.po and pl.po from foo.pot template:

 # ...
 env.POUpdate(['en', 'pl'], ['foo']) # foo.pot --> [en.po, pl.pl]

Example 3. Update en.po and pl.po from foo.pot (another version):

 # ...

60

 env.POUpdate(['en', 'pl'], POTDOMAIN='foo') # foo.pot -- > [en.po, pl.pl]

Example 4. Update files for languages defined in LINGUAS file. The files are updated from messages.pot
template:

 # ...
 env.POUpdate(LINGUAS_FILE = 1) # needs 'LINGUAS' file

Example 5. Same as above, but update from foo.pot template:

 # ...
 env.POUpdate(LINGUAS_FILE = 1, source = ['foo'])

Example 6. Update en.po and pl.po plus files for languages defined in LINGUAS file. The files are updated
from messages.pot template:

 # produce 'en.po', 'pl.po' + files defined in 'LINGUAS':
 env.POUpdate(['en', 'pl'], LINGUAS_FILE = 1)

Example 7. Use $POAUTOINIT to automatically initialize PO file if it doesn't exist:

 # ...
 env.POUpdate(LINGUAS_FILE = 1, POAUTOINIT = 1)

Example 8. Update PO files for languages defined in LINGUAS file. The files are updated from foo.pot
template. All necessary settings are pre-configured via environment.

 # ...
 env['POAUTOINIT'] = 1
 env['LINGUAS_FILE'] = 1
 env['POTDOMAIN'] = 'foo'
 env.POUpdate()

Program()
env.Program()

Builds an executable given one or more object files or C, C++, D, or Fortran source files. If any C, C++, D or
Fortran source files are specified, then they will be automatically compiled to object files using the Object
builder method; see that builder method's description for a list of legal source file suffixes and how they are
interpreted. The target executable file prefix, specified by the $PROGPREFIX construction variable (nothing
by default), and suffix, specified by the $PROGSUFFIX construction variable (by default, .exe on Windows
systems, nothing on POSIX systems), are automatically added to the target if not already present. Example:

env.Program(target='foo', source=['foo.o', 'bar.c', 'baz.f'])

ProgramAllAtOnce()
env.ProgramAllAtOnce()

Builds an executable from D sources without first creating individual objects for each file.

D sources can be compiled file-by-file as C and C++ source are, and D is integrated into the scons Object and
Program builders for this model of build. D codes can though do whole source meta-programming (some of the

61

testing frameworks do this). For this it is imperative that all sources are compiled and linked in a single call to
the D compiler. This builder serves that purpose.

 env.ProgramAllAtOnce('executable', ['mod_a.d, mod_b.d', 'mod_c.d'])

This command will compile the modules mod_a, mod_b, and mod_c in a single compilation process without first
creating object files for the modules. Some of the D compilers will create executable.o others will not.

RES()
env.RES()

Builds a Microsoft Visual C++ resource file. This builder method is only provided when Microsoft Visual C++
or MinGW is being used as the compiler. The .res (or .o for MinGW) suffix is added to the target name if no
other suffix is given. The source file is scanned for implicit dependencies as though it were a C file. Example:

env.RES('resource.rc')

RMIC()
env.RMIC()

Builds stub and skeleton class files for remote objects from Java .class files. The target is a directory relative
to which the stub and skeleton class files will be written. The source can be the names of .class files, or the
objects return from the Java builder method.

If the construction variable $JAVACLASSDIR is set, either in the environment or in the call to the RMIC builder
method itself, then the value of the variable will be stripped from the beginning of any .class file names.

classes = env.Java(target = 'classdir', source = 'src')
env.RMIC(target = 'outdir1', source = classes)

env.RMIC(target = 'outdir2',
 source = ['package/foo.class', 'package/bar.class'])

env.RMIC(target = 'outdir3',
 source = ['classes/foo.class', 'classes/bar.class'],
 JAVACLASSDIR = 'classes')

RPCGenClient()
env.RPCGenClient()

Generates an RPC client stub (_clnt.c) file from a specified RPC (.x) source file. Because rpcgen only builds
output files in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_clnt.c
env.RPCGenClient('src/rpcif.x')

RPCGenHeader()
env.RPCGenHeader()

Generates an RPC header (.h) file from a specified RPC (.x) source file. Because rpcgen only builds output files
in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif.h
env.RPCGenHeader('src/rpcif.x')

62

RPCGenService()
env.RPCGenService()

Generates an RPC server-skeleton (_svc.c) file from a specified RPC (.x) source file. Because rpcgen only
builds output files in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_svc.c
env.RPCGenClient('src/rpcif.x')

RPCGenXDR()
env.RPCGenXDR()

Generates an RPC XDR routine (_xdr.c) file from a specified RPC (.x) source file. Because rpcgen only builds
output files in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_xdr.c
env.RPCGenClient('src/rpcif.x')

SharedLibrary()
env.SharedLibrary()

Builds a shared library (.so on a POSIX system, .dll on Windows) given one or more object files or C, C++,
D or Fortran source files. If any source files are given, then they will be automatically compiled to object files.
The target library file prefix, specified by the $SHLIBPREFIX construction variable (by default, lib on POSIX
systems, nothing on Windows systems), and suffix, specified by the $SHLIBSUFFIX construction variable (by
default, .dll on Windows systems, .so on POSIX systems), are automatically added to the target if not already
present. Example:

env.SharedLibrary(target='bar', source=['bar.c', 'foo.o'])

On Windows systems, the SharedLibrary builder method will always build an import library (.lib) in
addition to the shared library (.dll), adding a .lib library with the same basename if there is not already a
.lib file explicitly listed in the targets.

On Cygwin systems, the SharedLibrary builder method will always build an import library (.dll.a) in
addition to the shared library (.dll), adding a .dll.a library with the same basename if there is not already
a .dll.a file explicitly listed in the targets.

Any object files listed in the source must have been built for a shared library (that is, using the SharedObject
builder method). scons will raise an error if there is any mismatch.

On some platforms, there is a distinction between a shared library (loaded automatically by the system to resolve
external references) and a loadable module (explicitly loaded by user action). For maximum portability, use the
LoadableModule builder for the latter.

When the $SHLIBVERSION construction variable is defined, a versioned shared library is created. This modifies
$SHLINKFLAGS as required, adds the version number to the library name, and creates any symbolic links that
are needed.

env.SharedLibrary(target='bar', source=['bar.c', 'foo.o'], SHLIBVERSION='1.5.2')

On a POSIX system, versions with a single token create exactly one symlink: libbar.so.6 would have
symlink libbar.so only. On a POSIX system, versions with two or more tokens create exactly two symlinks:
libbar.so.2.3.1 would have symlinks libbar.so and libbar.so.2; on a Darwin (OSX) system the
library would be libbar.2.3.1.dylib and the link would be libbar.dylib.

63

On Windows systems, specifying register=1 will cause the .dll to be registered after it is built. The
command that is run is determined by the $REGSVR construction variable (regsvr32 by default), and the flags
passed are determined by $REGSVRFLAGS. By default, $REGSVRFLAGS includes the /s option, to prevent
dialogs from popping up and requiring user attention when it is run. If you change $REGSVRFLAGS, be sure to
include the /s option. For example,

env.SharedLibrary(target='bar', source=['bar.cxx', 'foo.obj'], register=1)

will register bar.dll as a COM object when it is done linking it.

SharedObject()
env.SharedObject()

Builds an object file intended for inclusion in a shared library. Source files must have one of the same set of
extensions specified above for the StaticObject builder method. On some platforms building a shared object
requires additional compiler option (e.g. -fPIC for gcc) in addition to those needed to build a normal (static)
object, but on some platforms there is no difference between a shared object and a normal (static) one. When there
is a difference, SCons will only allow shared objects to be linked into a shared library, and will use a different
suffix for shared objects. On platforms where there is no difference, SCons will allow both normal (static) and
shared objects to be linked into a shared library, and will use the same suffix for shared and normal (static) objects.
The target object file prefix, specified by the $SHOBJPREFIX construction variable (by default, the same as
$OBJPREFIX), and suffix, specified by the $SHOBJSUFFIX construction variable, are automatically added to
the target if not already present. Examples:

env.SharedObject(target='ddd', source='ddd.c')
env.SharedObject(target='eee.o', source='eee.cpp')
env.SharedObject(target='fff.obj', source='fff.for')

Note that the source files will be scanned according to the suffix mappings in the SourceFileScanner object.
See the manpage section "Scanner Objects" for more information.

StaticLibrary()
env.StaticLibrary()

Builds a static library given one or more object files or C, C++, D or Fortran source files. If any source files
are given, then they will be automatically compiled to object files. The static library file prefix, specified by
the $LIBPREFIX construction variable (by default, lib on POSIX systems, nothing on Windows systems),
and suffix, specified by the $LIBSUFFIX construction variable (by default, .lib on Windows systems, .a on
POSIX systems), are automatically added to the target if not already present. Example:

env.StaticLibrary(target='bar', source=['bar.c', 'foo.o'])

Any object files listed in the source must have been built for a static library (that is, using the StaticObject
builder method). scons will raise an error if there is any mismatch.

StaticObject()
env.StaticObject()

Builds a static object file from one or more C, C++, D, or Fortran source files. Source files must have one of
the following extensions:

 .asm assembly language file
 .ASM assembly language file
 .c C file

64

 .C Windows: C file
 POSIX: C++ file
 .cc C++ file
 .cpp C++ file
 .cxx C++ file
 .cxx C++ file
 .c++ C++ file
 .C++ C++ file
 .d D file
 .f Fortran file
 .F Windows: Fortran file
 POSIX: Fortran file + C pre-processor
 .for Fortran file
 .FOR Fortran file
 .fpp Fortran file + C pre-processor
 .FPP Fortran file + C pre-processor
 .m Object C file
 .mm Object C++ file
 .s assembly language file
 .S Windows: assembly language file
 ARM: CodeSourcery Sourcery Lite
 .sx assembly language file + C pre-processor
 POSIX: assembly language file + C pre-processor
 .spp assembly language file + C pre-processor
 .SPP assembly language file + C pre-processor

The target object file prefix, specified by the $OBJPREFIX construction variable (nothing by default), and suffix,
specified by the $OBJSUFFIX construction variable (.obj on Windows systems, .o on POSIX systems), are
automatically added to the target if not already present. Examples:

env.StaticObject(target='aaa', source='aaa.c')
env.StaticObject(target='bbb.o', source='bbb.c++')
env.StaticObject(target='ccc.obj', source='ccc.f')

Note that the source files will be scanned according to the suffix mappings in the SourceFileScanner object.
See the manpage section "Scanner Objects" for more information.

Substfile()
env.Substfile()

The Substfile builder creates a single text file from a template consisting of a file or set of files (or nodes),
replacing text using the $SUBST_DICT construction variable (if set). If a set, they are concatenated into the target
file using the value of the $LINESEPARATOR construction variable as a separator between contents; the separator
is not emitted after the contents of the last file. Nested lists of source files are flattened. See also Textfile.

If a single source file name is specified and has a .in suffix, the suffix is stripped and the remainder of the name
is used as the default target name.

The prefix and suffix specified by the $SUBSTFILEPREFIX and $SUBSTFILESUFFIX construction variables
(an empty string by default in both cases) are automatically added to the target if they are not already present.

If a construction variable named $SUBST_DICT is present, it may be either a Python dictionary or a sequence of
(key, value) tuples. If it is a dictionary it is converted into a list of tuples with unspecified order, so if one key is
a prefix of another key or if one substitution could be further expanded by another subsitition, it is unpredictable
whether the expansion will occur.

65

Any occurrences of a key in the source are replaced by the corresponding value, which may be a Python callable
function or a string. If the value is a callable, it is called with no arguments to get a string. Strings are subst-
expanded and the result replaces the key.

env = Environment(tools=['default'])

env['prefix'] = '/usr/bin'
script_dict = {'@prefix@': '/bin', '@exec_prefix@': '$prefix'}
env.Substfile('script.in', SUBST_DICT=script_dict)

conf_dict = {'%VERSION%': '1.2.3', '%BASE%': 'MyProg'}
env.Substfile('config.h.in', conf_dict, SUBST_DICT=conf_dict)

UNPREDICTABLE - one key is a prefix of another
bad_foo = {'$foo': '$foo', '$foobar': '$foobar'}
env.Substfile('foo.in', SUBST_DICT=bad_foo)

PREDICTABLE - keys are applied longest first
good_foo = [('$foobar', '$foobar'), ('$foo', '$foo')]
env.Substfile('foo.in', SUBST_DICT=good_foo)

UNPREDICTABLE - one substitution could be futher expanded
bad_bar = {'@bar@': '@soap@', '@soap@': 'lye'}
env.Substfile('bar.in', SUBST_DICT=bad_bar)

PREDICTABLE - substitutions are expanded in order
good_bar = (('@bar@', '@soap@'), ('@soap@', 'lye'))
env.Substfile('bar.in', SUBST_DICT=good_bar)

the SUBST_DICT may be in common (and not an override)
substutions = {}
subst = Environment(tools=['textfile'], SUBST_DICT=substitutions)
substitutions['@foo@'] = 'foo'
subst['SUBST_DICT']['@bar@'] = 'bar'
subst.Substfile(
 'pgm1.c',
 [Value('#include "@foo@.h"'), Value('#include "@bar@.h"'), "common.in", "pgm1.in"],
)
subst.Substfile(
 'pgm2.c',
 [Value('#include "@foo@.h"'), Value('#include "@bar@.h"'), "common.in", "pgm2.in"],
)

Tar()
env.Tar()

Builds a tar archive of the specified files and/or directories. Unlike most builder methods, the Tar builder method
may be called multiple times for a given target; each additional call adds to the list of entries that will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env.Tar('src.tar', 'src')

66

Create the stuff.tar file.
env.Tar('stuff', ['subdir1', 'subdir2'])
Also add "another" to the stuff.tar file.
env.Tar('stuff', 'another')

Set TARFLAGS to create a gzip-filtered archive.
env = Environment(TARFLAGS = '-c -z')
env.Tar('foo.tar.gz', 'foo')

Also set the suffix to .tgz.
env = Environment(TARFLAGS = '-c -z',
 TARSUFFIX = '.tgz')
env.Tar('foo')

Textfile()
env.Textfile()

The Textfile builder generates a single text file from a template consisting of a list of strings, replacing text
using the $SUBST_DICT construction variable (if set) - see Substfile for a description of replacement. The
strings will be separated in the target file using the value of the $LINESEPARATOR construction variable; the
line separator is not emitted after the last string. Nested lists of source strings are flattened. Source strings need
not literally be Python strings: they can be Nodes or Python objects that convert cleanly to Value nodes

The prefix and suffix specified by the $TEXTFILEPREFIX and $TEXTFILESUFFIX construction variables
(by default an empty string and .txt, respectively) are automatically added to the target if they are not already
present. Examples:

builds/writes foo.txt
env.Textfile(target='foo.txt', source=['Goethe', 42, 'Schiller'])

builds/writes bar.txt
env.Textfile(target='bar', source=['lalala', 'tanteratei'], LINESEPARATOR='|*')

nested lists are flattened automatically
env.Textfile(target='blob', source=['lalala', ['Goethe', 42, 'Schiller'], 'tanteratei'])

files may be used as input by wraping them in File()
env.Textfile(
 target='concat', # concatenate files with a marker between
 source=[File('concat1'), File('concat2')],
 LINESEPARATOR='====================\n',
)

Results:

foo.txt

 Goethe
 42
 Schiller

bar.txt

 lalala|*tanteratei

67

blob.txt

 lalala
 Goethe
 42
 Schiller
 tanteratei

Translate()
env.Translate()

This pseudo-builder belongs to gettext toolset. The builder extracts internationalized messages from source
files, updates POT template (if necessary) and then updates PO translations (if necessary). If $POAUTOINIT
is set, missing PO files will be automatically created (i.e. without translator person intervention). The variables
$LINGUAS_FILE and $POTDOMAIN are taken into acount too. All other construction variables used by
POTUpdate, and POUpdate work here too.

Example 1. The simplest way is to specify input files and output languages inline in a SCons script when invoking
Translate

SConscript in 'po/' directory
env = Environment(tools = ["default", "gettext"])
env['POAUTOINIT'] = 1
env.Translate(['en','pl'], ['../a.cpp','../b.cpp'])

Example 2. If you wish, you may also stick to conventional style known from autotools, i.e. using POTFILES.in
and LINGUAS files

LINGUAS
en pl
#end

POTFILES.in
a.cpp
b.cpp
end

SConscript
env = Environment(tools = ["default", "gettext"])
env['POAUTOINIT'] = 1
env['XGETTEXTPATH'] = ['../']
env.Translate(LINGUAS_FILE = 1, XGETTEXTFROM = 'POTFILES.in')

The last approach is perhaps the recommended one. It allows easily split internationalization/localization onto
separate SCons scripts, where a script in source tree is responsible for translations (from sources to PO files) and
script(s) under variant directories are responsible for compilation of PO to MO files to and for installation of MO
files. The "gluing factor" synchronizing these two scripts is then the content of LINGUAS file. Note, that the
updated POT and PO files are usually going to be committed back to the repository, so they must be updated
within the source directory (and not in variant directories). Additionaly, the file listing of po/ directory contains
LINGUAS file, so the source tree looks familiar to translators, and they may work with the project in their usual
way.

68

Example 3. Let's prepare a development tree as below

 project/
 + SConstruct
 + build/
 + src/
 + po/
 + SConscript
 + SConscript.i18n
 + POTFILES.in
 + LINGUAS

with build being variant directory. Write the top-level SConstruct script as follows

 # SConstruct
 env = Environment(tools = ["default", "gettext"])
 VariantDir('build', 'src', duplicate = 0)
 env['POAUTOINIT'] = 1
 SConscript('src/po/SConscript.i18n', exports = 'env')
 SConscript('build/po/SConscript', exports = 'env')

the src/po/SConscript.i18n as

 # src/po/SConscript.i18n
 Import('env')
 env.Translate(LINGUAS_FILE=1, XGETTEXTFROM='POTFILES.in', XGETTEXTPATH=['../'])

and the src/po/SConscript

 # src/po/SConscript
 Import('env')
 env.MOFiles(LINGUAS_FILE = 1)

Such setup produces POT and PO files under source tree in src/po/ and binary MO files under variant tree in
build/po/. This way the POT and PO files are separated from other output files, which must not be committed
back to source repositories (e.g. MO files).

Note

In above example, the PO files are not updated, nor created automatically when you issue scons '.'
command. The files must be updated (created) by hand via scons po-update and then MO files can be
compiled by running scons '.'.

TypeLibrary()
env.TypeLibrary()

Builds a Windows type library (.tlb) file from an input IDL file (.idl). In addition, it will build the associated
interface stub and proxy source files, naming them according to the base name of the .idl file. For example,

env.TypeLibrary(source="foo.idl")

Will create foo.tlb, foo.h, foo_i.c, foo_p.c and foo_data.c files.

69

Uic()
env.Uic()

Builds a header file, an implementation file and a moc file from an ui file. and returns the corresponding nodes in
the that order. This builder is only available after using the tool qt. Note: you can specify .ui files directly as
source files to the Program, Library and SharedLibrary builders without using this builder. Using this
builder lets you override the standard naming conventions (be careful: prefixes are always prepended to names
of built files; if you don't want prefixes, you may set them to ``). See the $QTDIR variable for more information.
Example:

env.Uic('foo.ui') # -> ['foo.h', 'uic_foo.cc', 'moc_foo.cc']
env.Uic(
 target=Split('include/foo.h gen/uicfoo.cc gen/mocfoo.cc'),
 source='foo.ui'
) # -> ['include/foo.h', 'gen/uicfoo.cc', 'gen/mocfoo.cc']

Zip()
env.Zip()

Builds a zip archive of the specified files and/or directories. Unlike most builder methods, the Zip builder method
may be called multiple times for a given target; each additional call adds to the list of entries that will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env.Zip('src.zip', 'src')

Create the stuff.zip file.
env.Zip('stuff', ['subdir1', 'subdir2'])
Also add "another" to the stuff.tar file.
env.Zip('stuff', 'another')

All targets of builder methods automatically depend on their sources. An explicit dependency can be specified using
the env.Depends method of a construction environment (see below).

In addition, scons automatically scans source files for various programming languages, so the dependencies do not
need to be specified explicitly. By default, SCons can C source files, C++ source files, Fortran source files with .F
(POSIX systems only), .fpp, or .FPP file extensions, and assembly language files with .S (POSIX systems only),
.spp, or .SPP files extensions for C preprocessor dependencies. SCons also has default support for scanning D
source files, You can also write your own Scanners to add support for additional source file types. These can be added
to the default Scanner object used by the Object, StaticObject and SharedObject Builders by adding them
to the SourceFileScanner object. See the section called “Scanner Objects” for more information about defining
your own Scanner objects and using the SourceFileScanner object.

Methods and Functions To Do Things

In addition to Builder methods, scons provides a number of other construction environment methods and global
functions to manipulate the build configuration.

Usually, a construction environment method and global function with the same name both exist for convenience. In
the following list, the global function is documented in this style:

Function(arguments, [optional arguments])

and the construction environment method looks like:

70

env.Function(arguments, [optional arguments])

If the function can be called both ways, then both forms are listed.

The global function and same-named construction environment method provide almost identical functionality, with a
couple of exceptions. First, many of the construction environment methods affect only that construction environment,
while the global function has a global effect. Second, where appropriate, calling the functionality through a construction
environment will substitute construction variables into any supplied string arguments, while the global function doesn't
have the context of a construction environment to pick variables from, so it cannot perform the substitution. For
example:

Default('$FOO')

env = Environment(FOO='foo')
env.Default('$FOO')

In the above example, the call to the global Default function will add a target named $FOO to the list of default
targets, while the call to the env.Default construction environment method will expand the value and add a
target named foo to the list of default targets. For more on construction variable expansion, see the next section on
construction variables.

Global functions may be called from custom Python modules that you import into an SConscript file by adding the
following import to the Python module:

from SCons.Script import *

Construction environment methods and global functions provided by scons include:

Action(action, [output, [var, ...]] [key=value, ...])
env.Action(action, [output, [var, ...]] [key=value, ...])

A factory function to create an Action object for the specified action. See the manpage section "Action Objects"
for a complete explanation of the arguments and behavior.

Note that the env.Action form of the invocation will expand construction variables in any argument strings,
including the action argument, at the time it is called using the construction variables in the env construction
environment through which env.Action was called. The Action global function form delays all variable
expansion until the Action object is actually used.

AddMethod(object, function, [name])
env.AddMethod(function, [name])

Adds function to an object as a method. function will be called with an instance object as the first argument
as for other methods. If name is given, it is used as the name of the new method, else the name of function
is used.

When the global function AddMethod is called, the object to add the method to must be passed as the first
argument; typically this will be Environment, in order to create a method which applies to all construction
environments subsequently constructed. When called using the env.AddMethod form, the method is added to
the specified construction environment only. Added methods propagate through env.Clone calls.

More examples:

Function to add must accept an instance argument.

71

The Python convention is to call this 'self'.
def my_method(self, arg):
 print("my_method() got", arg)

Use the global function to add a method to the Environment class:
AddMethod(Environment, my_method)
env = Environment()
env.my_method('arg')

Use the optional name argument to set the name of the method:
env.AddMethod(my_method, 'other_method_name')
env.other_method_name('another arg')

AddOption(arguments)
Adds a local (project-specific) command-line option. arguments are the same as those supported by the
add_option method in the standard Python library module optparse, with a few additional capabilities noted
below. See the documentation for optparse for a thorough discussion of its option-processing capabities.

In addition to the arguments and values supported by the optparse add_option method, AddOption allows
setting the nargs keyword value to a string consisting of a question mark ('?') to indicate that the option
argument for that option string is optional. If the option string is present on the command line but has no matching
option argument, the value of the const keyword argument is produced as the value of the option. If the option
string is omitted from the command line, the value of the default keyword argument is produced, as usual; if
there is no default keyword argument in the AddOption call, None is produced.

optparse recognizes abbreviations of long option names, as long as they can be unambiguously resolved. For
example, if add_option is called to define a --devicename option, it will recognize --device, --dev
and so forth as long as there is no other option which could also match to the same abbreviation. Options added via
AddOption do not support the automatic recognition of abbreviations. Instead, to allow specific abbreviations,
include them as synonyms in the AddOption call itself.

Once a new command-line option has been added with AddOption, the option value may be accessed
using GetOption or env.GetOption. SetOption is not currently supported for options added with
AddOption.

Help text for an option is a combination of the string supplied in the help keyword argument to AddOption and
information collected from the other keyword arguments. Such help is displayed if the -h command line option
is used (but not with -H). Help for all local options is displayed under the separate heading Local Options. The
options are unsorted - they will appear in the help text in the order in which the AddOption calls occur.

Example:

AddOption(
 '--prefix',
 dest='prefix',
 nargs=1,
 type='string',
 action='store',
 metavar='DIR',
 help='installation prefix',
)
env = Environment(PREFIX=GetOption('prefix'))

For that example, the following help text would be produced:

72

Local Options:
 --prefix=DIR installation prefix

Help text for local options may be unavailable if the Help function has been called, see the Help documentation
for details.

Note

As an artifact of the internal implementation, the behavior of options added by AddOption which
take option arguments is undefined if whitespace (rather than an = sign) is used as the separator on the
command line. Users should avoid such usage; it is recommended to add a note to this effect to project
documentation if the situation is likely to arise. In addition, if the nargs keyword is used to specify
more than one following option argument (that is, with a value of 2 or greater), such arguments would
necessarily be whitespace separated, triggering the issue. Developers should not use AddOption this
way. Future versions of SCons will likely forbid such usage.

AddPostAction(target, action)
env.AddPostAction(target, action)

Arranges for the specified action to be performed after the specified target has been built. The specified
action(s) may be an Action object, or anything that can be converted into an Action object See the manpage section
"Action Objects" for a complete explanation.

When multiple targets are supplied, the action may be called multiple times, once after each action that generates
one or more targets in the list.

AddPreAction(target, action)
env.AddPreAction(target, action)

Arranges for the specified action to be performed before the specified target is built. The specified action(s)
may be an Action object, or anything that can be converted into an Action object See the manpage section "Action
Objects" for a complete explanation.

When multiple targets are specified, the action(s) may be called multiple times, once before each action that
generates one or more targets in the list.

Note that if any of the targets are built in multiple steps, the action will be invoked just before the "final" action that
specifically generates the specified target(s). For example, when building an executable program from a specified
source .c file via an intermediate object file:

foo = Program('foo.c')
AddPreAction(foo, 'pre_action')

The specified pre_action would be executed before scons calls the link command that actually generates the
executable program binary foo, not before compiling the foo.c file into an object file.

Alias(alias, [targets, [action]])
env.Alias(alias, [targets, [action]])

Creates one or more phony targets that expand to one or more other targets. An optional action (command) or
list of actions can be specified that will be executed whenever the any of the alias targets are out-of-date. Returns
the Node object representing the alias, which exists outside of any file system. This Node object, or the alias name,
may be used as a dependency of any other target, including another alias. Alias can be called multiple times for
the same alias to add additional targets to the alias, or additional actions to the list for this alias. Aliases are global
even if set through the construction environment method.

Examples:

73

Alias('install')
Alias('install', '/usr/bin')
Alias(['install', 'install-lib'], '/usr/local/lib')

env.Alias('install', ['/usr/local/bin', '/usr/local/lib'])
env.Alias('install', ['/usr/local/man'])

env.Alias('update', ['file1', 'file2'], "update_database $SOURCES")

AllowSubstExceptions([exception, ...])
Specifies the exceptions that will be allowed when expanding construction variables. By default, any construction
variable expansions that generate a NameError or IndexError exception will expand to a '' (an empty
string) and not cause scons to fail. All exceptions not in the specified list will generate an error message and
terminate processing.

If AllowSubstExceptions is called multiple times, each call completely overwrites the previous list of
allowed exceptions.

Example:

Requires that all construction variable names exist.
(You may wish to do this if you want to enforce strictly
that all construction variables must be defined before use.)
AllowSubstExceptions()

Also allow a string containing a zero-division expansion
like '${1 / 0}' to evalute to ''.
AllowSubstExceptions(IndexError, NameError, ZeroDivisionError)

AlwaysBuild(target, ...)
env.AlwaysBuild(target, ...)

Marks each given target so that it is always assumed to be out of date, and will always be rebuilt if needed.
Note, however, that AlwaysBuild does not add its target(s) to the default target list, so the targets will only be
built if they are specified on the command line, or are a dependent of a target specified on the command line--but
they will always be built if so specified. Multiple targets can be passed in to a single call to AlwaysBuild.

env.Append(key=val, [...])
Intelligently append values to construction variables in the construction environment named by env. The
construction variables and values to add to them are passed as key=val pairs (Python keyword arguments).
env.Append is designed to allow adding values without normally having to know the data type of an existing
construction variable. Regular Python syntax can also be used to manipulate the construction variable, but for that
you must know the type of the construction variable: for example, different Python syntax is needed to combine
a list of values with a single string value, or vice versa. Some pre-defined construction variables do have type
expectations based on how SCons will use them, for example $CPPDEFINES is normally a string or a list of
strings, but can be a string, a list of strings, a list of tuples, or a dictionary, while $LIBEMITTER would expect
a callable or list of callables, and $BUILDERS would expect a mapping type. Consult the documentation for the
various construction variables for more details.

The following descriptions apply to both the append and prepend functions, the only difference being the insertion
point of the added values.

If env. does not have a construction variable indicated by key, val is added to the environment under that key
as-is.

74

val can be almost any type, and SCons will combine it with an existing value into an appropriate type, but
there are a few special cases to be aware of. When two strings are combined, the result is normally a new string,
with the caller responsible for supplying any needed separation. The exception to this is the construction variable
$CPPDEFINES, in which each item will be postprocessed by adding a prefix and/or suffix, so the contents are
treated as a list of strings, that is, adding a string will result in a separate string entry, not a combined string.
For $CPPDEFINES as well as for $LIBS, and the various *PATH; variables, SCons will supply the compiler-
specific syntax (e.g. adding a -D or /D prefix for $CPPDEFINES), so this syntax should be omitted when adding
values to these variables. Example (gcc syntax shown in the expansion of CPPDEFINES):

env = Environment(CXXFLAGS="-std=c11", CPPDEFINES="RELEASE")
print("CXXFLAGS={}, CPPDEFINES={}".format(env['CXXFLAGS'], env['CPPDEFINES']))
notice including a leading space in CXXFLAGS value
env.Append(CXXFLAGS=" -O", CPPDEFINES="EXTRA")
print("CXXFLAGS={}, CPPDEFINES={}".format(env['CXXFLAGS'], env['CPPDEFINES']))
print("CPPDEFINES will expand to {}".format(env.subst("$_CPPDEFFLAGS")))

$ scons -Q
CXXFLAGS=-std=c11, CPPDEFINES=RELEASE
CXXFLAGS=-std=c11 -O, CPPDEFINES=['RELEASE', 'EXTRA']
CPPDEFINES will expand to -DRELEASE -DEXTRA
scons: `.' is up to date.

Because $CPPDEFINES is intended to describe C/C++ pre-processor macro definitions, it accepts additional
syntax. Preprocessor macros can be valued, or un-valued, as in -DBAR=1 or -DFOO. The macro can be be supplied
as a complete string including the value, or as a tuple (or list) of macro, value, or as a dictionary. Example (again
gcc syntax in the expanded defines):

env = Environment(CPPDEFINES="FOO")
print("CPPDEFINES={}".format(env['CPPDEFINES']))
env.Append(CPPDEFINES="BAR=1")
print("CPPDEFINES={}".format(env['CPPDEFINES']))
env.Append(CPPDEFINES=("OTHER", 2))
print("CPPDEFINES={}".format(env['CPPDEFINES']))
env.Append(CPPDEFINES={"EXTRA": "arg"})
print("CPPDEFINES={}".format(env['CPPDEFINES']))
print("CPPDEFINES will expand to {}".format(env.subst("$_CPPDEFFLAGS")))

$ scons -Q
CPPDEFINES=FOO
CPPDEFINES=['FOO', 'BAR=1']
CPPDEFINES=['FOO', 'BAR=1', ('OTHER', 2)]
CPPDEFINES=['FOO', 'BAR=1', ('OTHER', 2), {'EXTRA': 'arg'}]
CPPDEFINES will expand to -DFOO -DBAR=1 -DOTHER=2 -DEXTRA=arg
scons: `.' is up to date.

Adding a string val to a dictonary construction variable will enter val as the key in the dict, and None as its
value. Using a tuple type to supply a key + value only works for the special case of $CPPDEFINES described
above.

Although most combinations of types work without needing to know the details, some combinations do not make
sense and a Python exception will be raised.

75

When using env.Append to modify construction variables which are path specifications (conventionally, the
names of such end in PATH), it is recommended to add the values as a list of strings, even if there is only a single
string to add. The same goes for adding library names to $LIBS.

env.Append(CPPPATH=["#/include"])

See also env.AppendUnique, env.Prepend and env.PrependUnique.

env.AppendENVPath(name, newpath, [envname, sep, delete_existing=False])
Append path elements specified by newpath to the given search path string or list name in mapping envname
in the construction environment. Supplying envname is optional: the default is the execution environment $ENV.
Optional sep is used as the search path separator, the default is the platform's separator (os.pathsep). A
path element will only appear once. Any duplicates in newpath are dropped, keeping the last appearing (to
preserve path order). If delete_existing is False (the default) any addition duplicating an existing path
element is ignored; if delete_existing is True the existing value will be dropped and the path element
will be added at the end. To help maintain uniqueness all paths are normalized (using os.path.normpath
and os.path.normcase).

Example:

print('before:', env['ENV']['INCLUDE'])
include_path = '/foo/bar:/foo'
env.AppendENVPath('INCLUDE', include_path)
print('after:', env['ENV']['INCLUDE'])

Yields:

before: /foo:/biz
after: /biz:/foo/bar:/foo

See also env.PrependENVPath.

env.AppendUnique(key=val, [...], delete_existing=False)
Append values to construction variables in the current construction environment, maintaining uniqueness. Works
like env.Append (see for details), except that values already present in the construction variable will not be
added again. If delete_existing is True, the existing matching value is first removed, and the requested
value is added, having the effect of moving such values to the end.

Example:

env.AppendUnique(CCFLAGS='-g', FOO=['foo.yyy'])

See also env.Append, env.Prepend and env.PrependUnique.

Builder(action, [arguments])
env.Builder(action, [arguments])

Creates a Builder object for the specified action. See the manpage section "Builder Objects" for a complete
explanation of the arguments and behavior.

Note that the env.Builder() form of the invocation will expand construction variables in any arguments strings,
including the action argument, at the time it is called using the construction variables in the env construction
environment through which env.Builder was called. The Builder form delays all variable expansion until
after the Builder object is actually called.

76

CacheDir(cache_dir, custom_class=None)
env.CacheDir(cache_dir, custom_class=None)

Direct scons to maintain a derived-file cache in cache_dir. The derived files in the cache will be shared among
all the builds specifying the same cache_dir. Specifying a cache_dir of None disables derived file caching.

When specifying a custom_class which should be a class type which is a subclass of
SCons.CacheDir.CacheDir, SCons will internally invoke this class to use for performing
caching operations. This argument is optional and if left to default None, will use the default
SCons.CacheDir.CacheDir class.

Calling the environment method env.CacheDir limits the effect to targets built through the specified
construction environment. Calling the global function CacheDir sets a global default that will be used by
all targets built through construction environments that do not set up environment-specific caching by calling
env.CacheDir.

When derived-file caching is being used and scons finds a derived file that needs to be rebuilt, it will first look
in the cache to see if a file with matching build signature exists (indicating the input file(s) and build action(s)
were identical to those for the current target), and if so, will retrieve the file from the cache. scons will report
Retrieved `file' from cache instead of the normal build message. If the derived file is not present in
the cache, scons will build it and then place a copy of the built file in the cache, identified by its build signature,
for future use.

The Retrieved `file' from cache messages are useful for human consumption, but less so when
comparing log files between scons runs which will show differences that are noisy and not actually significant.
To disable, use the --cache-show option. With this option, scons will print the action that would have been
used to build the file without considering cache retrieval.

Derived-file caching may be disabled for any invocation of scons by giving the --cache-disable command
line option. Cache updating may be disabled, leaving cache fetching enabled, by giving the --cache-
readonly.

If the --cache-force option is used, scons will place a copy of all derived files in the cache, even if they
already existed and were not built by this invocation. This is useful to populate a cache the first time a cache_dir
is used for a build, or to bring a cache up to date after a build with cache updating disabled (--cache-disable
or --cache-readonly) has been done.

The NoCache method can be used to disable caching of specific files. This can be useful if inputs and/or outputs
of some tool are impossible to predict or prohibitively large.

Note that (at this time) SCons provides no facilities for managing the derived-file cache. It is up to the developer
to arrange for cache pruning, expiry, etc. if needed.

Clean(targets, files_or_dirs)
env.Clean(targets, files_or_dirs)

This specifies a list of files or directories which should be removed whenever the targets are specified with the -
c command line option. The specified targets may be a list or an individual target. Multiple calls to Clean are
legal, and create new targets or add files and directories to the clean list for the specified targets.

Multiple files or directories should be specified either as separate arguments to the Clean method, or as a list.
Clean will also accept the return value of any of the construction environment Builder methods. Examples:

The related NoClean function overrides calling Clean for the same target, and any targets passed to both
functions will not be removed by the -c option.

Examples:

77

Clean('foo', ['bar', 'baz'])
Clean('dist', env.Program('hello', 'hello.c'))
Clean(['foo', 'bar'], 'something_else_to_clean')

In this example, installing the project creates a subdirectory for the documentation. This statement causes the
subdirectory to be removed if the project is deinstalled.

Clean(docdir, os.path.join(docdir, projectname))

env.Clone([key=val, ...])
Returns a separate copy of a construction environment. If there are any keyword arguments specified, they are
added to the returned copy, overwriting any existing values for the keywords.

Example:

env2 = env.Clone()
env3 = env.Clone(CCFLAGS='-g')

Additionally, a list of tools and a toolpath may be specified, as in the Environment constructor:

def MyTool(env):
 env['FOO'] = 'bar'

env4 = env.Clone(tools=['msvc', MyTool])

The parse_flags keyword argument is also recognized to allow merging command-line style arguments into
the appropriate construction variables (see env.MergeFlags).

create an environment for compiling programs that use wxWidgets
wx_env = env.Clone(parse_flags='!wx-config --cflags --cxxflags')

Command(target, source, action, [key=val, ...])
env.Command(target, source, action, [key=val, ...])

Executes a specific action (or list of actions) to build a target file or files from a source file or files. This
is more convenient than defining a separate Builder object for a single special-case build.

The Command function accepts source_scanner, target_scanner, source_factory, and
target_factory keyword arguments. These arguments can be used to specify a Scanner object that will be
used to apply a custom scanner for a source or target. For example, the global DirScanner object can be used if
any of the sources will be directories that must be scanned on-disk for changes to files that aren't already specified
in other Builder of function calls. The *_factory arguments take a factory function that Command will use to
turn any sources or targets specified as strings into SCons Nodes. See the manpage section "Builder Objects" for
more information about how these arguments work in a Builder.

Any other keyword arguments specified override any same-named existing construction variables.

An action can be an external command, specified as a string, or a callable Python object; see the manpage section
"Action Objects" for more complete information. Also note that a string specifying an external command may be
preceded by an at-sign (@) to suppress printing the command in question, or by a hyphen (-) to ignore the exit
status of the external command.

Examples:

78

env.Command(
 target='foo.out',
 source='foo.in',
 action="$FOO_BUILD < $SOURCES > $TARGET"
)

env.Command(
 target='bar.out',
 source='bar.in',
 action=["rm -f $TARGET", "$BAR_BUILD < $SOURCES > $TARGET"],
 ENV={'PATH': '/usr/local/bin/'},
)

import os
def rename(env, target, source):
 os.rename('.tmp', str(target[0]))

env.Command(
 target='baz.out',
 source='baz.in',
 action=["$BAZ_BUILD < $SOURCES > .tmp", rename],
)

Note that the Command function will usually assume, by default, that the specified targets and/or sources are
Files, if no other part of the configuration identifies what type of entries they are. If necessary, you can explicitly
specify that targets or source nodes should be treated as directories by using the Dir or env.Dir functions.

Examples:

env.Command('ddd.list', Dir('ddd'), 'ls -l $SOURCE > $TARGET')

env['DISTDIR'] = 'destination/directory'
env.Command(env.Dir('$DISTDIR')), None, make_distdir)

Also note that SCons will usually automatically create any directory necessary to hold a target file, so you normally
don't need to create directories by hand.

Configure(env, [custom_tests, conf_dir, log_file, config_h])
env.Configure([custom_tests, conf_dir, log_file, config_h])

Creates a Configure object for integrated functionality similar to GNU autoconf. See the manpage section
"Configure Contexts" for a complete explanation of the arguments and behavior.

Decider(function)
env.Decider(function)

Specifies that all up-to-date decisions for targets built through this construction environment will be handled by
the specified function. function can be the name of a function or one of the following strings that specify
the predefined decision function that will be applied:

"timestamp-newer"
Specifies that a target shall be considered out of date and rebuilt if the dependency's timestamp is newer than
the target file's timestamp. This is the behavior of the classic Make utility, and make can be used a synonym
for timestamp-newer.

79

"timestamp-match"
Specifies that a target shall be considered out of date and rebuilt if the dependency's timestamp is different
than the timestamp recorded the last time the target was built. This provides behavior very similar to the
classic Make utility (in particular, files are not opened up so that their contents can be checksummed) except
that the target will also be rebuilt if a dependency file has been restored to a version with an earlier timestamp,
such as can happen when restoring files from backup archives.

"content"
Specifies that a target shall be considered out of date and rebuilt if the dependency's content has changed since
the last time the target was built, as determined be performing an checksum on the dependency's contents
and comparing it to the checksum recorded the last time the target was built. MD5 can be used as a synonym
for content, but it is deprecated.

"content-timestamp"
Specifies that a target shall be considered out of date and rebuilt if the dependency's content has changed since
the last time the target was built, except that dependencies with a timestamp that matches the last time the
target was rebuilt will be assumed to be up-to-date and not rebuilt. This provides behavior very similar to the
content behavior of always checksumming file contents, with an optimization of not checking the contents
of files whose timestamps haven't changed. The drawback is that SCons will not detect if a file's content has
changed but its timestamp is the same, as might happen in an automated script that runs a build, updates a
file, and runs the build again, all within a single second. MD5-timestamp can be used as a synonym for
content-timestamp, but it is deprecated.

Examples:

Use exact timestamp matches by default.
Decider('timestamp-match')

Use hash content signatures for any targets built
with the attached construction environment.
env.Decider('content')

In addition to the above already-available functions, the function argument may be a Python function you
supply. Such a function must accept the following four arguments:

dependency
The Node (file) which should cause the target to be rebuilt if it has "changed" since the last tme target
was built.

target
The Node (file) being built. In the normal case, this is what should get rebuilt if the dependency has
"changed."

prev_ni
Stored information about the state of the dependency the last time the target was built. This can be
consulted to match various file characteristics such as the timestamp, size, or content signature.

repo_node
If set, use this Node instead of the one specified by dependency to determine if the dependency has
changed. This argument is optional so should be written as a default argument (typically it would be written
as repo_node=None). A caller will normally only set this if the target only exists in a Repository.

The function should return a value which evaluates True if the dependency has "changed" since the last
time the target was built (indicating that the target should be rebuilt), and a value which evaluates False

80

otherwise (indicating that the target should not be rebuilt). Note that the decision can be made using whatever
criteria are appopriate. Ignoring some or all of the function arguments is perfectly normal.

Example:

def my_decider(dependency, target, prev_ni, repo_node=None):
 return not os.path.exists(str(target))

env.Decider(my_decider)

Default(target[, ...])
env.Default(target[, ...])

Specify default targets to the SCons target selection mechanism. Any call to Default will cause SCons to use
the defined default target list instead of its built-in algorithm for determining default targets (see the manpage
section "Target Selection").

target may be one or more strings, a list of strings, a NodeList as returned by a Builder, or None. A string
target may be the name of a file or directory, or a target previously defined by a call to Alias (defining the
alias later will still create the alias, but it will not be recognized as a default). Calls to Default are additive. A
target of None will clear any existing default target list; subsequent calls to Default will add to the (now
empty) default target list like normal.

Both forms of this call affect the same global list of default targets; the construction environment method applies
construction variable expansion to the targets.

The current list of targets added using Default is available in the DEFAULT_TARGETS list (see below).

Examples:

Default('foo', 'bar', 'baz')
env.Default(['a', 'b', 'c'])
hello = env.Program('hello', 'hello.c')
env.Default(hello)

DefaultEnvironment([**kwargs])
Instantiates and returns the default construction environment object. The default environment is used internally by
SCons in order to execute many of the global functions in this list (that is, those not called as methods of a specific
construction environment). It is not mandatory to call DefaultEnvironment: the default environment will
be instantiated automatically when the build phase begins if the function has not been called, however calling it
explicitly gives the opportunity to affect and examine the contents of the default environment.

The default environment is a singleton, so the keyword arguments affect it only on the first call, on subsequent
calls the already-constructed object is returned and any keyword arguments are silently ignored. The default
environment can be modified after instantiation in the same way as any construction environment. Modifying the
default environment has no effect on the construction environment constructed by an Environment or Clone
call.

Depends(target, dependency)
env.Depends(target, dependency)

Specifies an explicit dependency; the target will be rebuilt whenever the dependency has changed. Both
the specified target and dependency can be a string (usually the path name of a file or directory) or Node
objects, or a list of strings or Node objects (such as returned by a Builder call). This should only be necessary for
cases where the dependency is not caught by a Scanner for the file.

Example:

81

env.Depends('foo', 'other-input-file-for-foo')

mylib = env.Library('mylib.c')
installed_lib = env.Install('lib', mylib)
bar = env.Program('bar.c')

Arrange for the library to be copied into the installation
directory before trying to build the "bar" program.
(Note that this is for example only. A "real" library
dependency would normally be configured through the $LIBS
and $LIBPATH variables, not using an env.Depends() call.)

env.Depends(bar, installed_lib)

env.Detect(progs)
Find an executable from one or more choices: progs may be a string or a list of strings. Returns the first
value from progs that was found, or None. Executable is searched by checking the paths in the execution
environment (env['ENV']['PATH']). On Windows systems, additionally applies the filename suffixes found
in the execution environment (env['ENV']['PATHEXT']) but will not include any such extension in the
return value. env.Detect is a wrapper around env.WhereIs.

env.Dictionary([vars])
Returns a dictionary object containing the construction variables in the construction environment. If there are any
arguments specified, the values of the specified construction variables are returned as a string (if one argument)
or as a list of strings.

Example:

cvars = env.Dictionary()
cc_values = env.Dictionary('CC', 'CCFLAGS', 'CCCOM')

Dir(name, [directory])
env.Dir(name, [directory])

Returns Directory Node(s). A Directory Node is an object that represents a directory. name can be a relative or
absolute path or a list of such paths. directory is an optional directory that will be used as the parent directory.
If no directory is specified, the current script's directory is used as the parent.

If name is a single pathname, the corresponding node is returned. If name is a list, SCons returns a list of nodes.
Construction variables are expanded in name.

Directory Nodes can be used anywhere you would supply a string as a directory name to a Builder method or
function. Directory Nodes have attributes and methods that are useful in many situations; see manpage section
"File and Directory Nodes" for more information.

env.Dump([key], [format])
Serializes construction variables to a string. The method supports the following formats specified by format:

pretty
Returns a pretty printed representation of the environment (if format is not specified, this is the default).

json
Returns a JSON-formatted string representation of the environment.

If key is None (the default) the entire dictionary of construction variables is serialized. If supplied, it is taken as
the name of a construction variable whose value is serialized.

82

This SConstruct:

env=Environment()
print(env.Dump('CCCOM'))

will print:

'$CC -c -o $TARGET $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS $SOURCES'

While this SConstruct:

env = Environment()
print(env.Dump())

will print:

{ 'AR': 'ar',
 'ARCOM': '$AR $ARFLAGS $TARGET $SOURCES\n$RANLIB $RANLIBFLAGS $TARGET',
 'ARFLAGS': ['r'],
 'AS': 'as',
 'ASCOM': '$AS $ASFLAGS -o $TARGET $SOURCES',
 'ASFLAGS': [],
 ...

EnsurePythonVersion(major, minor)
env.EnsurePythonVersion(major, minor)

Ensure that the Python version is at least major.minor. This function will print out an error message and exit
SCons with a non-zero exit code if the actual Python version is not late enough.

Example:

EnsurePythonVersion(2,2)

EnsureSConsVersion(major, minor, [revision])
env.EnsureSConsVersion(major, minor, [revision])

Ensure that the SCons version is at least major.minor, or major.minor.revision. if revision is
specified. This function will print out an error message and exit SCons with a non-zero exit code if the actual
SCons version is not late enough.

Examples:

EnsureSConsVersion(0,14)

EnsureSConsVersion(0,96,90)

Environment([key=value, ...])
env.Environment([key=value, ...])

Return a new construction environment initialized with the specified key=value pairs. The keyword arguments
parse_flags, platform, toolpath, tools and variables are also specially recognized. See the
manpage section "Construction Environments" for more details.

83

Execute(action, [actionargs ...])
env.Execute(action, [actionargs ...])

Executes an Action. action may be an Action object or it may be a command-line string, list of commands,
or executable Python function, each of which will first be converted into an Action object and then executed.
Any additional arguments to Execute are passed on to the Action factory function which actually creates the
Action object (see the manpage section Action Objects for a description). Example:

Execute(Copy('file.out', 'file.in'))

Execute performs its action immediately, as part of the SConscript-reading phase. There are no sources or targets
declared in an Execute call, so any objects it manipulates will not be tracked as part of the SCons dependency
graph. In the example above, neither file.out nor file.in will be tracked objects.

Execute returns the exit value of the command or return value of the Python function. scons prints an error
message if the executed action fails (exits with or returns a non-zero value), however it does not, automatically
terminate the build for such a failure. If you want the build to stop in response to a failed Execute call, you
must explicitly check for a non-zero return value:

if Execute("mkdir sub/dir/ectory"):
 # The mkdir failed, don't try to build.
 Exit(1)

Exit([value])
env.Exit([value])

This tells scons to exit immediately with the specified value. A default exit value of 0 (zero) is used if no value
is specified.

Export([vars...], [key=value...])
env.Export([vars...], [key=value...])

Exports variables from the current SConscript file to a global collection where they can be imported by other
SConscript files. vars may be one or more strings representing variable names to be exported. If a string contains
whitespace, it is split into separate strings, as if multiple string arguments had been given. A vars argument may
also be a dictionary, which can be used to map variables to different names when exported. Keyword arguments
can be used to provide names and their values.

Export calls are cumulative. Specifying a previously exported variable will overwrite the earlier value. Both
local variables and global variables can be exported.

Examples:

env = Environment()
Make env available for all SConscript files to Import().
Export("env")

package = 'my_name'
Make env and package available for all SConscript files:.
Export("env", "package")

Make env and package available for all SConscript files:
Export(["env", "package"])

Make env available using the name debug:
Export(debug=env)

84

Make env available using the name debug:
Export({"debug": env})

Note that the SConscript function supports an exports argument that allows exporting a variable or set of
variables to a specific SConscript file or files. See the description below.

File(name, [directory])
env.File(name, [directory])

Returns File Node(s). A File Node is an object that represents a file. name can be a relative or absolute path or a
list of such paths. directory is an optional directory that will be used as the parent directory. If no directory
is specified, the current script's directory is used as the parent.

If name is a single pathname, the corresponding node is returned. If name is a list, SCons returns a list of nodes.
Construction variables are expanded in name.

File Nodes can be used anywhere you would supply a string as a file name to a Builder method or function. File
Nodes have attributes and methods that are useful in many situations; see manpage section "File and Directory
Nodes" for more information.

FindFile(file, dirs)
env.FindFile(file, dirs)

Search for file in the path specified by dirs. dirs may be a list of directory names or a single directory
name. In addition to searching for files that exist in the filesystem, this function also searches for derived files
that have not yet been built.

Example:

foo = env.FindFile('foo', ['dir1', 'dir2'])

FindInstalledFiles()
env.FindInstalledFiles()

Returns the list of targets set up by the Install or InstallAs builders.

This function serves as a convenient method to select the contents of a binary package.

Example:

Install('/bin', ['executable_a', 'executable_b'])

will return the file node list
['/bin/executable_a', '/bin/executable_b']
FindInstalledFiles()

Install('/lib', ['some_library'])

will return the file node list
['/bin/executable_a', '/bin/executable_b', '/lib/some_library']
FindInstalledFiles()

FindPathDirs(variable)
Returns a function (actually a callable Python object) intended to be used as the path_function of a Scanner
object. The returned object will look up the specified variable in a construction environment and treat the
construction variable's value as a list of directory paths that should be searched (like $CPPPATH, $LIBPATH,
etc.).

85

Note that use of FindPathDirs is generally preferable to writing your own path_function for the
following reasons: 1) The returned list will contain all appropriate directories found in source trees (when
VariantDir is used) or in code repositories (when Repository or the -Y option are used). 2) scons will
identify expansions of variable that evaluate to the same list of directories as, in fact, the same list, and avoid
re-scanning the directories for files, when possible.

Example:

def my_scan(node, env, path, arg):
 # Code to scan file contents goes here...
 return include_files

scanner = Scanner(name = 'myscanner',
 function = my_scan,
 path_function = FindPathDirs('MYPATH'))

FindSourceFiles(node='"."')
env.FindSourceFiles(node='"."')

Returns the list of nodes which serve as the source of the built files. It does so by inspecting the dependency tree
starting at the optional argument node which defaults to the '"."'-node. It will then return all leaves of node.
These are all children which have no further children.

This function is a convenient method to select the contents of a Source Package.

Example:

Program('src/main_a.c')
Program('src/main_b.c')
Program('main_c.c')

returns ['main_c.c', 'src/main_a.c', 'SConstruct', 'src/main_b.c']
FindSourceFiles()

returns ['src/main_b.c', 'src/main_a.c']
FindSourceFiles('src')

As you can see build support files (SConstruct in the above example) will also be returned by this function.

Flatten(sequence)
env.Flatten(sequence)

Takes a sequence (that is, a Python list or tuple) that may contain nested sequences and returns a flattened list
containing all of the individual elements in any sequence. This can be helpful for collecting the lists returned by
calls to Builders; other Builders will automatically flatten lists specified as input, but direct Python manipulation
of these lists does not.

Examples:

foo = Object('foo.c')
bar = Object('bar.c')

Because `foo' and `bar' are lists returned by the Object() Builder,
`objects' will be a list containing nested lists:

86

objects = ['f1.o', foo, 'f2.o', bar, 'f3.o']

Passing such a list to another Builder is all right because
the Builder will flatten the list automatically:
Program(source = objects)

If you need to manipulate the list directly using Python, you need to
call Flatten() yourself, or otherwise handle nested lists:
for object in Flatten(objects):
 print(str(object))

GetBuildFailures()
Returns a list of exceptions for the actions that failed while attempting to build targets. Each element in the returned
list is a BuildError object with the following attributes that record various aspects of the build failure:

.node The node that was being built when the build failure occurred.

.status The numeric exit status returned by the command or Python function that failed when trying to build
the specified Node.

.errstr The SCons error string describing the build failure. (This is often a generic message like "Error 2" to
indicate that an executed command exited with a status of 2.)

.filename The name of the file or directory that actually caused the failure. This may be different from the

.node attribute. For example, if an attempt to build a target named sub/dir/target fails because the sub/
dir directory could not be created, then the .node attribute will be sub/dir/target but the .filename
attribute will be sub/dir.

.executor The SCons Executor object for the target Node being built. This can be used to retrieve the
construction environment used for the failed action.

.action The actual SCons Action object that failed. This will be one specific action out of the possible list of
actions that would have been executed to build the target.

.command The actual expanded command that was executed and failed, after expansion of $TARGET,
$SOURCE, and other construction variables.

Note that the GetBuildFailures function will always return an empty list until any build failure has occurred,
which means that GetBuildFailures will always return an empty list while the SConscript files are being
read. Its primary intended use is for functions that will be executed before SCons exits by passing them to the
standard Python atexit.register() function. Example:

import atexit

def print_build_failures():
 from SCons.Script import GetBuildFailures
 for bf in GetBuildFailures():
 print("%s failed: %s" % (bf.node, bf.errstr))

atexit.register(print_build_failures)

GetBuildPath(file, [...])
env.GetBuildPath(file, [...])

Returns the scons path name (or names) for the specified file (or files). The specified file or files may be
scons Nodes or strings representing path names.

87

GetLaunchDir()
env.GetLaunchDir()

Returns the absolute path name of the directory from which scons was initially invoked. This can be useful when
using the -u, -U or -D options, which internally change to the directory in which the SConstruct file is found.

GetOption(name)
env.GetOption(name)

This function provides a way to query the value of options which can be set via the command line or using the
SetOption function.

name can be an entry from the following table, which shows the corresponding command line arguments that
could affect the value. name can be also be the destination variable name from a project-specific option added
using the AddOption function, as long as the addition happens prior to the GetOption call in the SConscript
files.

Query name Command-line options Notes

cache_debug --cache-debug

cache_disable --cache-disable, --no-
cache

cache_force --cache-force, --cache-
populate

cache_readonly --cache-readonly

cache_show --cache-show

clean -c, --clean, --remove

climb_up -D -U -u --up --search_up

config --config

debug --debug

directory -C, --directory

diskcheck --diskcheck

duplicate --duplicate

enable_virtualenv --enable-virtualenv

experimental --experimental since 4.2

file -f, --file, --makefile, --
sconstruct

hash_format --hash-format since 4.2

help -h, --help

ignore_errors -i, --ignore-errors

ignore_virtualenv --ignore-virtualenv

implicit_cache --implicit-cache

implicit_deps_changed --implicit-deps-changed

implicit_deps_unchanged --implicit-deps-
unchanged

include_dir -I, --include-dir

install_sandbox --install-sandbox Available only if the install tool
has been called

88

Query name Command-line options Notes

keep_going -k, --keep-going

max_drift --max-drift

md5_chunksize --hash-chunksize, --md5-
chunksize

--hash-chunksize since 4.2

no_exec -n, --no-exec, --just-
print, --dry-run, --recon

no_progress -Q

num_jobs -j, --jobs

package_type --package-type Available only if the packaging
tool has been called

profile_file --profile

question -q, --question

random --random

repository -Y, --repository, --srcdir

silent -s, --silent, --quiet

site_dir --site-dir, --no-site-dir

stack_size --stack-size

taskmastertrace_file --taskmastertrace

tree_printers --tree

warn --warn, --warning

See the documentation for the corresponding command line option for information about each specific option.

Glob(pattern, [ondisk, source, strings, exclude])
env.Glob(pattern, [ondisk, source, strings, exclude])

Returns Nodes (or strings) that match the specified pattern, relative to the directory of the current
SConscript file. The evironment method form (env.Glob) performs string substition on pattern and
returns whatever matches the resulting expanded pattern.

The specified pattern uses Unix shell style metacharacters for matching:

 * matches everything
 ? matches any single character
 [seq] matches any character in seq
 [!seq] matches any char not in seq

If the first character of a filename is a dot, it must be matched explicitly. Character matches do not span directory
separators.

The Glob knows about repositories (see the Repository function) and source directories (see the
VariantDir function) and returns a Node (or string, if so configured) in the local (SConscript) directory if a
matching Node is found anywhere in a corresponding repository or source directory.

The ondisk argument may be set to a value which evaluates False to disable the search for matches on disk,
thereby only returning matches among already-configured File or Dir Nodes. The default behavior is to return
corresponding Nodes for any on-disk matches found.

89

The source argument may be set to a value which evaluates True to specify that, when the local directory is a
VariantDir, the returned Nodes should be from the corresponding source directory, not the local directory.

The strings argument may be set to a value which evaluates True to have the Glob function return strings,
not Nodes, that represent the matched files or directories. The returned strings will be relative to the local
(SConscript) directory. (Note that This may make it easier to perform arbitrary manipulation of file names, but if
the returned strings are passed to a different SConscript file, any Node translation will be relative to the other
SConscript directory, not the original SConscript directory.)

The exclude argument may be set to a pattern or a list of patterns (following the same Unix shell semantics)
which must be filtered out of returned elements. Elements matching a least one pattern of this list will be excluded.

Examples:

Program("foo", Glob("*.c"))
Zip("/tmp/everything", Glob(".??*") + Glob("*"))
sources = Glob("*.cpp", exclude=["os_*_specific_*.cpp"]) + \
 Glob("os_%s_specific_*.cpp" % currentOS)

Help(text, append=False)
env.Help(text, append=False)

Specifies a local help message to be printed if the -h argument is given to scons. Subsequent calls to Help append
text to the previously defined local help text.

For the first call to Help only, if append is False (the default) any local help message generated through
AddOption calls is replaced. If append is True, text is appended to the existing help text.

Ignore(target, dependency)
env.Ignore(target, dependency)

The specified dependency file(s) will be ignored when deciding if the target file(s) need to be rebuilt.

You can also use Ignore to remove a target from the default build. In order to do this you must specify the
directory the target will be built in as the target, and the file you want to skip building as the dependency.

Note that this will only remove the dependencies listed from the files built by default. It will still be built if that
dependency is needed by another object being built. See the third and forth examples below.

Examples:

env.Ignore('foo', 'foo.c')
env.Ignore('bar', ['bar1.h', 'bar2.h'])
env.Ignore('.', 'foobar.obj')
env.Ignore('bar', 'bar/foobar.obj')

Import(vars...)
env.Import(vars...)

Imports variables into the current SConscript file. vars must be strings representing names of variables which
have been previously exported either by the Export function or by the exports argument to SConscript.
Variables exported by SConscript take precedence. Multiple variable names can be passed to Import as
separate arguments or as words in a space-separated string. The wildcard "*" can be used to import all available
variables.

Examples:

90

Import("env")
Import("env", "variable")
Import(["env", "variable"])
Import("*")

Literal(string)
env.Literal(string)

The specified string will be preserved as-is and not have construction variables expanded.

Local(targets)
env.Local(targets)

The specified targets will have copies made in the local tree, even if an already up-to-date copy exists in a
repository. Returns a list of the target Node or Nodes.

env.MergeFlags(arg, [unique])
Merges values from arg into construction variables in the current construction environment. If arg is not a
dictionary, it is converted to one by calling env.ParseFlags on the argument before the values are merged.
Note that arg must be a single value, so multiple strings must be passed in as a list, not as separate arguments
to env.MergeFlags.

If unique is true (the default), duplicate values are not stored. When eliminating duplicate values, any
construction variables that end with the string PATH keep the left-most unique value. All other construction
variables keep the right-most unique value. If unique is false, values are added even if they are duplicates.

Examples:

Add an optimization flag to $CCFLAGS.
env.MergeFlags('-O3')

Combine the flags returned from running pkg-config with an optimization
flag and merge the result into the construction variables.
env.MergeFlags(['!pkg-config gtk+-2.0 --cflags', '-O3'])

Combine an optimization flag with the flags returned from running pkg-config
twice and merge the result into the construction variables.
env.MergeFlags(
 [
 '-O3',
 '!pkg-config gtk+-2.0 --cflags --libs',
 '!pkg-config libpng12 --cflags --libs',
]
)

NoCache(target, ...)
env.NoCache(target, ...)

Specifies a list of files which should not be cached whenever the CacheDir method has been activated. The
specified targets may be a list or an individual target.

Multiple files should be specified either as separate arguments to the NoCache method, or as a list. NoCache
will also accept the return value of any of the construction environment Builder methods.

Calling NoCache on directories and other non-File Node types has no effect because only File Nodes are cached.

Examples:

91

NoCache('foo.elf')
NoCache(env.Program('hello', 'hello.c'))

NoClean(target, ...)
env.NoClean(target, ...)

Specifies a list of files or directories which should not be removed whenever the targets (or their dependencies)
are specified with the -c command line option. The specified targets may be a list or an individual target. Multiple
calls to NoClean are legal, and prevent each specified target from being removed by calls to the -c option.

Multiple files or directories should be specified either as separate arguments to the NoClean method, or as a list.
NoClean will also accept the return value of any of the construction environment Builder methods.

Calling NoClean for a target overrides calling Clean for the same target, and any targets passed to both functions
will not be removed by the -c option.

Examples:

NoClean('foo.elf')
NoClean(env.Program('hello', 'hello.c'))

env.ParseConfig(command, [function, unique])
Updates the current construction environment with the values extracted from the output of running external
command, by passing it to a helper function. command may be a string or a list of strings representing the
command and its arguments. If function is omitted or None, env.MergeFlags is used. By default, duplicate
values are not added to any construction variables; you can specify unique=False to allow duplicate values
to be added.

command is executed using the SCons execution environment (that is, the construction variable $ENV in
the current construction environment). If command needs additional information to operate properly, that
needs to be set in the execution environment. For example, pkg-config may need a custom value set in the
PKG_CONFIG_PATH environment variable.

env.MergeFlags needs to understand the output produced by command in order to distribute it to
appropriate construction variables. env.MergeFlags uses a separate function to do that processing - see
env.ParseFlags for the details, including a a table of options and corresponding construction variables. To
provide alternative processing of the output of command, you can suppply a custom function, which must
accept three arguments: the construction environment to modify, a string argument containing the output from
running command, and the optional unique flag.

ParseDepends(filename, [must_exist, only_one])
env.ParseDepends(filename, [must_exist, only_one])

Parses the contents of filename as a list of dependencies in the style of Make or mkdep, and explicitly establishes
all of the listed dependencies.

By default, it is not an error if filename does not exist. The optional must_exist argument may be set to
True to have SCons raise an exception if the file does not exist, or is otherwise inaccessible.

The optional only_one argument may be set to True to have SCons raise an exception if the file contains
dependency information for more than one target. This can provide a small sanity check for files intended to be
generated by, for example, the gcc -M flag, which should typically only write dependency information for one
output file into a corresponding .d file.

filename and all of the files listed therein will be interpreted relative to the directory of the SConscript file
which calls the ParseDepends function.

92

env.ParseFlags(flags, ...)
Parses one or more strings containing typical command-line flags for GCC-style tool chains and returns a
dictionary with the flag values separated into the appropriate SCons construction variables. Intended as a
companion to the env.MergeFlags method, but allows for the values in the returned dictionary to be modified,
if necessary, before merging them into the construction environment. (Note that env.MergeFlags will call
this method if its argument is not a dictionary, so it is usually not necessary to call env.ParseFlags directly
unless you want to manipulate the values.)

If the first character in any string is an exclamation mark (!), the rest of the string is executed as a command,
and the output from the command is parsed as GCC tool chain command-line flags and added to the resulting
dictionary. This can be used to call a *-config command typical of the POSIX programming environment
(for example, pkg-config). Note that such a comamnd is executed using the SCons execution environment; if
the command needs additional information, that information needs to be explcitly provided. See ParseConfig
for more details.

Flag values are translated accordig to the prefix found, and added to the following construction variables:

-arch CCFLAGS, LINKFLAGS
-D CPPDEFINES
-framework FRAMEWORKS
-frameworkdir= FRAMEWORKPATH
-fmerge-all-constants CCFLAGS, LINKFLAGS
-fopenmp CCFLAGS, LINKFLAGS
-include CCFLAGS
-imacros CCFLAGS
-isysroot CCFLAGS, LINKFLAGS
-isystem CCFLAGS
-iquote CCFLAGS
-idirafter CCFLAGS
-I CPPPATH
-l LIBS
-L LIBPATH
-mno-cygwin CCFLAGS, LINKFLAGS
-mwindows LINKFLAGS
-openmp CCFLAGS, LINKFLAGS
-pthread CCFLAGS, LINKFLAGS
-std= CFLAGS
-Wa, ASFLAGS, CCFLAGS
-Wl,-rpath= RPATH
-Wl,-R, RPATH
-Wl,-R RPATH
-Wl, LINKFLAGS
-Wp, CPPFLAGS
- CCFLAGS
+ CCFLAGS, LINKFLAGS

Any other strings not associated with options are assumed to be the names of libraries and added to the $LIBS
construction variable.

Examples (all of which produce the same result):

dict = env.ParseFlags('-O2 -Dfoo -Dbar=1')
dict = env.ParseFlags('-O2', '-Dfoo', '-Dbar=1')

93

dict = env.ParseFlags(['-O2', '-Dfoo -Dbar=1'])
dict = env.ParseFlags('-O2', '!echo -Dfoo -Dbar=1')

Platform(plat)
env.Platform(plat)

When called as a global function, returns a callable platform object selected by plat (defaults to the detected
platform for the current system) that can be used to initialize a construction environment by passing it as the
platform keyword argument to the Environment function.

Example:

env = Environment(platform=Platform('win32'))

When called as a method of an environment, calls the platform object indicated by plat to update that
environment.

env.Platform('posix')

See the manpage section "Construction Environments" for more details.

Precious(target, ...)
env.Precious(target, ...)

Marks each given target as precious so it is not deleted before it is rebuilt. Normally scons deletes a target
before building it. Multiple targets can be passed in to a single call to Precious.

env.Prepend(key=val, [...])
Prepend values to construction variables in the current construction environment, Works like env.Append (see
for details), except that values are added to the front, rather than the end, of any existing value of the construction
variable

Example:

env.Prepend(CCFLAGS='-g ', FOO=['foo.yyy'])

See also env.Append, env.AppendUnique and env.PrependUnique.

env.PrependENVPath(name, newpath, [envname, sep, delete_existing=True])
Prepend path elements specified by newpath to the given search path string or list name in mapping envname
in the construction environment. Supplying envname is optional: the default is the execution environment $ENV.
Optional sep is used as the search path separator, the default is the platform's separator (os.pathsep). A path
element will only appear once. Any duplicates in newpath are dropped, keeping the first appearing (to preserve
path order). If delete_existing is False any addition duplicating an existing path element is ignored;
if delete_existing is True (the default) the existing value will be dropped and the path element will be
inserted at the beginning. To help maintain uniqueness all paths are normalized (using os.path.normpath
and os.path.normcase).

Example:

print('before:', env['ENV']['INCLUDE'])
include_path = '/foo/bar:/foo'
env.PrependENVPath('INCLUDE', include_path)
print('after:', env['ENV']['INCLUDE'])

94

Yields:

before: /biz:/foo
after: /foo/bar:/foo:/biz

See also env.AppendENVPath.

env.PrependUnique(key=val, delete_existing=False, [...])
Prepend values to construction variables in the current construction environment, maintaining uniqueness. Works
like env.Append (see for details), except that values are added to the front, rather than the end, of any existing
value of the construction variable, and values already present in the construction variable will not be added again.
If delete_existing is True, the existing matching value is first removed, and the requested value is inserted,
having the effect of moving such values to the front.

Example:

env.PrependUnique(CCFLAGS='-g', FOO=['foo.yyy'])

See also env.Append, env.AppendUnique and env.Prepend.

Progress(callable, [interval])
Progress(string, [interval, file, overwrite])
Progress(list_of_strings, [interval, file, overwrite])

Allows SCons to show progress made during the build by displaying a string or calling a function while evaluating
Nodes (e.g. files).

If the first specified argument is a Python callable (a function or an object that has a __call__ method), the
function will be called once every interval times a Node is evaluated (default 1). The callable will be passed the
evaluated Node as its only argument. (For future compatibility, it's a good idea to also add *args and **kwargs
as arguments to your function or method signatures. This will prevent the code from breaking if SCons ever
changes the interface to call the function with additional arguments in the future.)

An example of a simple custom progress function that prints a string containing the Node name every 10 Nodes:

def my_progress_function(node, *args, **kwargs):
 print('Evaluating node %s!' % node)
Progress(my_progress_function, interval=10)

A more complicated example of a custom progress display object that prints a string containing a count every 100
evaluated Nodes. Note the use of \r (a carriage return) at the end so that the string will overwrite itself on a display:

import sys
class ProgressCounter(object):
 count = 0
 def __call__(self, node, *args, **kw):
 self.count += 100
 sys.stderr.write('Evaluated %s nodes\r' % self.count)

Progress(ProgressCounter(), interval=100)

If the first argument to Progress is a string or list of strings, it is taken as text to be displayed every interval
evaluated Nodes. If the first argument is a list of strings, then each string in the list will be displayed in rotating
fashion every interval evaluated Nodes.

95

The default is to print the string on standard output. An alternate output stream may be specified with the file
keyword argument, which the caller must pass already opened.

The following will print a series of dots on the error output, one dot for every 100 evaluated Nodes:

import sys
Progress('.', interval=100, file=sys.stderr)

If the string contains the verbatim substring $TARGET;, it will be replaced with the Node. Note that, for
performance reasons, this is not a regular SCons variable substition, so you can not use other variables or use
curly braces. The following example will print the name of every evaluated Node, using a carriage return) (\r)
to cause each line to overwritten by the next line, and the overwrite keyword argument (default False) to
make sure the previously-printed file name is overwritten with blank spaces:

import sys
Progress('$TARGET\r', overwrite=True)

A list of strings can be used to implement a "spinner" on the user's screen as follows, changing every five evaluated
Nodes:

Progress(['-\r', '\\\r', '|\r', '/\r'], interval=5)

Pseudo(target, ...)
env.Pseudo(target, ...)

This indicates that each given target should not be created by the build rule, and if the target is created, an
error will be generated. This is similar to the gnu make .PHONY target. However, in the vast majority of cases,
an Alias is more appropriate. Multiple targets can be passed in to a single call to Pseudo.

PyPackageDir(modulename)
env.PyPackageDir(modulename)

This returns a Directory Node similar to Dir. The python module / package is looked up and if located the directory
is returned for the location. modulename Is a named python package / module to lookup the directory for it's
location.

If modulename is a list, SCons returns a list of Dir nodes. Construction variables are expanded in modulename.

env.Replace(key=val, [...])
Replaces construction variables in the Environment with the specified keyword arguments.

Example:

env.Replace(CCFLAGS='-g', FOO='foo.xxx')

Repository(directory)
env.Repository(directory)

Specifies that directory is a repository to be searched for files. Multiple calls to Repository are legal, and
each one adds to the list of repositories that will be searched.

To scons, a repository is a copy of the source tree, from the top-level directory on down, which may contain both
source files and derived files that can be used to build targets in the local source tree. The canonical example would
be an official source tree maintained by an integrator. If the repository contains derived files, then the derived files
should have been built using scons, so that the repository contains the necessary signature information to allow
scons to figure out when it is appropriate to use the repository copy of a derived file, instead of building one locally.

96

Note that if an up-to-date derived file already exists in a repository, scons will not make a copy in the local
directory tree. In order to guarantee that a local copy will be made, use the Local method.

Requires(target, prerequisite)
env.Requires(target, prerequisite)

Specifies an order-only relationship between the specified target file(s) and the specified prerequisite file(s). The
prerequisite file(s) will be (re)built, if necessary, before the target file(s), but the target file(s) do not actually
depend on the prerequisites and will not be rebuilt simply because the prerequisite file(s) change.

Example:

env.Requires('foo', 'file-that-must-be-built-before-foo')

Return([vars..., stop=True])
Return to the calling SConscript, optionally returning the values of variables named in vars. Multiple strings
contaning variable names may be passed to Return. A string containing white space is split into individual
variable names. Returns the value if one variable is specified, else returns a tuple of values. Returns an empty
tuple if vars is omitted.

By default Return stops processing the current SConscript and returns immediately. The optional stop keyword
argument may be set to a false value to continue processing the rest of the SConscript file after the Return
call (this was the default behavior prior to SCons 0.98.) However, the values returned are still the values of the
variables in the named vars at the point Return was called.

Examples:

Returns no values (evaluates False)
Return()

Returns the value of the 'foo' Python variable.
Return("foo")

Returns the values of the Python variables 'foo' and 'bar'.
Return("foo", "bar")

Returns the values of Python variables 'val1' and 'val2'.
Return('val1 val2')

Scanner(function, [name, argument, skeys, path_function, node_class,
node_factory, scan_check, recursive])
env.Scanner(function, [name, argument, skeys, path_function, node_class,
node_factory, scan_check, recursive])

Creates a Scanner object for the specified function. See manpage section "Scanner Objects" for a complete
explanation of the arguments and behavior.

SConscript(scripts, [exports, variant_dir, duplicate, must_exist])
env.SConscript(scripts, [exports, variant_dir, duplicate, must_exist])
SConscript(dirs=subdirs, [name=scriptname, exports, variant_dir, duplicate,
must_exist])
env.SConscript(dirs=subdirs, [name=scriptname, exports, variant_dir, duplicate,
must_exist])

Executes one or more subsidiary SConscript (configuration) files. There are two ways to call the SConscript
function.

97

The first calling style is to supply one or more SConscript file names as the first (positional) argument. A single
script may be specified as a string; multiple scripts must be specified as a list of strings (either explicitly or as
created by a function like Split). Examples:

SConscript('SConscript') # run SConscript in the current directory
SConscript('src/SConscript') # run SConscript in the src directory
SConscript(['src/SConscript', 'doc/SConscript'])
config = SConscript('MyConfig.py')

The other calling style is to omit the positional argument naming scripts and instead specify a list of directory
names using the dirs keyword argument. In this case, scons will execute a subsidiary configuration file named
SConscript in each of the specified directories. You may specify a name other than SConscript by
supplying an optional name=scriptname keyword argument. The first three examples below have the same
effect as the first three examples above:

SConscript(dirs='.') # run SConscript in the current directory
SConscript(dirs='src') # run SConscript in the src directory
SConscript(dirs=['src', 'doc'])
SConscript(dirs=['sub1', 'sub2'], name='MySConscript')

The optional exports keyword argument provides a string or list of strings representing variable names, or
a dictionary of named values, to export. For the first calling style only, a second positional argument will be
interpreted as exports; the second calling style must use the keyword argument form for exports. These
variables are locally exported only to the called SConscript file(s) and do not affect the global pool of variables
managed by the Export function. The subsidiary SConscript files must use the Import function to import the
variables. Examples:

foo = SConscript('sub/SConscript', exports='env')
SConscript('dir/SConscript', exports=['env', 'variable'])
SConscript(dirs='subdir', exports='env variable')
SConscript(dirs=['one', 'two', 'three'], exports='shared_info')

If the optional variant_dir argument is present, it causes an effect equivalent to the VariantDir function,
but in effect only within the scope of the SConscript call. The variant_dir argument is interpreted relative
to the directory of the calling SConscript file. The source directory is the directory in which the called SConscript
file resides and the SConscript file is evaluated as if it were in the variant_dir directory. Thus:

SConscript('src/SConscript', variant_dir='build')

is equivalent to:

VariantDir('build', 'src')
SConscript('build/SConscript')

If the sources are in the same directory as the SConstruct,

SConscript('SConscript', variant_dir='build')

is equivalent to:

98

VariantDir('build', '.')
SConscript('build/SConscript')

The optional duplicate argument is interpreted as for VariantDir. If the variant_dir argument is
omitted, the duplicate argument is ignored. See the description of VariantDir for additional details and
restrictions.

If the optional must_exist is True, causes an exception to be raised if a requested SConscript file is not
found. The current default is False, causing only a warning to be emitted, but this default is deprecated (since
3.1). For scripts which truly intend to be optional, transition to explicitly supplying must_exist=False to
the SConscript call.

Here are some composite examples:

collect the configuration information and use it to build src and doc
shared_info = SConscript('MyConfig.py')
SConscript('src/SConscript', exports='shared_info')
SConscript('doc/SConscript', exports='shared_info')

build debugging and production versions. SConscript
can use Dir('.').path to determine variant.
SConscript('SConscript', variant_dir='debug', duplicate=0)
SConscript('SConscript', variant_dir='prod', duplicate=0)

build debugging and production versions. SConscript
is passed flags to use.
opts = { 'CPPDEFINES' : ['DEBUG'], 'CCFLAGS' : '-pgdb' }
SConscript('SConscript', variant_dir='debug', duplicate=0, exports=opts)
opts = { 'CPPDEFINES' : ['NODEBUG'], 'CCFLAGS' : '-O' }
SConscript('SConscript', variant_dir='prod', duplicate=0, exports=opts)

build common documentation and compile for different architectures
SConscript('doc/SConscript', variant_dir='build/doc', duplicate=0)
SConscript('src/SConscript', variant_dir='build/x86', duplicate=0)
SConscript('src/SConscript', variant_dir='build/ppc', duplicate=0)

SConscript returns the values of any variables named by the executed SConscript file(s) in arguments to the
Return function. If a single SConscript call causes multiple scripts to be executed, the return value is a tuple
containing the returns of each of the scripts. If an executed script does not explicitly call Return, it returns None.

SConscriptChdir(value)
env.SConscriptChdir(value)

By default, scons changes its working directory to the directory in which each subsidiary SConscript file lives.
This behavior may be disabled by specifying either:

SConscriptChdir(0)
env.SConscriptChdir(0)

in which case scons will stay in the top-level directory while reading all SConscript files. (This may be necessary
when building from repositories, when all the directories in which SConscript files may be found don't necessarily
exist locally.) You may enable and disable this ability by calling SConscriptChdir multiple times.

99

Example:

env = Environment()
SConscriptChdir(0)
SConscript('foo/SConscript') # will not chdir to foo
env.SConscriptChdir(1)
SConscript('bar/SConscript') # will chdir to bar

SConsignFile([name, dbm_module])
env.SConsignFile([name, dbm_module])

Specify where to store the SCons file signature database, and which database format to use. This may be useful
to specify alternate database files and/or file locations for different types of builds.

The optional name argument is the base name of the database file(s). If not an absolute path name, these are
placed relative to the directory containing the top-level SConstruct file. The default is .sconsign. The
actual database file(s) stored on disk may have an appropriate suffix appended by the chosen dbm_module

The optional dbm_module argument specifies which Python database module to use for reading/writing the file.
The module must be imported first; then the imported module name is passed as the argument. The default is a
custom SCons.dblite module that uses pickled Python data structures, which works on all Python versions.
See documentation of the Python dbm module for other available types.

If called with no arguments, the database will default to .sconsign.dblite in the top directory of the project,
which is also the default if if SConsignFile is not called.

The setting is global, so the only difference between the global function and the environment method form is
variable expansion on name. There should only be one active call to this function/method in a given build setup.

If name is set to None, scons will store file signatures in a separate .sconsign file in each directory, not in a
single combined database file. This is a backwards-compatibility meaure to support what was the default behavior
prior to SCons 0.97 (i.e. before 2008). Use of this mode is discouraged and may be deprecated in a future SCons
release.

Examples:

Explicitly stores signatures in ".sconsign.dblite"
in the top-level SConstruct directory (the default behavior).
SConsignFile()

Stores signatures in the file "etc/scons-signatures"
relative to the top-level SConstruct directory.
SCons will add a database suffix to this name.
SConsignFile("etc/scons-signatures")

Stores signatures in the specified absolute file name.
SCons will add a database suffix to this name.
SConsignFile("/home/me/SCons/signatures")

Stores signatures in a separate .sconsign file
in each directory.
SConsignFile(None)

Stores signatures in a GNU dbm format .sconsign file
import dbm.gnu

100

SConsignFile(dbm_module=dbm.gnu)

env.SetDefault(key=val, [...])
Sets construction variables to default values specified with the keyword arguments if (and only if) the variables
are not already set. The following statements are equivalent:

env.SetDefault(FOO='foo')
if 'FOO' not in env:
 env['FOO'] = 'foo'

SetOption(name, value)
env.SetOption(name, value)

Sets scons option variable name to value. These options are all also settable via command-line options but the
variable name may differ from the command-line option name - see the table for correspondences. A value set
via command-line option will take precedence over one set with SetOption, which allows setting a project
default in the scripts and temporarily overriding it via command line. SetOption calls can also be placed in
the site_init.py file.

See the documentation in the manpage for the corresponding command line option for information about each
specific option. The value parameter is mandatory, for option values which are boolean in nature (that is, the
command line option does not take an argument) use a value which evaluates to true (e.g. True, 1) or false
(e.g. False, 0).

Options which affect the reading and processing of SConscript files are not settable using SetOption since
those files must be read in order to find the SetOption call in the first place.

The settable variables with their associated command-line options are:

Settable name Command-line options Notes

clean -c, --clean, --remove

diskcheck --diskcheck

duplicate --duplicate

experimental --experimental since 4.2

hash_chunksize --hash-chunksize Actually sets md5_chunksize.
since 4.2

hash_format --hash-format since 4.2

help -h, --help

implicit_cache --implicit-cache

implicit_deps_changed --implicit-deps-changed Also sets implicit_cache.
(settable since 4.2)

implicit_deps_unchanged --implicit-deps-
unchanged

Also sets implicit_cache.
(settable since 4.2)

max_drift --max-drift

md5_chunksize --md5-chunksize

no_exec -n, --no-exec, --just-
print, --dry-run, --recon

no_progress -Q See a

num_jobs -j, --jobs

101

Settable name Command-line options Notes

random --random

silent -s, --silent, --quiet

stack_size --stack-size

warn --warn
aIf no_progress is set via SetOption in an SConscript file (but not if set in a site_init.py file) there will still be an initial status
message about reading SConscript files since SCons has to start reading them before it can see the SetOption.

Example:

SetOption('max_drift', 0)

SideEffect(side_effect, target)
env.SideEffect(side_effect, target)

Declares side_effect as a side effect of building target. Both side_effect and target can be a list,
a file name, or a node. A side effect is a target file that is created or updated as a side effect of building other
targets. For example, a Windows PDB file is created as a side effect of building the .obj files for a static library,
and various log files are created updated as side effects of various TeX commands. If a target is a side effect of
multiple build commands, scons will ensure that only one set of commands is executed at a time. Consequently,
you only need to use this method for side-effect targets that are built as a result of multiple build commands.

Because multiple build commands may update the same side effect file, by default the side_effect target
is not automatically removed when the target is removed by the -c option. (Note, however, that the
side_effect might be removed as part of cleaning the directory in which it lives.) If you want to make sure
the side_effect is cleaned whenever a specific target is cleaned, you must specify this explicitly with the
Clean or env.Clean function.

This function returns the list of side effect Node objects that were successfully added. If the list of side effects
contained any side effects that had already been added, they are not added and included in the returned list.

Split(arg)
env.Split(arg)

If arg is a string, splits on whitespace and returns a list of strings without whitespace. This mode is the most
common case, and can be used to split a list of filenames (for example) rather than having to type them as a list of
individually quoted words. If arg is a list or tuple returns the list or tuple unchanged. If arg is any other type of
object, returns a list containing just the object. These non-string cases do not actually do any spliting, but allow
an argument variable to be passed to Split without having to first check its type.

Example:

files = Split("f1.c f2.c f3.c")
files = env.Split("f4.c f5.c f6.c")
files = Split("""
 f7.c
 f8.c
 f9.c
""")

env.subst(input, [raw, target, source, conv])
Performs construction variable interpolation (substitution) on input, which can be a string or a sequence.
Substitutable elements take the form ${expression}, although if there is no ambiguity in recognizing the
element, the braces can be omitted. A literal $ can be entered by using $$.

102

By default, leading or trailing white space will be removed from the result, and all sequences of white space will
be compressed to a single space character. Additionally, any $(and $) character sequences will be stripped from
the returned string, The optional raw argument may be set to 1 if you want to preserve white space and $(-$)
sequences. The raw argument may be set to 2 if you want to additionally discard all characters between any $(
and $) pairs (as is done for signature calculation).

If input is a sequence (list or tuple), the individual elements of the sequence will be expanded, and the results
will be returned as a list.

The optional target and source keyword arguments must be set to lists of target and source nodes,
respectively, if you want the $TARGET, $TARGETS, $SOURCE and $SOURCES to be available for expansion.
This is usually necessary if you are calling env.subst from within a Python function used as an SCons action.

Returned string values or sequence elements are converted to their string representation by default. The optional
conv argument may specify a conversion function that will be used in place of the default. For example, if you
want Python objects (including SCons Nodes) to be returned as Python objects, you can use a Python lambda
expression to pass in an unnamed function that simply returns its unconverted argument.

Example:

print(env.subst("The C compiler is: $CC"))

def compile(target, source, env):
 sourceDir = env.subst(
 "${SOURCE.srcdir}",
 target=target,
 source=source
)

source_nodes = env.subst('$EXPAND_TO_NODELIST', conv=lambda x: x)

Tag(node, tags)
Annotates file or directory Nodes with information about how the Package Builder should package those files
or directories. All Node-level tags are optional.

Examples:

makes sure the built library will be installed with 644 file access mode
Tag(Library('lib.c'), UNIX_ATTR="0o644")

marks file2.txt to be a documentation file
Tag('file2.txt', DOC)

Tool(name, [toolpath, **kwargs])
env.Tool(name, [toolpath, **kwargs])

Locates the tool specification module name and returns a callable tool object for that tool. The tool module is
searched for in standard locations and in any paths specified by the optional toolpath parameter. The standard
locations are SCons' own internal path for tools plus the toolpath, if any (see the Tools section in the manual
page for more details). Any additional keyword arguments kwargs are passed to the tool module's generate
function during tool object construction.

When called, the tool object updates a construction environment with construction variables and arranges any
other initialization needed to use the mechanisms that tool describes.

103

When the env.Tool form is used, the tool object is automatically called to update env and the value of tool
is appended to the $TOOLS construction variable in that environment.

Examples:

env.Tool('gcc')
env.Tool('opengl', toolpath=['build/tools'])

When the global function Tool form is used, the tool object is constructed but not called, as it lacks the context of
an environment to update. The tool object can be passed to an Environment or Clone call as part of the tools
keyword argument, in which case the tool is applied to the environment being constructed, or it can be called
directly, in which case a construction environment to update must be passed as the argument. Either approach will
also update the $TOOLS construction variable.

Examples:

env = Environment(tools=[Tool('msvc')])

env = Environment()
msvctool = Tool('msvc')
msvctool(env) # adds 'msvc' to the TOOLS variable
gltool = Tool('opengl', toolpath = ['tools'])
gltool(env) # adds 'opengl' to the TOOLS variable

Changed in SCons 4.2: env.Tool now returns the tool object, previously it did not return (i.e. returned None).

Value(value, [built_value], [name])
env.Value(value, [built_value], [name])

Returns a Node object representing the specified Python value. Value Nodes can be used as dependencies
of targets. If the result of calling str(value) changes between SCons runs, any targets depending on
Value(value) will be rebuilt. (This is true even when using timestamps to decide if files are up-to-date.) When
using timestamp source signatures, Value Nodes' timestamps are equal to the system time when the Node is
created. name can be provided as an alternative name for the resulting Value node; this is advised if the value
parameter can't be converted to a string.

The returned Value Node object has a write() method that can be used to "build" a Value Node by setting a
new value. The optional built_value argument can be specified when the Value Node is created to indicate
the Node should already be considered "built." There is a corresponding read() method that will return the built
value of the Node.

Examples:

env = Environment()

def create(target, source, env):
 # A function that will write a 'prefix=$SOURCE'
 # string into the file name specified as the
 # $TARGET.
 with open(str(target[0]), 'wb') as f:
 f.write('prefix=' + source[0].get_contents())

Fetch the prefix= argument, if any, from the command
line, and use /usr/local as the default.
prefix = ARGUMENTS.get('prefix', '/usr/local')

104

Attach a .Config() builder for the above function action
to the construction environment.
env['BUILDERS']['Config'] = Builder(action = create)
env.Config(target = 'package-config', source = Value(prefix))

def build_value(target, source, env):
 # A function that "builds" a Python Value by updating
 # the Python value with the contents of the file
 # specified as the source of the Builder call ($SOURCE).
 target[0].write(source[0].get_contents())

output = env.Value('before')
input = env.Value('after')

Attach a .UpdateValue() builder for the above function
action to the construction environment.
env['BUILDERS']['UpdateValue'] = Builder(action = build_value)
env.UpdateValue(target = Value(output), source = Value(input))

VariantDir(variant_dir, src_dir, [duplicate])
env.VariantDir(variant_dir, src_dir, [duplicate])

Sets up a mapping to define a variant build directory in variant_dir. src_dir may not be underneath
variant_dir. A VariantDir mapping is global, even if called using the env.VariantDir form.
VariantDir can be called multiple times with the same src_dir to set up multiple variant builds with different
options.

Note if variant_dir is not under the project top directory, target selection rules will not pick targets in the
variant directory unless they are explicitly specified.

When files in variant_dir are referenced, SCons backfills as needed with files from src_dir to create a
complete build directory. By default, SCons physically duplicates the source files, SConscript files, and directory
structure as needed into the variant directory. Thus, a build performed in the variant directory is guaranteed to be
identical to a build performed in the source directory even if intermediate source files are generated during the
build, or if preprocessors or other scanners search for included files using paths relative to the source file, or if
individual compilers or other invoked tools are hard-coded to put derived files in the same directory as source
files. Only the files SCons calculates are needed for the build are duplicated into variant_dir. If possible on
the platform, the duplication is performed by linking rather than copying. This behavior is affected by the --
duplicate command-line option.

Duplicating the source files may be disabled by setting the duplicate argument to False. This will cause
SCons to invoke Builders using the path names of source files in src_dir and the path names of derived
files within variant_dir. This is more efficient than duplicating, and is safe for most builds; revert to
duplicate=True if it causes problems.

VariantDir works most naturally when used with a subsidiary SConscript file. The subsidiary SConscript
file must be called as if it were in variant_dir, regardless of the value of duplicate. When calling
an SConscript file, you can use the exports keyword argument to pass parameters (individually or as an
appropriately set up environment) so the SConscript can pick up the right settings for that variant build. The
SConscript must Import these to use them. Example:

env1 = Environment(...settings for variant1...)
env2 = Environment(...settings for variant2...)

105

run src/SConscript in two variant directories
VariantDir('build/variant1', 'src')
SConscript('build/variant1/SConscript', exports={"env": env1})
VariantDir('build/variant2', 'src')
SConscript('build/variant2/SConscript', exports={"env": env2})

See also the SConscript function for another way to specify a variant directory in conjunction with calling
a subsidiary SConscript file.

More examples:

use names in the build directory, not the source directory
VariantDir('build', 'src', duplicate=0)
Program('build/prog', 'build/source.c')

this builds both the source and docs in a separate subtree
VariantDir('build', '.', duplicate=0)
SConscript(dirs=['build/src','build/doc'])

same as previous example, but only uses SConscript
SConscript(dirs='src', variant_dir='build/src', duplicate=0)
SConscript(dirs='doc', variant_dir='build/doc', duplicate=0)

WhereIs(program, [path, pathext, reject])
env.WhereIs(program, [path, pathext, reject])

Searches for the specified executable program, returning the full path to the program or None.

When called as a construction environment method, searches the paths in the path keyword argument, or if
None (the default) the paths listed in the construction environment (env['ENV']['PATH']). The external
environment's path list (os.environ['PATH']) is used as a fallback if the key env['ENV']['PATH']
does not exist.

On Windows systems, searches for executable programs with any of the file extensions listed in
the pathext keyword argument, or if None (the default) the pathname extensions listed in the
construction environment (env['ENV']['PATHEXT']). The external environment's pathname extensions list
(os.environ['PATHEXT']) is used as a fallback if the key env['ENV']['PATHEXT'] does not exist.

When called as a global function, uses the external environment's path os.environ['PATH'] and path
extensions os.environ['PATHEXT'], respectively, if path and pathext are None.

Will not select any path name or names in the optional reject list.

SConscript Variables

In addition to the global functions and methods, scons supports a number of variables that can be used in SConscript
files to affect how you want the build to be performed.

ARGLIST
A list of the keyword=value arguments specified on the command line. Each element in the list is a tuple containing
the argument. The separate keyword and value elements of the tuple can be accessed by subscripting for elements
[0] and [1] of the tuple, or, more readably, by using tuple unpacking. Example:

print("first keyword, value =", ARGLIST[0][0], ARGLIST[0][1])
print("second keyword, value =", ARGLIST[1][0], ARGLIST[1][1])
key, value = ARGLIST[2]

106

print("third keyword, value =", key, value)
for key, value in ARGLIST:
 # process key and value

ARGUMENTS
A dictionary of all the keyword=value arguments specified on the command line. The dictionary is not in order,
and if a given keyword has more than one value assigned to it on the command line, the last (right-most) value
is the one in the ARGUMENTS dictionary.

Example:

if ARGUMENTS.get('debug', 0):
 env = Environment(CCFLAGS='-g')
else:
 env = Environment()

BUILD_TARGETS
A list of the targets which scons has been asked to build. The contents will be either those targets listed on the
command line, or, if none, those targets set via calls to the Default function. It does not contain any dependent
targets that scons selects for building as a result of making the sure the specified targets are up to date, if those
targets did not appear on the command line. The list is empty if neither command line targets or Default calls
are present.

The elements of this list may be strings or nodes, so you should run the list through the Python str function to
make sure any Node path names are converted to strings.

Because this list may be taken from the list of targets specified using the Default function, the contents of the
list may change on each successive call to Default. See the DEFAULT_TARGETS list, below, for additional
information.

Example:

if 'foo' in BUILD_TARGETS:
 print("Don't forget to test the `foo' program!")
if 'special/program' in BUILD_TARGETS:
 SConscript('special')

COMMAND_LINE_TARGETS
A list of the targets explicitly specified on the command line. If there are command line targets, this list will have
the same contents as BUILD_TARGETS. If there are no targets specified on the command line, the list is empty.
The elements of this list are strings. This can be used, for example, to take specific actions only when certain
targets are explicitly being built.

Example:

if 'foo' in COMMAND_LINE_TARGETS:
 print("Don't forget to test the `foo' program!")
if 'special/program' in COMMAND_LINE_TARGETS:
 SConscript('special')

DEFAULT_TARGETS
A list of the target nodes that have been specified using the Default function. If there are no command line
targets, this list will have the same contents as BUILD_TARGETS. Since the elements of the list are nodes, you
need to call the Python str function on them to get the path name for each Node.

107

Example:

print(str(DEFAULT_TARGETS[0]))
if 'foo' in [str(t) for t in DEFAULT_TARGETS]:
 print("Don't forget to test the `foo' program!")

The contents of the DEFAULT_TARGETS list change on on each successive call to the Default function:

print([str(t) for t in DEFAULT_TARGETS]) # originally []
Default('foo')
print([str(t) for t in DEFAULT_TARGETS]) # now a node ['foo']
Default('bar')
print([str(t) for t in DEFAULT_TARGETS]) # now a node ['foo', 'bar']
Default(None)
print([str(t) for t in DEFAULT_TARGETS]) # back to []

Consequently, be sure to use DEFAULT_TARGETS only after you've made all of your Default() calls, or else
simply be careful of the order of these statements in your SConscript files so that you don't look for a specific
default target before it's actually been added to the list.

These variables may be accessed from custom Python modules that you import into an SConscript file by adding the
following to the Python module:

from SCons.Script import *

Construction Variables

A construction environment has an associated dictionary of construction variables that are used by built-in or user-
supplied build rules. Construction variable naming must follow the same rules as Python identifier naming: the initial
character must be an underscore or letter, followed by any number of underscores, letters, or digits. A construction
environment is not a Python dictionary itself, but it can be indexed like one to access a construction variable:

env["CC"] = "cc"
flags = env.get("CPPDEFINES", [])

Construction variables can also be retrieved and set by using the Dictionary method of the construction
environment to create an actual dictionary:

cvars = env.Dictionary()
cvars["CC"] = "cc"

Construction variables can also be passed to the construction environment constructor:

env = Environment(CC="cc")

or when copying a construction environment using the Clone method:

env2 = env.Clone(CC="cl.exe")

108

Construction variables can also be supplied as keyword arguments to a builder, in which case those settings affect only
the work done by that builder call, and not the construction environment as a whole. This concept is called an override:

env.Program('hello', 'hello.c', LIBS=['gl', 'glut'])

A number of useful construction variables are automatically defined by scons for each supported platform, and you
can modify these or define any additional construction variables for your own use, taking care not to overwrite ones
which SCons is using. The following is a list of the possible automatically defined construction variables.

Note the actual list available at execution time will never include all of these, as the ones detected as not being useful
(wrong platform, necessary external command or files not installed, etc.) will not be set up. Correct build setups should
be resilient to the possible absence of certain construction variables before using them, for example by using a Python
dictionary get method to retrieve the value and taking alternative action if the return indicates the variable is unset.
The env.Dump method can be called to examine the construction variables set in a particular environment.

__LDMODULEVERSIONFLAGS
This construction variable automatically introduces $_LDMODULEVERSIONFLAGS if $LDMODULEVERSION
is set. Othervise it evaluates to an empty string.

__SHLIBVERSIONFLAGS
This construction variable automatically introduces $_SHLIBVERSIONFLAGS if $SHLIBVERSION is set.
Othervise it evaluates to an empty string.

APPLELINK_COMPATIBILITY_VERSION
On Mac OS X this is used to set the linker flag: -compatibility_version

The value is specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This value will be derived from $SHLIBVERSION if not specified. The
lowest digit will be dropped and replaced by a 0.

If the $APPLELINK_NO_COMPATIBILITY_VERSION is set then no -compatibility_version will be output.

See MacOS's ld manpage for more details

_APPLELINK_COMPATIBILITY_VERSION
A macro (by default a generator function) used to create the linker flags to specify apple's linker's -
compatibility_version flag. The default generator uses $APPLELINK_COMPATIBILITY_VERSION and
$APPLELINK_NO_COMPATIBILITY_VERSION and $SHLIBVERSION to determine the correct flag.

APPLELINK_CURRENT_VERSION
On Mac OS X this is used to set the linker flag: -current_version

The value is specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This value will be set to $SHLIBVERSION if not specified.

If the $APPLELINK_NO_CURRENT_VERSION is set then no -current_version will be output.

See MacOS's ld manpage for more details

_APPLELINK_CURRENT_VERSION
A macro (by default a generator function) used to create the linker flags to specify apple's
linker's -current_version flag. The default generator uses $APPLELINK_CURRENT_VERSION and
$APPLELINK_NO_CURRENT_VERSION and $SHLIBVERSION to determine the correct flag.

APPLELINK_NO_COMPATIBILITY_VERSION
Set this to any True (1|True|non-empty string) value to disable adding -compatibility_version flag when generating
versioned shared libraries.

109

This overrides $APPLELINK_COMPATIBILITY_VERSION.

APPLELINK_NO_CURRENT_VERSION
Set this to any True (1|True|non-empty string) value to disable adding -current_version flag when generating
versioned shared libraries.

This overrides $APPLELINK_CURRENT_VERSION.

AR
The static library archiver.

ARCHITECTURE
Specifies the system architecture for which the package is being built. The default is the system architecture of
the machine on which SCons is running. This is used to fill in the Architecture: field in an Ipkg control
file, and the BuildArch: field in the RPM .spec file, as well as forming part of the name of a generated
RPM package file.

See the Package builder.

ARCOM
The command line used to generate a static library from object files.

ARCOMSTR
The string displayed when a static library is generated from object files. If this is not set, then $ARCOM (the
command line) is displayed.

env = Environment(ARCOMSTR = "Archiving $TARGET")

ARFLAGS
General options passed to the static library archiver.

AS
The assembler.

ASCOM
The command line used to generate an object file from an assembly-language source file.

ASCOMSTR
The string displayed when an object file is generated from an assembly-language source file. If this is not set,
then $ASCOM (the command line) is displayed.

env = Environment(ASCOMSTR = "Assembling $TARGET")

ASFLAGS
General options passed to the assembler.

ASPPCOM
The command line used to assemble an assembly-language source file into an object file after first running the file
through the C preprocessor. Any options specified in the $ASFLAGS and $CPPFLAGS construction variables
are included on this command line.

ASPPCOMSTR
The string displayed when an object file is generated from an assembly-language source file after first running
the file through the C preprocessor. If this is not set, then $ASPPCOM (the command line) is displayed.

110

env = Environment(ASPPCOMSTR = "Assembling $TARGET")

ASPPFLAGS
General options when an assembling an assembly-language source file into an object file after first running the
file through the C preprocessor. The default is to use the value of $ASFLAGS.

BIBTEX
The bibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

BIBTEXCOM
The command line used to call the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

BIBTEXCOMSTR
The string displayed when generating a bibliography for TeX or LaTeX. If this is not set, then $BIBTEXCOM
(the command line) is displayed.

env = Environment(BIBTEXCOMSTR = "Generating bibliography $TARGET")

BIBTEXFLAGS
General options passed to the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

BUILDERS
A dictionary mapping the names of the builders available through the construction environment to underlying
Builder objects. Custom builders need to be added to this to make them available.

A platform-dependent default list of builders such as Program, Library etc. is used to populate this
construction variable when the construction environment is initialized via the presence/absence of the tools those
builders depend on. $BUILDERS can be examined to learn which builders will actually be available at run-time.

Note that if you initialize this construction variable through assignment when the construction environment is
created, that value for $BUILDERS will override any defaults:

bld = Builder(action='foobuild < $SOURCE > $TARGET')
env = Environment(BUILDERS={'NewBuilder': bld})

To instead use a new Builder object in addition to the default Builders, add your new Builder object like this:

env = Environment()
env.Append(BUILDERS={'NewBuilder': bld})

or this:

env = Environment()
env['BUILDERS']['NewBuilder'] = bld

CACHEDIR_CLASS
The class type that SCons should use when instantiating a new CacheDir for the given environment. It must be
a subclass of the SCons.CacheDir.CacheDir class.

CC
The C compiler.

111

CCCOM
The command line used to compile a C source file to a (static) object file. Any options specified in the $CFLAGS,
$CCFLAGS and $CPPFLAGS construction variables are included on this command line. See also $SHCCCOM
for compiling to shared objects.

CCCOMSTR
If set, the string displayed when a C source file is compiled to a (static) object file. If not set, then $CCCOM (the
command line) is displayed. See also $SHCCCOMSTR for compiling to shared objects.

env = Environment(CCCOMSTR = "Compiling static object $TARGET")

CCDEPFLAGS
Options to pass to C or C++ compiler to generate list of dependency files.

This is set only by compilers which support this functionality. (gcc, clang, and msvc currently)

CCFLAGS
General options that are passed to the C and C++ compilers. See also $SHCCFLAGS for compiling to shared
objects.

CCPCHFLAGS
Options added to the compiler command line to support building with precompiled headers. The default value
expands expands to the appropriate Microsoft Visual C++ command-line options when the $PCH construction
variable is set.

CCPDBFLAGS
Options added to the compiler command line to support storing debugging information in a Microsoft Visual C+
+ PDB file. The default value expands expands to appropriate Microsoft Visual C++ command-line options when
the $PDB construction variable is set.

The Visual C++ compiler option that SCons uses by default to generate PDB information is /Z7. This works
correctly with parallel (-j) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple object files. This is also the only way to get debug
information embedded into a static library. Using the /Zi instead may yield improved link-time performance,
although parallel builds will no longer work.

You can generate PDB files with the /Zi switch by overriding the default $CCPDBFLAGS variable as follows:

env['CCPDBFLAGS'] = ['${(PDB and "/Zi /Fd%s" % File(PDB)) or ""}']

An alternative would be to use the /Zi to put the debugging information in a separate .pdb file for each object
file by overriding the $CCPDBFLAGS variable as follows:

env['CCPDBFLAGS'] = '/Zi /Fd${TARGET}.pdb'

CCVERSION
The version number of the C compiler. This may or may not be set, depending on the specific C compiler being
used.

CFILESUFFIX
The suffix for C source files. This is used by the internal CFile builder when generating C files from Lex (.l)
or YACC (.y) input files. The default suffix, of course, is .c (lower case). On case-insensitive systems (like
Windows), SCons also treats .C (upper case) files as C files.

112

CFLAGS
General options that are passed to the C compiler (C only; not C++). See also $SHCFLAGS for compiling to
shared objects.

CHANGE_SPECFILE
A hook for modifying the file that controls the packaging build (the .spec for RPM, the control for Ipkg, the
.wxs for MSI). If set, the function will be called after the SCons template for the file has been written.

See the Package builder.

CHANGED_SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

CHANGED_TARGETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

CHANGELOG
The name of a file containing the change log text to be included in the package. This is included as the
%changelog section of the RPM .spec file.

See the Package builder.

COMPILATIONDB_COMSTR
The string displayed when the CompilationDatabase builder's action is run.

COMPILATIONDB_PATH_FILTER
A string which instructs CompilationDatabase to only include entries where the output member matches
the pattern in the filter string using fnmatch, which uses glob style wildcards.

The default value is an empty string '', which disables filtering.

COMPILATIONDB_USE_ABSPATH
A boolean flag to instruct CompilationDatabase whether to write the file and output members in the
compilation database using absolute or relative paths.

The default value is False (use relative paths)

_concat
A function used to produce variables like $_CPPINCFLAGS. It takes four mandatory arguments, and up to 4
additional optional arguments: 1) a prefix to concatenate onto each element, 2) a list of elements, 3) a suffix to
concatenate onto each element, 4) an environment for variable interpolation, 5) an optional function that will
be called to transform the list before concatenation, 6) an optionally specified target (Can use TARGET), 7) an
optionally specified source (Can use SOURCE), 8) optional affect_signature flag which will wrap non-
empty returned value with $(and $) to indicate the contents should not affect the signature of the generated
command line.

 env['_CPPINCFLAGS'] = '${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs, TARGET, SOURCE, affect_signature=False)}'

CONFIGUREDIR
The name of the directory in which Configure context test files are written. The default is .sconf_temp in the
top-level directory containing the SConstruct file.

113

CONFIGURELOG
The name of the Configure context log file. The default is config.log in the top-level directory containing
the SConstruct file.

_CPPDEFFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options to define
values. The value of $_CPPDEFFLAGS is created by respectively prepending and appending $CPPDEFPREFIX
and $CPPDEFSUFFIX to each definition in $CPPDEFINES.

CPPDEFINES
A platform independent specification of C preprocessor macro definitions. The definitions will be added to
command lines through the automatically-generated $_CPPDEFFLAGS construction variable (see above), which
is constructed according to the type of value of $CPPDEFINES:

If $CPPDEFINES is a string, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction variables
will be respectively prepended and appended to each definition in $CPPDEFINES.

Will add -Dxyz to POSIX compiler command lines,
and /Dxyz to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES='xyz')

If $CPPDEFINES is a list, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction variables
will be respectively prepended and appended to each element in the list. If any element is a list or tuple, then the
first item is the name being defined and the second item is its value:

Will add -DB=2 -DA to POSIX compiler command lines,
and /DB=2 /DA to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES=[('B', 2), 'A'])

If $CPPDEFINES is a dictionary, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction
variables will be respectively prepended and appended to each item from the dictionary. The key of each dictionary
item is a name being defined to the dictionary item's corresponding value; if the value is None, then the name is
defined without an explicit value. Note that the resulting flags are sorted by keyword to ensure that the order of
the options on the command line is consistent each time scons is run.

Will add -DA -DB=2 to POSIX compiler command lines,
and /DA /DB=2 to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES={'B':2, 'A':None})

CPPDEFPREFIX
The prefix used to specify preprocessor macro definitions on the C compiler command line. This will be
prepended to each definition in the $CPPDEFINES construction variable when the $_CPPDEFFLAGS variable
is automatically generated.

CPPDEFSUFFIX
The suffix used to specify preprocessor macro definitions on the C compiler command line. This will be
appended to each definition in the $CPPDEFINES construction variable when the $_CPPDEFFLAGS variable
is automatically generated.

CPPFLAGS
User-specified C preprocessor options. These will be included in any command that uses the C preprocessor,
including not just compilation of C and C++ source files via the $CCCOM, $SHCCCOM, $CXXCOM and

114

$SHCXXCOM command lines, but also the $FORTRANPPCOM, $SHFORTRANPPCOM, $F77PPCOM and
$SHF77PPCOM command lines used to compile a Fortran source file, and the $ASPPCOM command line used
to assemble an assembly language source file, after first running each file through the C preprocessor. Note that
this variable does not contain -I (or similar) include search path options that scons generates automatically from
$CPPPATH. See $_CPPINCFLAGS, below, for the variable that expands to those options.

_CPPINCFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options for
specifying directories to be searched for include files. The value of $_CPPINCFLAGS is created by respectively
prepending and appending $INCPREFIX and $INCSUFFIX to each directory in $CPPPATH.

CPPPATH
The list of directories that the C preprocessor will search for include directories. The C/C++ implicit dependency
scanner will search these directories for include files. In general it's not advised to put include directory directives
directly into $CCFLAGS or $CXXFLAGS as the result will be non-portable and the directories will not be searched
by the dependency scanner. $CPPPATH should be a list of path strings, or a single string, not a pathname list
joined by Python's os.sep.

Note: directory names in $CPPPATH will be looked-up relative to the directory of the SConscript file when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use the # prefix:

env = Environment(CPPPATH='#/include')

The directory look-up can also be forced using the Dir function:

include = Dir('include')
env = Environment(CPPPATH=include)

The directory list will be added to command lines through the automatically-generated $_CPPINCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$INCPREFIX and $INCSUFFIX construction variables to each directory in $CPPPATH. Any command lines
you define that need the $CPPPATH directory list should include $_CPPINCFLAGS:

env = Environment(CCCOM="my_compiler $_CPPINCFLAGS -c -o $TARGET $SOURCE")

CPPSUFFIXES
The list of suffixes of files that will be scanned for C preprocessor implicit dependencies (#include lines). The
default list is:

[".c", ".C", ".cxx", ".cpp", ".c++", ".cc",
 ".h", ".H", ".hxx", ".hpp", ".hh",
 ".F", ".fpp", ".FPP",
 ".m", ".mm",
 ".S", ".spp", ".SPP"]

CXX
The C++ compiler. See also $SHCXX for compiling to shared objects..

CXXCOM
The command line used to compile a C++ source file to an object file. Any options specified in the $CXXFLAGS
and $CPPFLAGS construction variables are included on this command line. See also $SHCXXCOM for compiling
to shared objects..

115

CXXCOMSTR
If set, the string displayed when a C++ source file is compiled to a (static) object file. If not set, then $CXXCOM
(the command line) is displayed. See also $SHCXXCOMSTR for compiling to shared objects..

env = Environment(CXXCOMSTR = "Compiling static object $TARGET")

CXXFILESUFFIX
The suffix for C++ source files. This is used by the internal CXXFile builder when generating C++ files from Lex
(.ll) or YACC (.yy) input files. The default suffix is .cc. SCons also treats files with the suffixes .cpp, .cxx,
.c++, and .C++ as C++ files, and files with .mm suffixes as Objective C++ files. On case-sensitive systems
(Linux, UNIX, and other POSIX-alikes), SCons also treats .C (upper case) files as C++ files.

CXXFLAGS
General options that are passed to the C++ compiler. By default, this includes the value of $CCFLAGS, so that
setting $CCFLAGS affects both C and C++ compilation. If you want to add C++-specific flags, you must set or
override the value of $CXXFLAGS. See also $SHCXXFLAGS for compiling to shared objects..

CXXVERSION
The version number of the C++ compiler. This may or may not be set, depending on the specific C++ compiler
being used.

DC
The D compiler to use. See also $SHDC for compiling to shared objects.

DCOM
The command line used to compile a D file to an object file. Any options specified in the $DFLAGS construction
variable is included on this command line. See also $SHDCOM for compiling to shared objects.

DCOMSTR
If set, the string displayed when a D source file is compiled to a (static) object file. If not set, then $DCOM (the
command line) is displayed. See also $SHDCOMSTR for compiling to shared objects.

DDEBUG
List of debug tags to enable when compiling.

DDEBUGPREFIX
DDEBUGPREFIX.

DDEBUGSUFFIX
DDEBUGSUFFIX.

DESCRIPTION
A long description of the project being packaged. This is included in the relevant section of the file that controls
the packaging build.

See the Package builder.

DESCRIPTION_lang
A language-specific long description for the specified lang. This is used to populate a %description -l
section of an RPM .spec file.

See the Package builder.

DFILESUFFIX
DFILESUFFIX.

116

DFLAGPREFIX
DFLAGPREFIX.

DFLAGS
General options that are passed to the D compiler.

DFLAGSUFFIX
DFLAGSUFFIX.

DINCPREFIX
DINCPREFIX.

DINCSUFFIX
DLIBFLAGSUFFIX.

Dir
A function that converts a string into a Dir instance relative to the target being built.

Dirs
A function that converts a list of strings into a list of Dir instances relative to the target being built.

DLIB
Name of the lib tool to use for D codes.

DLIBCOM
The command line to use when creating libraries.

DLIBDIRPREFIX
DLIBLINKPREFIX.

DLIBDIRSUFFIX
DLIBLINKSUFFIX.

DLIBFLAGPREFIX
DLIBFLAGPREFIX.

DLIBFLAGSUFFIX
DLIBFLAGSUFFIX.

DLIBLINKPREFIX
DLIBLINKPREFIX.

DLIBLINKSUFFIX
DLIBLINKSUFFIX.

DLINK
Name of the linker to use for linking systems including D sources. See also $SHDLINK for linking shared objects.

DLINKCOM
The command line to use when linking systems including D sources. See also $SHDLINKCOM for linking shared
objects.

DLINKFLAGPREFIX
DLINKFLAGPREFIX.

DLINKFLAGS
List of linker flags. See also $SHDLINKFLAGS for linking shared objects.

117

DLINKFLAGSUFFIX
DLINKFLAGSUFFIX.

DOCBOOK_DEFAULT_XSL_EPUB
The default XSLT file for the DocbookEpub builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTML
The default XSLT file for the DocbookHtml builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLCHUNKED
The default XSLT file for the DocbookHtmlChunked builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLHELP
The default XSLT file for the DocbookHtmlhelp builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_MAN
The default XSLT file for the DocbookMan builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_PDF
The default XSLT file for the DocbookPdf builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_SLIDESHTML
The default XSLT file for the DocbookSlidesHtml builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_SLIDESPDF
The default XSLT file for the DocbookSlidesPdf builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_FOP
The path to the PDF renderer fop or xep, if one of them is installed (fop gets checked first).

DOCBOOK_FOPCOM
The full command-line for the PDF renderer fop or xep.

DOCBOOK_FOPCOMSTR
The string displayed when a renderer like fop or xep is used to create PDF output from an XML file.

DOCBOOK_FOPFLAGS
Additonal command-line flags for the PDF renderer fop or xep.

DOCBOOK_XMLLINT
The path to the external executable xmllint, if it's installed. Note, that this is only used as last fallback for
resolving XIncludes, if no lxml Python binding can be imported in the current system.

DOCBOOK_XMLLINTCOM
The full command-line for the external executable xmllint.

DOCBOOK_XMLLINTCOMSTR
The string displayed when xmllint is used to resolve XIncludes for a given XML file.

118

DOCBOOK_XMLLINTFLAGS
Additonal command-line flags for the external executable xmllint.

DOCBOOK_XSLTPROC
The path to the external executable xsltproc (or saxon, xalan), if one of them is installed. Note, that this
is only used as last fallback for XSL transformations, if no lxml Python binding can be imported in the current
system.

DOCBOOK_XSLTPROCCOM
The full command-line for the external executable xsltproc (or saxon, xalan).

DOCBOOK_XSLTPROCCOMSTR
The string displayed when xsltproc is used to transform an XML file via a given XSLT stylesheet.

DOCBOOK_XSLTPROCFLAGS
Additonal command-line flags for the external executable xsltproc (or saxon, xalan).

DOCBOOK_XSLTPROCPARAMS
Additonal parameters that are not intended for the XSLT processor executable, but the XSL processing itself. By
default, they get appended at the end of the command line for saxon and saxon-xslt, respectively.

DPATH
List of paths to search for import modules.

DRPATHPREFIX
DRPATHPREFIX.

DRPATHSUFFIX
DRPATHSUFFIX.

DSUFFIXES
The list of suffixes of files that will be scanned for imported D package files. The default list is ['.d'].

DVERPREFIX
DVERPREFIX.

DVERSIONS
List of version tags to enable when compiling.

DVERSUFFIX
DVERSUFFIX.

DVIPDF
The TeX DVI file to PDF file converter.

DVIPDFCOM
The command line used to convert TeX DVI files into a PDF file.

DVIPDFCOMSTR
The string displayed when a TeX DVI file is converted into a PDF file. If this is not set, then $DVIPDFCOM (the
command line) is displayed.

DVIPDFFLAGS
General options passed to the TeX DVI file to PDF file converter.

DVIPS
The TeX DVI file to PostScript converter.

119

DVIPSFLAGS
General options passed to the TeX DVI file to PostScript converter.

ENV
The execution environment - a dictionary of environment variables used when SCons invokes external commands
to build targets defined in this construction environment. When $ENV is passed to a command, all list values are
assumed to be path lists and are joined using the search path separator. Any other non-string values are coerced
to a string.

Note that by default SCons does not propagate the environment in effect when you execute scons (the "shell
environment") to the execution environment. This is so that builds will be guaranteed repeatable regardless of the
environment variables set at the time scons is invoked. If you want to propagate a shell environment variable to
the commands executed to build target files, you must do so explicitly. A common example is the system PATH
environment variable, so that scons will find utilities the same way as the invoking shell (or other process):

import os
env = Environment(ENV={'PATH': os.environ['PATH']})

Although it is usually not recommended, you can propagate the entire shell environment in one go:

import os
env = Environment(ENV=os.environ.copy())

ESCAPE
A function that will be called to escape shell special characters in command lines. The function should take one
argument: the command line string to escape; and should return the escaped command line.

F03
The Fortran 03 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F03 if you need to use a specific compiler or compiler
version for Fortran 03 files.

F03COM
The command line used to compile a Fortran 03 source file to an object file. You only need to set $F03COM if you
need to use a specific command line for Fortran 03 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F03COMSTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file. If not set, then $F03COM
or $FORTRANCOM (the command line) is displayed.

F03FILESUFFIXES
The list of file extensions for which the F03 dialect will be used. By default, this is ['.f03']

F03FLAGS
General user-specified options that are passed to the Fortran 03 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F03PATH. See
$_F03INCFLAGS below, for the variable that expands to those options. You only need to set $F03FLAGS if
you need to define specific user options for Fortran 03 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F03INCFLAGS
An automatically-generated construction variable containing the Fortran 03 compiler command-line options for
specifying directories to be searched for include files. The value of $_F03INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F03PATH.

120

F03PATH
The list of directories that the Fortran 03 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F03FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F03PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F03PATH if you need to define a specific include path for Fortran 03 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F03PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F03PATH=include)

The directory list will be added to command lines through the automatically-generated $_F03INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F03PATH. Any command lines you define
that need the F03PATH directory list should include $_F03INCFLAGS:

env = Environment(F03COM="my_compiler $_F03INCFLAGS -c -o $TARGET $SOURCE")

F03PPCOM
The command line used to compile a Fortran 03 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F03FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F03PPCOM if you need to use a specific C-preprocessor command
line for Fortran 03 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F03PPCOMSTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F03PPCOM or $FORTRANPPCOM (the command line) is displayed.

F03PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F03 dialect will be used. By default,
this is empty.

F08
The Fortran 08 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F08 if you need to use a specific compiler or compiler
version for Fortran 08 files.

F08COM
The command line used to compile a Fortran 08 source file to an object file. You only need to set $F08COM if you
need to use a specific command line for Fortran 08 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F08COMSTR
If set, the string displayed when a Fortran 08 source file is compiled to an object file. If not set, then $F08COM
or $FORTRANCOM (the command line) is displayed.

121

F08FILESUFFIXES
The list of file extensions for which the F08 dialect will be used. By default, this is ['.f08']

F08FLAGS
General user-specified options that are passed to the Fortran 08 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F08PATH. See
$_F08INCFLAGS below, for the variable that expands to those options. You only need to set $F08FLAGS if
you need to define specific user options for Fortran 08 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F08INCFLAGS
An automatically-generated construction variable containing the Fortran 08 compiler command-line options for
specifying directories to be searched for include files. The value of $_F08INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F08PATH.

F08PATH
The list of directories that the Fortran 08 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F08FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F08PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F08PATH if you need to define a specific include path for Fortran 08 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F08PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F08PATH=include)

The directory list will be added to command lines through the automatically-generated $_F08INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F08PATH. Any command lines you define
that need the F08PATH directory list should include $_F08INCFLAGS:

env = Environment(F08COM="my_compiler $_F08INCFLAGS -c -o $TARGET $SOURCE")

F08PPCOM
The command line used to compile a Fortran 08 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F08FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F08PPCOM if you need to use a specific C-preprocessor command
line for Fortran 08 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F08PPCOMSTR
If set, the string displayed when a Fortran 08 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F08PPCOM or $FORTRANPPCOM (the command line) is displayed.

F08PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F08 dialect will be used. By default,
this is empty.

122

F77
The Fortran 77 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F77 if you need to use a specific compiler or compiler
version for Fortran 77 files.

F77COM
The command line used to compile a Fortran 77 source file to an object file. You only need to set $F77COM if you
need to use a specific command line for Fortran 77 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F77COMSTR
If set, the string displayed when a Fortran 77 source file is compiled to an object file. If not set, then $F77COM
or $FORTRANCOM (the command line) is displayed.

F77FILESUFFIXES
The list of file extensions for which the F77 dialect will be used. By default, this is ['.f77']

F77FLAGS
General user-specified options that are passed to the Fortran 77 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F77PATH. See
$_F77INCFLAGS below, for the variable that expands to those options. You only need to set $F77FLAGS if
you need to define specific user options for Fortran 77 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F77INCFLAGS
An automatically-generated construction variable containing the Fortran 77 compiler command-line options for
specifying directories to be searched for include files. The value of $_F77INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F77PATH.

F77PATH
The list of directories that the Fortran 77 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F77FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F77PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F77PATH if you need to define a specific include path for Fortran 77 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F77PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F77PATH=include)

The directory list will be added to command lines through the automatically-generated $_F77INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F77PATH. Any command lines you define
that need the F77PATH directory list should include $_F77INCFLAGS:

env = Environment(F77COM="my_compiler $_F77INCFLAGS -c -o $TARGET $SOURCE")

123

F77PPCOM
The command line used to compile a Fortran 77 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F77FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F77PPCOM if you need to use a specific C-preprocessor command
line for Fortran 77 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F77PPCOMSTR
If set, the string displayed when a Fortran 77 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F77PPCOM or $FORTRANPPCOM (the command line) is displayed.

F77PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F77 dialect will be used. By default,
this is empty.

F90
The Fortran 90 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F90 if you need to use a specific compiler or compiler
version for Fortran 90 files.

F90COM
The command line used to compile a Fortran 90 source file to an object file. You only need to set $F90COM if you
need to use a specific command line for Fortran 90 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F90COMSTR
If set, the string displayed when a Fortran 90 source file is compiled to an object file. If not set, then $F90COM
or $FORTRANCOM (the command line) is displayed.

F90FILESUFFIXES
The list of file extensions for which the F90 dialect will be used. By default, this is ['.f90']

F90FLAGS
General user-specified options that are passed to the Fortran 90 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F90PATH. See
$_F90INCFLAGS below, for the variable that expands to those options. You only need to set $F90FLAGS if
you need to define specific user options for Fortran 90 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F90INCFLAGS
An automatically-generated construction variable containing the Fortran 90 compiler command-line options for
specifying directories to be searched for include files. The value of $_F90INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F90PATH.

F90PATH
The list of directories that the Fortran 90 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F90FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F90PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F90PATH if you need to define a specific include path for Fortran 90 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F90PATH='#/include')

124

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F90PATH=include)

The directory list will be added to command lines through the automatically-generated $_F90INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F90PATH. Any command lines you define
that need the F90PATH directory list should include $_F90INCFLAGS:

env = Environment(F90COM="my_compiler $_F90INCFLAGS -c -o $TARGET $SOURCE")

F90PPCOM
The command line used to compile a Fortran 90 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F90FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F90PPCOM if you need to use a specific C-preprocessor command
line for Fortran 90 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F90PPCOMSTR
If set, the string displayed when a Fortran 90 source file is compiled after first running the file through the C
preprocessor. If not set, then $F90PPCOM or $FORTRANPPCOM (the command line) is displayed.

F90PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F90 dialect will be used. By default,
this is empty.

F95
The Fortran 95 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F95 if you need to use a specific compiler or compiler
version for Fortran 95 files.

F95COM
The command line used to compile a Fortran 95 source file to an object file. You only need to set $F95COM if you
need to use a specific command line for Fortran 95 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F95COMSTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file. If not set, then $F95COM
or $FORTRANCOM (the command line) is displayed.

F95FILESUFFIXES
The list of file extensions for which the F95 dialect will be used. By default, this is ['.f95']

F95FLAGS
General user-specified options that are passed to the Fortran 95 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F95PATH. See
$_F95INCFLAGS below, for the variable that expands to those options. You only need to set $F95FLAGS if
you need to define specific user options for Fortran 95 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F95INCFLAGS
An automatically-generated construction variable containing the Fortran 95 compiler command-line options for
specifying directories to be searched for include files. The value of $_F95INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F95PATH.

125

F95PATH
The list of directories that the Fortran 95 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F95FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F95PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F95PATH if you need to define a specific include path for Fortran 95 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F95PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F95PATH=include)

The directory list will be added to command lines through the automatically-generated $_F95INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F95PATH. Any command lines you define
that need the F95PATH directory list should include $_F95INCFLAGS:

env = Environment(F95COM="my_compiler $_F95INCFLAGS -c -o $TARGET $SOURCE")

F95PPCOM
The command line used to compile a Fortran 95 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F95FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F95PPCOM if you need to use a specific C-preprocessor command
line for Fortran 95 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F95PPCOMSTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F95PPCOM or $FORTRANPPCOM (the command line) is displayed.

F95PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F95 dialect will be used. By default,
this is empty.

File
A function that converts a string into a File instance relative to the target being built.

FORTRAN
The default Fortran compiler for all versions of Fortran.

FORTRANCOM
The command line used to compile a Fortran source file to an object file. By default, any options specified in the
$FORTRANFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS construction variables are included
on this command line.

FORTRANCOMMONFLAGS
General user-specified options that are passed to the Fortran compiler. Similar to $FORTRANFLAGS, but this
variable is applied to all dialects.

126

FORTRANCOMSTR
If set, the string displayed when a Fortran source file is compiled to an object file. If not set, then $FORTRANCOM
(the command line) is displayed.

FORTRANFILESUFFIXES
The list of file extensions for which the FORTRAN dialect will be used. By default, this is ['.f', '.for',
'.ftn']

FORTRANFLAGS
General user-specified options for the FORTRAN dialect that are passed to the Fortran compiler. Note that this
variable does not contain -I (or similar) include or module search path options that scons generates automatically
from $FORTRANPATH. See $_FORTRANINCFLAGS and $_FORTRANMODFLAG, below, for the variables that
expand those options.

_FORTRANINCFLAGS
An automatically-generated construction variable containing the Fortran compiler command-line options for
specifying directories to be searched for include files and module files. The value of $_FORTRANINCFLAGS is
created by respectively prepending and appending $INCPREFIX and $INCSUFFIX to the beginning and end
of each directory in $FORTRANPATH.

FORTRANMODDIR
Directory location where the Fortran compiler should place any module files it generates. This variable is empty,
by default. Some Fortran compilers will internally append this directory in the search path for module files, as well.

FORTRANMODDIRPREFIX
The prefix used to specify a module directory on the Fortran compiler command line. This will be prepended to the
beginning of the directory in the $FORTRANMODDIR construction variables when the $_FORTRANMODFLAG
variables is automatically generated.

FORTRANMODDIRSUFFIX
The suffix used to specify a module directory on the Fortran compiler command line. This will be appended to the
end of the directory in the $FORTRANMODDIR construction variables when the $_FORTRANMODFLAG variables
is automatically generated.

_FORTRANMODFLAG
An automatically-generated construction variable containing the Fortran compiler command-line option for
specifying the directory location where the Fortran compiler should place any module files that happen to
get generated during compilation. The value of $_FORTRANMODFLAG is created by respectively prepending
and appending $FORTRANMODDIRPREFIX and $FORTRANMODDIRSUFFIX to the beginning and end of the
directory in $FORTRANMODDIR.

FORTRANMODPREFIX
The module file prefix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for module files of module_name.mod. As a result, this variable is left empty, by
default. For situations in which the compiler does not necessarily follow the normal convention, the user may use
this variable. Its value will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANMODSUFFIX
The module file suffix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for module files of module_name.mod. As a result, this variable is set to ".mod",
by default. For situations in which the compiler does not necessarily follow the normal convention, the user may
use this variable. Its value will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANPATH
The list of directories that the Fortran compiler will search for include files and (for some compilers) module files.
The Fortran implicit dependency scanner will search these directories for include files (but not module files since

127

they are autogenerated and, as such, may not actually exist at the time the scan takes place). Don't explicitly put
include directory arguments in FORTRANFLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory names in FORTRANPATH will be looked-up relative
to the SConscript directory when they are used in a command. To force scons to look-up a directory relative to
the root of the source tree use #:

env = Environment(FORTRANPATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(FORTRANPATH=include)

The directory list will be added to command lines through the automatically-generated $_FORTRANINCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory in
$FORTRANPATH. Any command lines you define that need the FORTRANPATH directory list should include
$_FORTRANINCFLAGS:

env = Environment(FORTRANCOM="my_compiler $_FORTRANINCFLAGS -c -o $TARGET $SOURCE")

FORTRANPPCOM
The command line used to compile a Fortran source file to an object file after first running the file through the
C preprocessor. By default, any options specified in the $FORTRANFLAGS, $CPPFLAGS, $_CPPDEFFLAGS,
$_FORTRANMODFLAG, and $_FORTRANINCFLAGS construction variables are included on this command line.

FORTRANPPCOMSTR
If set, the string displayed when a Fortran source file is compiled to an object file after first running the file through
the C preprocessor. If not set, then $FORTRANPPCOM (the command line) is displayed.

FORTRANPPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for FORTRAN dialect will be used. By
default, this is ['.fpp', '.FPP']

FORTRANSUFFIXES
The list of suffixes of files that will be scanned for Fortran implicit dependencies (INCLUDE lines and USE
statements). The default list is:

[".f", ".F", ".for", ".FOR", ".ftn", ".FTN", ".fpp", ".FPP",
".f77", ".F77", ".f90", ".F90", ".f95", ".F95"]

FRAMEWORKPATH
On Mac OS X with gcc, a list containing the paths to search for frameworks. Used by the compiler to find
framework-style includes like #include <Fmwk/Header.h>. Used by the linker to find user-specified frameworks
when linking (see $FRAMEWORKS). For example:

env.AppendUnique(FRAMEWORKPATH='#myframeworkdir')

will add

128

... -Fmyframeworkdir

to the compiler and linker command lines.

_FRAMEWORKPATH
On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options corresponding to $FRAMEWORKPATH.

FRAMEWORKPATHPREFIX
On Mac OS X with gcc, the prefix to be used for the FRAMEWORKPATH entries. (see $FRAMEWORKPATH).
The default value is -F.

FRAMEWORKPREFIX
On Mac OS X with gcc, the prefix to be used for linking in frameworks (see $FRAMEWORKS). The default value
is -framework.

FRAMEWORKS
On Mac OS X with gcc, a list of the framework names to be linked into a program or shared library or bundle.
The default value is the empty list. For example:

env.AppendUnique(FRAMEWORKS=Split('System Cocoa SystemConfiguration'))

_FRAMEWORKS
On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options for linking with FRAMEWORKS.

FRAMEWORKSFLAGS
On Mac OS X with gcc, general user-supplied frameworks options to be added at the end of a
command line building a loadable module. (This has been largely superseded by the $FRAMEWORKPATH,
$FRAMEWORKPATHPREFIX, $FRAMEWORKPREFIX and $FRAMEWORKS variables described above.)

GS
The Ghostscript program used to, for example, convert PostScript to PDF files.

GSCOM
The full Ghostscript command line used for the conversion process. Its default value is “$GS $GSFLAGS -
sOutputFile=$TARGET $SOURCES”.

GSCOMSTR
The string displayed when Ghostscript is called for the conversion process. If this is not set (the default), then
$GSCOM (the command line) is displayed.

GSFLAGS
General options passed to the Ghostscript program, when converting PostScript to PDF files for example. Its
default value is “-dNOPAUSE -dBATCH -sDEVICE=pdfwrite”

HOST_ARCH
The name of the host hardware architecture used to create this construction environment. The platform code sets
this when initializing (see $PLATFORM and the platform argument to Environment). Note the detected
name of the architecture may not be identical to that returned by the Python platform.machine method.

On the win32 platform, if the Microsoft Visual C++ compiler is available, msvc tool setup is done using
$HOST_ARCH and $TARGET_ARCH. Changing the values at any later time will not cause the tool to be
reinitialized. Valid host arch values are x86 and arm for 32-bit hosts and amd64 and x86_64 for 64-bit hosts.

129

Should be considered immutable. $HOST_ARCH is not currently used by other platforms, but the option is reserved
to do so in future

HOST_OS
The name of the host operating system for the platform used to create this construction environment. The platform
code sets this when initializing (see $PLATFORM and the platform argument to Environment).

Should be considered immutable. $HOST_OS is not currently used by SCons, but the option is reserved to do
so in future

IDLSUFFIXES
The list of suffixes of files that will be scanned for IDL implicit dependencies (#include or import lines). The
default list is:

[".idl", ".IDL"]

IMPLIBNOVERSIONSYMLINKS
Used to override $SHLIBNOVERSIONSYMLINKS/$LDMODULENOVERSIONSYMLINKS when creating
versioned import library for a shared library/loadable module. If not defined, then
$SHLIBNOVERSIONSYMLINKS/$LDMODULENOVERSIONSYMLINKS is used to determine whether to disable
symlink generation or not.

IMPLIBPREFIX
The prefix used for import library names. For example, cygwin uses import libraries (libfoo.dll.a) in
pair with dynamic libraries (cygfoo.dll). The cyglink linker sets $IMPLIBPREFIX to 'lib' and
$SHLIBPREFIX to 'cyg'.

IMPLIBSUFFIX
The suffix used for import library names. For example, cygwin uses import libraries (libfoo.dll.a) in
pair with dynamic libraries (cygfoo.dll). The cyglink linker sets $IMPLIBSUFFIX to '.dll.a' and
$SHLIBSUFFIX to '.dll'.

IMPLIBVERSION
Used to override $SHLIBVERSION/$LDMODULEVERSION when generating versioned import library for a
shared library/loadable module. If undefined, the $SHLIBVERSION/$LDMODULEVERSION is used to determine
the version of versioned import library.

IMPLICIT_COMMAND_DEPENDENCIES
Controls whether or not SCons will add implicit dependencies for the commands executed to build targets.

By default, SCons will add to each target an implicit dependency on the command represented by the first argument
of any command line it executes (which is typically the command itself). By setting such a dependency, SCons
can determine that a target should be rebuilt if the command changes, such as when a compiler is upgraded to a
new version. The specific file for the dependency is found by searching the PATH variable in the ENV dictionary
in the construction environment used to execute the command. The default is the same as setting the construction
variable $IMPLICIT_COMMAND_DEPENDENCIES to a True-like value (“true”, “yes”, or “1” - but not a number
greater than one, as that has a different meaning).

Action strings can be segmented by the use of an AND operator, &&. In a segemented string, each segment is a
separate “command line”, these are run sequentially until one fails or the entire sequence has been executed. If an
action string is segmented, then the selected behavior of $IMPLICIT_COMMAND_DEPENDENCIES is applied
to each segment.

If $IMPLICIT_COMMAND_DEPENDENCIES is set to a False-like value (“none”, “false”, “no”, “0”, etc.), then
the implicit dependency will not be added to the targets built with that construction environment.

130

If $IMPLICIT_COMMAND_DEPENDENCIES is set to “2” or higher, then that number of arguments in the
command line will be scanned for relative or absolute paths. If any are present, they will be added as implicit
dependencies to the targets built with that construction environment. The first argument in the command line will
be searched for using the PATH variable in the ENV dictionary in the construction environment used to execute
the command. The other arguments will only be found if they are absolute paths or valid paths relative to the
working directory.

If $IMPLICIT_COMMAND_DEPENDENCIES is set to “all”, then all arguments in the command line will be
scanned for relative or absolute paths. If any are present, they will be added as implicit dependencies to the targets
built with that construction environment. The first argument in the command line will be searched for using the
PATH variable in the ENV dictionary in the construction environment used to execute the command. The other
arguments will only be found if they are absolute paths or valid paths relative to the working directory.

env = Environment(IMPLICIT_COMMAND_DEPENDENCIES=False)

INCPREFIX
The prefix used to specify an include directory on the C compiler command line. This will be prepended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_CPPINCFLAGS and
$_FORTRANINCFLAGS variables are automatically generated.

INCSUFFIX
The suffix used to specify an include directory on the C compiler command line. This will be appended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_CPPINCFLAGS and
$_FORTRANINCFLAGS variables are automatically generated.

INSTALL
A function to be called to install a file into a destination file name. The default function copies the file into the
destination (and sets the destination file's mode and permission bits to match the source file's). The function takes
the following arguments:

def install(dest, source, env):

dest is the path name of the destination file. source is the path name of the source file. env is the construction
environment (a dictionary of construction values) in force for this file installation.

INSTALLSTR
The string displayed when a file is installed into a destination file name. The default is:

Install file: "$SOURCE" as "$TARGET"

INTEL_C_COMPILER_VERSION
Set by the intelc Tool to the major version number of the Intel C compiler selected for use.

JAR
The Java archive tool.

JARCHDIR
The directory to which the Java archive tool should change (using the -C option).

JARCOM
The command line used to call the Java archive tool.

JARCOMSTR
The string displayed when the Java archive tool is called If this is not set, then $JARCOM (the command line)
is displayed.

131

env = Environment(JARCOMSTR="JARchiving $SOURCES into $TARGET")

JARFLAGS
General options passed to the Java archive tool. By default this is set to cf to create the necessary jar file.

JARSUFFIX
The suffix for Java archives: .jar by default.

JAVABOOTCLASSPATH
Specifies the list of directories that will be added to the javac command line via the -bootclasspath option.
The individual directory names will be separated by the operating system's path separate character (: on UNIX/
Linux/POSIX, ; on Windows).

JAVAC
The Java compiler.

JAVACCOM
The command line used to compile a directory tree containing Java source files to corresponding Java class files.
Any options specified in the $JAVACFLAGS construction variable are included on this command line.

JAVACCOMSTR
The string displayed when compiling a directory tree of Java source files to corresponding Java class files. If this
is not set, then $JAVACCOM (the command line) is displayed.

env = Environment(JAVACCOMSTR="Compiling class files $TARGETS from $SOURCES")

JAVACFLAGS
General options that are passed to the Java compiler.

JAVACLASSDIR
The directory in which Java class files may be found. This is stripped from the beginning of any Java .class file
names supplied to the JavaH builder.

JAVACLASSPATH
Specifies the list of directories that will be searched for Java .class file. The directories in this list will be
added to the javac and javah command lines via the -classpath option. The individual directory names will
be separated by the operating system's path separate character (: on UNIX/Linux/POSIX, ; on Windows).

JAVACLASSSUFFIX
The suffix for Java class files; .class by default.

JAVAH
The Java generator for C header and stub files.

JAVAHCOM
The command line used to generate C header and stub files from Java classes. Any options specified in the
$JAVAHFLAGS construction variable are included on this command line.

JAVAHCOMSTR
The string displayed when C header and stub files are generated from Java classes. If this is not set, then
$JAVAHCOM (the command line) is displayed.

env = Environment(JAVAHCOMSTR="Generating header/stub file(s) $TARGETS from $SOURCES")

132

JAVAHFLAGS
General options passed to the C header and stub file generator for Java classes.

JAVAINCLUDES
Include path for Java header files (such as jni.h)

JAVASOURCEPATH
Specifies the list of directories that will be searched for input .java file. The directories in this list will be added
to the javac command line via the -sourcepath option. The individual directory names will be separated by
the operating system's path separate character (: on UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory via the -sourcepath option. SCons does not currently
search the $JAVASOURCEPATH directories for dependency .java files.

JAVASUFFIX
The suffix for Java files; .java by default.

JAVAVERSION
Specifies the Java version being used by the Java builder. Set this to specify the version of Java targeted by the
javac compiler. This is sometimes necessary because Java 1.5 changed the file names that are created for nested
anonymous inner classes, which can cause a mismatch with the files that SCons expects will be generated by the
javac compiler. Setting $JAVAVERSION to a version greater than 1.4 makes SCons realize that a build with
such a compiler is actually up to date. The default is 1.4.

While this is not primarily intended for selecting one version of the Java compiler vs. another, it does have that
effect on the Windows platform. A more precise approach is to set $JAVAC (and related construction variables
for related utilities) to the path to the specific Java compiler you want, if that is not the default compiler. On non-
Windows platforms, the alternatives system may provide a way to adjust the default Java compiler without
having to specify explicit paths.

LATEX
The LaTeX structured formatter and typesetter.

LATEXCOM
The command line used to call the LaTeX structured formatter and typesetter.

LATEXCOMSTR
The string displayed when calling the LaTeX structured formatter and typesetter. If this is not set, then
$LATEXCOM (the command line) is displayed.

env = Environment(LATEXCOMSTR = "Building $TARGET from LaTeX input $SOURCES")

LATEXFLAGS
General options passed to the LaTeX structured formatter and typesetter.

LATEXRETRIES
The maximum number of times that LaTeX will be re-run if the .log generated by the $LATEXCOM command
indicates that there are undefined references. The default is to try to resolve undefined references by re-running
LaTeX up to three times.

LATEXSUFFIXES
The list of suffixes of files that will be scanned for LaTeX implicit dependencies (\include or \import files).
The default list is:

[".tex", ".ltx", ".latex"]

133

LDMODULE
The linker for building loadable modules. By default, this is the same as $SHLINK.

LDMODULECOM
The command line for building loadable modules. On Mac OS X, this uses the $LDMODULE, $LDMODULEFLAGS
and $FRAMEWORKSFLAGS variables. On other systems, this is the same as $SHLINK.

LDMODULECOMSTR
If set, the string displayed when building loadable modules. If not set, then $LDMODULECOM (the command line)
is displayed.

LDMODULEEMITTER
Contains the emitter specification for the LoadableModule builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

LDMODULEFLAGS
General user options passed to the linker for building loadable modules.

LDMODULENOVERSIONSYMLINKS
Instructs the LoadableModule builder to not automatically create symlinks for versioned modules. Defaults
to $SHLIBNOVERSIONSYMLINKS

LDMODULEPREFIX
The prefix used for loadable module file names. On Mac OS X, this is null; on other systems, this is the same
as $SHLIBPREFIX.

_LDMODULESONAME
A macro that automatically generates loadable module's SONAME based on $TARGET,
$LDMODULEVERSION and $LDMODULESUFFIX. Used by LoadableModule builder when the linker tool
supports SONAME (e.g. gnulink).

LDMODULESUFFIX
The suffix used for loadable module file names. On Mac OS X, this is null; on other systems, this is the same
as $SHLIBSUFFIX.

LDMODULEVERSION
When this construction variable is defined, a versioned loadable module is created by LoadableModule
builder. This activates the $_LDMODULEVERSIONFLAGS and thus modifies the $LDMODULECOM as required,
adds the version number to the library name, and creates the symlinks that are needed. $LDMODULEVERSION
versions should exist in the same format as $SHLIBVERSION.

_LDMODULEVERSIONFLAGS
This macro automatically introduces extra flags to $LDMODULECOM when building versioned
LoadableModule (that is when $LDMODULEVERSION is set). _LDMODULEVERSIONFLAGS usually
adds $SHLIBVERSIONFLAGS and some extra dynamically generated options (such as -Wl,-soname=
$_LDMODULESONAME). It is unused by plain (unversioned) loadable modules.

LDMODULEVERSIONFLAGS
Extra flags added to $LDMODULECOM when building versioned LoadableModule. These flags are only used
when $LDMODULEVERSION is set.

LEX
The lexical analyzer generator.

LEX_HEADER_FILE
If supplied, generate a C header file with the name taken from this variable. Will be emitted as a --header-
file= command-line option. Use this in preference to including --header-file= in $LEXFLAGS directly.

134

LEX_TABLES_FILE
If supplied, write the lex tables to a file with the name taken from this variable. Will be emitted as a --tables-
file= command-line option. Use this in preference to including --tables-file= in $LEXFLAGS directly.

LEXCOM
The command line used to call the lexical analyzer generator to generate a source file.

LEXCOMSTR
The string displayed when generating a source file using the lexical analyzer generator. If this is not set, then
$LEXCOM (the command line) is displayed.

env = Environment(LEXCOMSTR="Lex'ing $TARGET from $SOURCES")

LEXFLAGS
General options passed to the lexical analyzer generator. In addition to passing the value on during invocation, the
lex tool also examines this construction variable for options which cause additional output files to be generated,
and adds those to the target list. Recognized for this purpose are GNU flex options --header-file= and --
tables-file=; the output file is named by the option argument.

Note that files specified by --header-file= and --tables-file= may not be properly handled by SCons
in all situations. Consider using $LEX_HEADER_FILE and $LEX_TABLES_FILE instead.

LEXUNISTD
Used only on windows environments to set a lex flag to prevent 'unistd.h' from being included. The default value
is '--nounistd'.

_LIBDIRFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
directories to be searched for library. The value of $_LIBDIRFLAGS is created by respectively prepending and
appending $LIBDIRPREFIX and $LIBDIRSUFFIX to each directory in $LIBPATH.

LIBDIRPREFIX
The prefix used to specify a library directory on the linker command line. This will be prepended to each directory
in the $LIBPATH construction variable when the $_LIBDIRFLAGS variable is automatically generated.

LIBDIRSUFFIX
The suffix used to specify a library directory on the linker command line. This will be appended to each directory
in the $LIBPATH construction variable when the $_LIBDIRFLAGS variable is automatically generated.

LIBEMITTER
Contains the emitter specification for the StaticLibrary builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

_LIBFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
libraries to be linked with the resulting target. The value of $_LIBFLAGS is created by respectively prepending
and appending $LIBLINKPREFIX and $LIBLINKSUFFIX to each filename in $LIBS.

LIBLINKPREFIX
The prefix used to specify a library to link on the linker command line. This will be prepended to each library in
the $LIBS construction variable when the $_LIBFLAGS variable is automatically generated.

LIBLINKSUFFIX
The suffix used to specify a library to link on the linker command line. This will be appended to each library in
the $LIBS construction variable when the $_LIBFLAGS variable is automatically generated.

135

LIBPATH
The list of directories that will be searched for libraries specified by the $LIBS construction variable. $LIBPATH
should be a list of path strings, or a single string, not a pathname list joined by Python's os.sep. Do not put
library search directives directly into $LINKFLAGS or $SHLINKFLAGS as the result will be non-portable.

Note: directory names in $LIBPATH will be looked-up relative to the directory of the SConscript file when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use the # prefix:

env = Environment(LIBPATH='#/libs')

The directory look-up can also be forced using the Dir function:

libs = Dir('libs')
env = Environment(LIBPATH=libs)

The directory list will be added to command lines through the automatically-generated $_LIBDIRFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$LIBDIRPREFIX and $LIBDIRSUFFIX construction variables to each directory in $LIBPATH. Any
command lines you define that need the $LIBPATH directory list should include $_LIBDIRFLAGS:

env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")

LIBPREFIX
The prefix used for (static) library file names. A default value is set for each platform (posix, win32, os2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LIBPREFIXES
A list of all legal prefixes for library file names. When searching for library dependencies, SCons will look for
files with these prefixes, the base library name, and suffixes from the $LIBSUFFIXES list.

LIBS
A list of one or more libraries that will be added to the link line for linking with any executable program, shared
library, or loadable module created by the construction environment or override.

String-valued library names should include only the library base names, without prefixes such as lib or suffixes
such as .so or .dll. The library list will be added to command lines through the automatically-generated
$_LIBFLAGS construction variable which is constructed by respectively prepending and appending the values of
the $LIBLINKPREFIX and $LIBLINKSUFFIX construction variables to each library name in $LIBS. Library
name strings should not include a path component, instead the compiler will be directed to look for libraries in
the paths specified by $LIBPATH.

Any command lines you define that need the $LIBS library list should include $_LIBFLAGS:

env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")

If you add a File object to the $LIBS list, the name of that file will be added to $_LIBFLAGS, and thus to the
link line, as-is, without $LIBLINKPREFIX or $LIBLINKSUFFIX. For example:

env.Append(LIBS=File('/tmp/mylib.so'))

In all cases, scons will add dependencies from the executable program to all the libraries in this list.

136

LIBSUFFIX
The suffix used for (static) library file names. A default value is set for each platform (posix, win32, os2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LIBSUFFIXES
A list of all legal suffixes for library file names. When searching for library dependencies, SCons will look for
files with prefixes from the $LIBPREFIXES list, the base library name, and these suffixes.

LICENSE
The abbreviated name, preferably the SPDX code, of the license under which this project is released
(GPL-3.0, LGPL-2.1, BSD-2-Clause etc.). See http://www.opensource.org/licenses/alphabetical [http://
www.opensource.org/licenses/alphabetical] for a list of license names and SPDX codes.

See the Package builder.

LINESEPARATOR
The separator used by the Substfile and Textfile builders. This value is used between sources when
constructing the target. It defaults to the current system line separator.

LINGUAS_FILE
The $LINGUAS_FILE defines file(s) containing list of additional linguas to be processed by POInit,
POUpdate or MOFiles builders. It also affects Translate builder. If the variable contains a string, it defines
name of the list file. The $LINGUAS_FILE may be a list of file names as well. If $LINGUAS_FILE is set to
True (or non-zero numeric value), the list will be read from default file named LINGUAS.

LINK
The linker. See also $SHLINK for linking shared objects.

On POSIX systems (those using the link tool), you should normally not change this value as it defaults to a
"smart" linker tool which selects a compiler driver matching the type of source files in use. So for example, if you
set $CXX to a specific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

LINKCOM
The command line used to link object files into an executable. See also $SHLINKCOM for linking shared objects.

LINKCOMSTR
If set, the string displayed when object files are linked into an executable. If not set, then $LINKCOM (the command
line) is displayed. See also $SHLINKCOMSTR. for linking shared objects.

env = Environment(LINKCOMSTR = "Linking $TARGET")

LINKFLAGS
General user options passed to the linker. Note that this variable should not contain -l (or similar) options
for linking with the libraries listed in $LIBS, nor -L (or similar) library search path options that scons
generates automatically from $LIBPATH. See $_LIBFLAGS above, for the variable that expands to library-
link options, and $_LIBDIRFLAGS above, for the variable that expands to library search path options. See also
$SHLINKFLAGS. for linking shared objects.

M4
The M4 macro preprocessor.

M4COM
The command line used to pass files through the M4 macro preprocessor.

http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical

137

M4COMSTR
The string displayed when a file is passed through the M4 macro preprocessor. If this is not set, then $M4COM
(the command line) is displayed.

M4FLAGS
General options passed to the M4 macro preprocessor.

MAKEINDEX
The makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

MAKEINDEXCOM
The command line used to call the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

MAKEINDEXCOMSTR
The string displayed when calling the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter. If this is not set, then $MAKEINDEXCOM (the command line) is displayed.

MAKEINDEXFLAGS
General options passed to the makeindex generator for the TeX formatter and typesetter and the LaTeX structured
formatter and typesetter.

MAXLINELENGTH
The maximum number of characters allowed on an external command line. On Win32 systems, link lines longer
than this many characters are linked via a temporary file name.

MIDL
The Microsoft IDL compiler.

MIDLCOM
The command line used to pass files to the Microsoft IDL compiler.

MIDLCOMSTR
The string displayed when the Microsoft IDL compiler is called. If this is not set, then $MIDLCOM (the command
line) is displayed.

MIDLFLAGS
General options passed to the Microsoft IDL compiler.

MOSUFFIX
Suffix used for MO files (default: '.mo'). See msgfmt tool and MOFiles builder.

MSGFMT
Absolute path to msgfmt(1) binary, found by Detect(). See msgfmt tool and MOFiles builder.

MSGFMTCOM
Complete command line to run msgfmt(1) program. See msgfmt tool and MOFiles builder.

MSGFMTCOMSTR
String to display when msgfmt(1) is invoked (default: '', which means ``print $MSGFMTCOM''). See msgfmt
tool and MOFiles builder.

MSGFMTFLAGS
Additional flags to msgfmt(1). See msgfmt tool and MOFiles builder.

MSGINIT
Path to msginit(1) program (found via Detect()). See msginit tool and POInit builder.

138

MSGINITCOM
Complete command line to run msginit(1) program. See msginit tool and POInit builder.

MSGINITCOMSTR
String to display when msginit(1) is invoked (default: '', which means ̀ `print $MSGINITCOM''). See msginit
tool and POInit builder.

MSGINITFLAGS
List of additional flags to msginit(1) (default: []). See msginit tool and POInit builder.

_MSGINITLOCALE
Internal ``macro''. Computes locale (language) name based on target filename (default:
'${TARGET.filebase}').

See msginit tool and POInit builder.

MSGMERGE
Absolute path to msgmerge(1) binary as found by Detect(). See msgmerge tool and POUpdate builder.

MSGMERGECOM
Complete command line to run msgmerge(1) command. See msgmerge tool and POUpdate builder.

MSGMERGECOMSTR
String to be displayed when msgmerge(1) is invoked (default: '', which means ``print $MSGMERGECOM''). See
msgmerge tool and POUpdate builder.

MSGMERGEFLAGS
Additional flags to msgmerge(1) command. See msgmerge tool and POUpdate builder.

MSSDK_DIR
The directory containing the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.

MSSDK_VERSION
The version string of the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.
Supported versions include 6.1, 6.0A, 6.0, 2003R2 and 2003R1.

MSVC_BATCH
When set to any true value, specifies that SCons should batch compilation of object files when calling the Microsoft
Visual C/C++ compiler. All compilations of source files from the same source directory that generate target files
in a same output directory and were configured in SCons using the same construction environment will be built
in a single call to the compiler. Only source files that have changed since their object files were built will be
passed to each compiler invocation (via the $CHANGED_SOURCES construction variable). Any compilations
where the object (target) file base name (minus the .obj) does not match the source file base name will be
compiled separately.

MSVC_NOTFOUND_POLICY
Specify the scons behavior when the Microsoft Visual C/C++ compiler is not detected.

The $MSVC_NOTFOUND_POLICY specifies the scons behavior when no msvc versions are detected or when the
requested msvc version is not detected.

The valid values for $MSVC_NOTFOUND_POLICY and the corresponding scons behavior are:

'Error' or 'Exception'
Raise an exception when no msvc versions are detected or when the requested msvc version is not detected.

139

'Warning' or 'Warn'
Issue a warning and continue when no msvc versions are detected or when the requested msvc version is not
detected. Depending on usage, this could result in build failure(s).

'Ignore' or 'Suppress'
Take no action and continue when no msvc versions are detected or when the requested msvc version is not
detected. Depending on usage, this could result in build failure(s).

Note: in addition to the camel case values shown above, lower case and upper case values are accepted as well.

The $MSVC_NOTFOUND_POLICY is applied when any of the following conditions are satisfied:

• $MSVC_VERSION is specified, the default tools list is implicitly defined (i.e., the tools list is not specified),
and the default tools list contains one or more of the msvc tools.

• $MSVC_VERSION is specified, the default tools list is explicitly specified (e.g., tools=['default']),
and the default tools list contains one or more of the msvc tools.

• A non-default tools list is specified that contains one or more of the msvc tools (e.g., tools=['msvc',
'mslink']).

The $MSVC_NOTFOUND_POLICY is ignored when any of the following conditions are satisfied:

• $MSVC_VERSION is not specified and the default tools list is implicitly defined (i.e., the tools list is not
specified).

• $MSVC_VERSION is not specified and the default tools list is explicitly specified (e.g.,
tools=['default']).

• A non-default tool list is specified that does not contain any of the msvc tools (e.g., tools=['mingw']).

Important usage details:

• $MSVC_NOTFOUND_POLICY must be passed as an argument to the Environment constructor when an
msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the
Environment constructor. Otherwise, $MSVC_NOTFOUND_POLICY must be set before the first msvc tool
is loaded into the environment.

When $MSVC_NOTFOUND_POLICY is not specified, the default scons behavior is to issue a warning and
continue subject to the conditions listed above. The default scons behavior may change in the future.

MSVC_SCRIPT_ARGS
Pass user-defined arguments to the Visual C++ batch file determined via autodetection.

$MSVC_SCRIPT_ARGS is available for msvc batch file arguments that do not have first-class support via
construction variables or when there is an issue with the appropriate construction variable validation. When
available, it is recommended to use the appropriate construction variables (e.g., $MSVC_TOOLSET_VERSION)
rather than $MSVC_SCRIPT_ARGS arguments.

The valid values for $MSVC_SCRIPT_ARGS are: None, a string, or a list of strings.

The $MSVC_SCRIPT_ARGS value is converted to a scalar string (i.e., "flattened"). The resulting scalar string, if
not empty, is passed as an argument to the msvc batch file determined via autodetection subject to the validation
conditions listed below.

$MSVC_SCRIPT_ARGS is ignored when the value is None and when the result from argument conversion is an
empty string. The validation conditions below do not apply.

140

An exception is raised when any of the following conditions are satisfied:

• $MSVC_SCRIPT_ARGS is specified for Visual Studio 2013 and earlier.

• Multiple SDK version arguments (e.g., '10.0.20348.0') are specified in $MSVC_SCRIPT_ARGS.

• $MSVC_SDK_VERSION is specified and an SDK version argument (e.g., '10.0.20348.0') is
specified in $MSVC_SCRIPT_ARGS. Multiple SDK version declarations via $MSVC_SDK_VERSION and
$MSVC_SCRIPT_ARGS are not allowed.

• Multiple toolset version arguments (e.g., '-vcvars_ver=14.29') are specified in
$MSVC_SCRIPT_ARGS.

• $MSVC_TOOLSET_VERSION is specified and a toolset version argument (e.g., '-
vcvars_ver=14.29') is specified in $MSVC_SCRIPT_ARGS. Multiple toolset version declarations via
$MSVC_TOOLSET_VERSION and $MSVC_SCRIPT_ARGS are not allowed.

• Multiple spectre library arguments (e.g., '-vcvars_spectre_libs=spectre') are specified in
$MSVC_SCRIPT_ARGS.

• $MSVC_SPECTRE_LIBS is enabled and a spectre library argument (e.g., '-
vcvars_spectre_libs=spectre') is specified in $MSVC_SCRIPT_ARGS. Multiple spectre library
declarations via $MSVC_SPECTRE_LIBS and $MSVC_SCRIPT_ARGS are not allowed.

• Multiple UWP arguments (e.g., uwp or store) are specified in $MSVC_SCRIPT_ARGS.

• $MSVC_UWP_APP is enabled and a UWP argument (e.g., uwp or store) is specified in
$MSVC_SCRIPT_ARGS. Multiple UWP declarations via $MSVC_UWP_APP and $MSVC_SCRIPT_ARGS
are not allowed.

Example 1 - A Visual Studio 2022 build with an SDK version and a toolset version specified with a string
argument:

env = Environment(MSVC_VERSION='14.3', MSVC_SCRIPT_ARGS='10.0.20348.0 -vcvars_ver=14.29.30133')

Example 2 - A Visual Studio 2022 build with an SDK version and a toolset version specified with a list argument:

env = Environment(MSVC_VERSION='14.3', MSVC_SCRIPT_ARGS=['10.0.20348.0', '-vcvars_ver=14.29.30133'])

Important usage details:

• $MSVC_SCRIPT_ARGS must be passed as an argument to the Environment constructor when an msvc
tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment
constructor. Otherwise, $MSVC_SCRIPT_ARGS must be set before the first msvc tool is loaded into the
environment.

• Other than checking for multiple declarations as described above, $MSVC_SCRIPT_ARGS arguments are not
validated.

• Erroneous, inconsistent, and/or version incompatible $MSVC_SCRIPT_ARGS arguments are likely to result
in build failures for reasons that are not readily apparent and may be difficult to diagnose. The burden is on
the user to ensure that the arguments provided to the msvc batch file are valid, consistent and compatible with
the version of msvc selected.

MSVC_SCRIPTERROR_POLICY
Specify the scons behavior when Microsoft Visual C/C++ batch file errors are detected.

141

The $MSVC_SCRIPTERROR_POLICY specifies the scons behavior when msvc batch file errors are detected.
When $MSVC_SCRIPTERROR_POLICY is not specified, the default scons behavior is to suppress msvc batch
file error messages.

The root cause of msvc build failures may be difficult to diagnose. In these situations, setting the scons behavior
to issue a warning when msvc batch file errors are detected may produce additional diagnostic information.

The valid values for $MSVC_SCRIPTERROR_POLICY and the corresponding scons behavior are:

'Error' or 'Exception'
Raise an exception when msvc batch file errors are detected.

'Warning' or 'Warn'
Issue a warning when msvc batch file errors are detected.

'Ignore' or 'Suppress'
Suppress msvc batch file error messages.

Note: in addition to the camel case values shown above, lower case and upper case values are accepted as well.

Example 1 - A Visual Studio 2022 build with user-defined script arguments:

env = environment(MSVC_VERSION='14.3', MSVC_SCRIPT_ARGS=['8.1', 'store', '-vcvars_ver=14.1'])
env.Program('hello', ['hello.c'], CCFLAGS='/MD', LIBS=['kernel32', 'user32', 'runtimeobject'])

Example 1 - Output fragment:

...
link /nologo /OUT:_build001\hello.exe kernel32.lib user32.lib runtimeobject.lib _build001\hello.obj
LINK : fatal error LNK1104: cannot open file 'MSVCRT.lib'
...

Example 2 - A Visual Studio 2022 build with user-defined script arguments and the script error policy set to issue
a warning when msvc batch file errors are detected:

env = environment(MSVC_VERSION='14.3', MSVC_SCRIPT_ARGS=['8.1', 'store', '-vcvars_ver=14.1'], MSVC_SCRIPTERROR_POLICY='warn')
env.Program('hello', ['hello.c'], CCFLAGS='/MD', LIBS=['kernel32', 'user32', 'runtimeobject'])

Example 2 - Output fragment:

...
scons: warning: vc script errors detected:
[ERROR:vcvars.bat] The UWP Application Platform requires a Windows 10 SDK.
[ERROR:vcvars.bat] WindowsSdkDir = "C:\Program Files (x86)\Windows Kits\8.1\"
[ERROR:vcvars.bat] host/target architecture is not supported : { x64 , x64 }
...
link /nologo /OUT:_build001\hello.exe kernel32.lib user32.lib runtimeobject.lib _build001\hello.obj
LINK : fatal error LNK1104: cannot open file 'MSVCRT.lib'

Important usage details:

• $MSVC_SCRIPTERROR_POLICY must be passed as an argument to the Environment constructor when
an msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the

142

Environment constructor. Otherwise, $MSVC_SCRIPTERROR_POLICY must be set before the first msvc
tool is loaded into the environment.

• Due to scons implementation details, not all Windows system environment variables are propagated to the
environment in which the msvc batch file is executed. Depending on Visual Studio version and installation
options, non-fatal msvc batch file error messages may be generated for ancillary tools which may not affect
builds with the msvc compiler. For this reason, caution is recommended when setting the script error policy
to raise an exception (e.g., 'Error').

MSVC_SDK_VERSION
Build with a specific version of the Microsoft Software Development Kit (SDK).

The valid values for $MSVC_SDK_VERSION are: None or a string containing the requested SDK version (e.g.,
'10.0.20348.0').

$MSVC_SDK_VERSION is ignored when the value is None and when the value is an empty string. The validation
conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:

• $MSVC_SDK_VERSION is specified for Visual Studio 2013 and earlier.

• $MSVC_SDK_VERSION is specified and an SDK version argument is specified in $MSVC_SCRIPT_ARGS.
Multiple SDK version declarations via $MSVC_SDK_VERSION and $MSVC_SCRIPT_ARGS are not allowed.

• The $MSVC_SDK_VERSION specified does not match any of the supported formats:

• '10.0.XXXXX.Y' [SDK 10.0]

• '8.1' [SDK 8.1]

• The system folder for the corresponding $MSVC_SDK_VERSION version is not found. The requested SDK
version does not appear to be installed.

• The $MSVC_SDK_VERSION version does not appear to support the requested platform type (i.e., UWP or
Desktop). The requested SDK version platform type components do not appear to be installed.

• The $MSVC_SDK_VERSION version is 8.1, the platform type is UWP, and the build tools selected are from
Visual Studio 2017 and later (i.e., $MSVC_VERSION must be '14.0' or $MSVC_TOOLSET_VERSION must
be '14.0').

Example 1 - A Visual Studio 2022 build with a specific Windows SDK version:

env = Environment(MSVC_VERSION='14.3', MSVC_SDK_VERSION='10.0.20348.0')

Example 2 - A Visual Studio 2022 build with a specific SDK version for the Universal Windows Platform:

env = Environment(MSVC_VERSION='14.3', MSVC_SDK_VERSION='10.0.20348.0', MSVC_UWP_APP=True)

Important usage details:

• $MSVC_SDK_VERSION must be passed as an argument to the Environment constructor when an msvc
tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment
constructor. Otherwise, $MSVC_SDK_VERSION must be set before the first msvc tool is loaded into the
environment.

143

• Should a SDK 10.0 version be installed that does not follow the naming scheme above, the SDK version will
need to be specified via $MSVC_SCRIPT_ARGS until the version number validation format can be extended.

• Should an exception be raised indicating that the SDK version is not found, verify that the requested SDK
version is installed with the necessary platform type components.

• There is a known issue with the Microsoft libraries when the target architecture is ARM64 and a Windows
11 SDK (version '10.0.22000.0' and later) is used with the v141 build tools and older v142 toolsets
(versions '14.28.29333' and earlier). Should build failures arise with these combinations of settings due
to unresolved symbols in the Microsoft libraries, $MSVC_SDK_VERSION may be employed to specify a
Windows 10 SDK (e.g., '10.0.20348.0') for the build.

MSVC_SPECTRE_LIBS
Build with the spectre-mitigated Visual C++ libraries.

The valid values for $MSVC_SPECTRE_LIBS are: True, False, or None.

When $MSVC_SPECTRE_LIBS is enabled (i.e., True), the Visual C++ environment will include the paths to
the spectre-mitigated implementations of the Microsoft Visual C++ libraries.

An exception is raised when any of the following conditions are satisfied:

• $MSVC_SPECTRE_LIBS is enabled for Visual Studio 2015 and earlier.

• $MSVC_SPECTRE_LIBS is enabled and a spectre library argument is specified in $MSVC_SCRIPT_ARGS.
Multiple spectre library declarations via $MSVC_SPECTRE_LIBS and $MSVC_SCRIPT_ARGS are not
allowed.

• $MSVC_SPECTRE_LIBS is enabled and the platform type is UWP. There are no spectre-mitigated libraries for
Universal Windows Platform (UWP) applications or components.

Example - A Visual Studio 2022 build with spectre mitigated Visual C++ libraries:

env = Environment(MSVC_VERSION='14.3', MSVC_SPECTRE_LIBS=True)

Important usage details:

• $MSVC_SPECTRE_LIBS must be passed as an argument to the Environment constructor when an msvc
tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment
constructor. Otherwise, $MSVC_SPECTRE_LIBS must be set before the first msvc tool is loaded into the
environment.

• Additional compiler switches (e.g., /Qspectre) are necessary for including spectre mitigations when building
user artifacts. Refer to the Visual Studio documentation for details.

• The existence of the spectre libraries host architecture and target architecture folders are not verified when
$MSVC_SPECTRE_LIBS is enabled which could result in build failures. The burden is on the user to ensure
the requisite libraries with spectre mitigations are installed.

MSVC_TOOLSET_VERSION
Build with a specific Visual C++ toolset version.

Specifying $MSVC_TOOLSET_VERSION does not affect the autodetection and selection of msvc instances. The
$MSVC_TOOLSET_VERSION is applied after an msvc instance is selected. This could be the default version of
msvc if $MSVC_VERSION is not specified.

144

The valid values for $MSVC_TOOLSET_VERSION are: None or a string containing the requested toolset version
(e.g., '14.29').

$MSVC_TOOLSET_VERSION is ignored when the value is None and when the value is an empty string. The
validation conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:

• $MSVC_TOOLSET_VERSION is specified for Visual Studio 2015 and earlier.

• $MSVC_TOOLSET_VERSION is specified and a toolset version argument is specified in
$MSVC_SCRIPT_ARGS. Multiple toolset version declarations via $MSVC_TOOLSET_VERSION and
$MSVC_SCRIPT_ARGS are not allowed.

• The $MSVC_TOOLSET_VERSION specified does not match any of the supported formats:

• 'XX.Y'

• 'XX.YY'

• 'XX.YY.ZZZZZ'

• 'XX.YY.Z' to 'XX.YY.ZZZZ' [scons extension not directly supported by the msvc batch files and may
be removed in the future]

• 'XX.YY.ZZ.N' [SxS format]

• 'XX.YY.ZZ.NN' [SxS format]

• The major msvc version prefix (i.e., 'XX.Y') of the $MSVC_TOOLSET_VERSION specified is for Visual
Studio 2013 and earlier (e.g., '12.0').

• The major msvc version prefix (i.e., 'XX.Y') of the $MSVC_TOOLSET_VERSION specified is greater than
the msvc version selected (e.g., '99.0').

• A system folder for the corresponding $MSVC_TOOLSET_VERSION version is not found. The requested
toolset version does not appear to be installed.

Toolset selection details:

• When $MSVC_TOOLSET_VERSION is not an SxS version number or a full toolset version number: the first
toolset version, ranked in descending order, that matches the $MSVC_TOOLSET_VERSION prefix is selected.

• When $MSVC_TOOLSET_VERSION is specified using the major msvc version prefix (i.e., 'XX.Y') and the
major msvc version is that of the latest release of Visual Studio, the selected toolset version may not be the
same as the default Visual C++ toolset version.

In the latest release of Visual Studio, the default Visual C++ toolset version is not necessarily the toolset with
the largest version number.

Example 1 - A default Visual Studio build with a partial toolset version specified:

env = Environment(MSVC_TOOLSET_VERSION='14.2')

Example 2 - A default Visual Studio build with a partial toolset version specified:

145

env = Environment(MSVC_TOOLSET_VERSION='14.29')

Example 3 - A Visual Studio 2022 build with a full toolset version specified:

env = Environment(MSVC_VERSION='14.3', MSVC_TOOLSET_VERSION='14.29.30133')

Example 4 - A Visual Studio 2022 build with an SxS toolset version specified:

env = Environment(MSVC_VERSION='14.3', MSVC_TOOLSET_VERSION='14.29.16.11')

Important usage details:

• $MSVC_TOOLSET_VERSION must be passed as an argument to the Environment constructor when an
msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the
Environment constructor. Otherwise, $MSVC_TOOLSET_VERSION must be set before the first msvc tool
is loaded into the environment.

• The existence of the toolset host architecture and target architecture folders are not verified when
$MSVC_TOOLSET_VERSION is specified which could result in build failures. The burden is on the user to
ensure the requisite toolset target architecture build tools are installed.

MSVC_USE_SCRIPT
Use a batch script to set up the Microsoft Visual C++ compiler.

If set to the name of a Visual Studio .bat file (e.g. vcvars.bat), SCons will run that batch file instead of the
auto-detected one, and extract the relevant variables from the result (typically %INCLUDE%, %LIB%, and %PATH
%) for supplying to the build. This can be useful to force the use of a compiler version that SCons does not detect.
$MSVC_USE_SCRIPT_ARGS provides arguments passed to this script.

Setting $MSVC_USE_SCRIPT to None bypasses the Visual Studio autodetection entirely; use this if you are
running SCons in a Visual Studio cmd window and importing the shell's environment variables - that is, if you
are sure everything is set correctly already and you don't want SCons to change anything.

$MSVC_USE_SCRIPT ignores $MSVC_VERSION and $TARGET_ARCH.

MSVC_USE_SCRIPT_ARGS
Provides arguments passed to the script $MSVC_USE_SCRIPT.

MSVC_USE_SETTINGS
Use a dictionary to set up the Microsoft Visual C++ compiler.

$MSVC_USE_SETTINGS is ignored when $MSVC_USE_SCRIPT is defined and/or when
$MSVC_USE_SETTINGS is set to None.

The dictionary is used to populate the environment with the relevant variables (typically %INCLUDE%, %LIB%,
and %PATH%) for supplying to the build. This can be useful to force the use of a compiler environment that SCons
does not configure correctly. This is an alternative to manually configuring the environment when bypassing
Visual Studio autodetection entirely by setting $MSVC_USE_SCRIPT to None.

Here is an example of configuring a build environment using the Microsoft Visual C/C++ compiler included in
the Microsoft SDK on a 64-bit host and building for a 64-bit architecture:

Microsoft SDK 6.0 (MSVC 8.0): 64-bit host and 64-bit target
msvc_use_settings = {

146

 "PATH": [
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\VC\\Bin\\x64",
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Bin\\x64",
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Bin",
 "C:\\Windows\\Microsoft.NET\\Framework\\v2.0.50727",
 "C:\\Windows\\system32",
 "C:\\Windows",
 "C:\\Windows\\System32\\Wbem",
 "C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\"
],
 "INCLUDE": [
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\VC\\Include",
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\VC\\Include\\Sys",
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Include",
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Include\\gl",
],
 "LIB": [
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\VC\\Lib\\x64",
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Lib\\x64",
],
 "LIBPATH": [],
 "VSCMD_ARG_app_plat": [],
 "VCINSTALLDIR": [],
 "VCToolsInstallDir": []
}

Specifying MSVC_VERSION is recommended
env = Environment(MSVC_VERSION='8.0', MSVC_USE_SETTINGS=msvc_use_settings)

Important usage details:

• $MSVC_USE_SETTINGS must be passed as an argument to the Environment constructor when an msvc
tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment
constructor. Otherwise, $MSVC_USE_SETTINGS must be set before the first msvc tool is loaded into the
environment.

• The dictionary content requirements are based on the internal msvc implementation and therefore may change
at any time. The burden is on the user to ensure the dictionary contents are minimally sufficient to ensure
successful builds.

MSVC_UWP_APP
Build with the Universal Windows Platform (UWP) application Visual C++ libraries.

The valid values for $MSVC_UWP_APP are: True, '1', False, '0', or None.

When $MSVC_UWP_APP is enabled (i.e., True or '1'), the Visual C++ environment will be set up to point to
the Windows Store compatible libraries and Visual C++ runtimes. In doing so, any libraries that are built will be
able to be used in a UWP App and published to the Windows Store.

An exception is raised when any of the following conditions are satisfied:

• $MSVC_UWP_APP is enabled for Visual Studio 2013 and earlier.

• $MSVC_UWP_APP is enabled and a UWP argument is specified in $MSVC_SCRIPT_ARGS. Multiple UWP
declarations via $MSVC_UWP_APP and $MSVC_SCRIPT_ARGS are not allowed.

147

Example - A Visual Studio 2022 build for the Universal Windows Platform:

env = Environment(MSVC_VERSION='14.3', MSVC_UWP_APP=True)

Important usage details:

• $MSVC_UWP_APP must be passed as an argument to the Environment constructor when an msvc tool (e.g.,
msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment constructor.
Otherwise, $MSVC_UWP_APP must be set before the first msvc tool is loaded into the environment.

• The existence of the UWP libraries is not verified when $MSVC_UWP_APP is enabled which could result in
build failures. The burden is on the user to ensure the requisite UWP libraries are installed.

MSVC_VERSION
Sets the preferred version of Microsoft Visual C/C++ to use.

If $MSVC_VERSION is not set, SCons will (by default) select the latest version of Visual C/C++ installed on your
system. If the specified version isn't installed, tool initialization will fail.

$MSVC_VERSION must be passed as an argument to the Environment constructor when an msvc tool (e.g.,
msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment constructor.
Otherwise, $MSVC_VERSION must be set before the first msvc tool is loaded into the environment.

Valid values for Windows are 14.3, 14.2, 14.1, 14.1Exp, 14.0, 14.0Exp, 12.0, 12.0Exp, 11.0,
11.0Exp, 10.0, 10.0Exp, 9.0, 9.0Exp, 8.0, 8.0Exp, 7.1, 7.0, and 6.0. Versions ending in Exp refer
to "Express" or "Express for Desktop" editions.

MSVS
When the Microsoft Visual Studio tools are initialized, they set up this dictionary with the following keys:

VERSION
the version of MSVS being used (can be set via $MSVS_VERSION)

VERSIONS
the available versions of MSVS installed

VCINSTALLDIR
installed directory of Visual C++

VSINSTALLDIR
installed directory of Visual Studio

FRAMEWORKDIR
installed directory of the .NET framework

FRAMEWORKVERSIONS
list of installed versions of the .NET framework, sorted latest to oldest.

FRAMEWORKVERSION
latest installed version of the .NET framework

FRAMEWORKSDKDIR
installed location of the .NET SDK.

PLATFORMSDKDIR
installed location of the Platform SDK.

148

PLATFORMSDK_MODULES
dictionary of installed Platform SDK modules, where the dictionary keys are keywords for the various
modules, and the values are 2-tuples where the first is the release date, and the second is the version number.

If a value is not set, it was not available in the registry.

MSVS_ARCH
Sets the architecture for which the generated project(s) should build.

The default value is x86. amd64 is also supported by SCons for most Visual Studio versions. Since Visual Studio
2015 arm is supported, and since Visual Studio 2017 arm64 is supported. Trying to set $MSVS_ARCH to an
architecture that's not supported for a given Visual Studio version will generate an error.

MSVS_PROJECT_GUID
The string placed in a generated Microsoft Visual Studio project file as the value of the ProjectGUID attribute.
There is no default value. If not defined, a new GUID is generated.

MSVS_SCC_AUX_PATH
The path name placed in a generated Microsoft Visual Studio project file as the value of the SccAuxPath
attribute if the MSVS_SCC_PROVIDER construction variable is also set. There is no default value.

MSVS_SCC_CONNECTION_ROOT
The root path of projects in your SCC workspace, i.e the path under which all project and solution
files will be generated. It is used as a reference path from which the relative paths of the generated
Microsoft Visual Studio project and solution files are computed. The relative project file path is
placed as the value of the SccLocalPath attribute of the project file and as the values of the
SccProjectFilePathRelativizedFromConnection[i] (where [i] ranges from 0 to the number
of projects in the solution) attributes of the GlobalSection(SourceCodeControl) section of the
Microsoft Visual Studio solution file. Similarly the relative solution file path is placed as the values of the
SccLocalPath[i] (where [i] ranges from 0 to the number of projects in the solution) attributes of the
GlobalSection(SourceCodeControl) section of the Microsoft Visual Studio solution file. This is used
only if the MSVS_SCC_PROVIDER construction variable is also set. The default value is the current working
directory.

MSVS_SCC_PROJECT_NAME
The project name placed in a generated Microsoft Visual Studio project file as the value of the
SccProjectName attribute if the MSVS_SCC_PROVIDER construction variable is also set. In this case the
string is also placed in the SccProjectName0 attribute of the GlobalSection(SourceCodeControl)
section of the Microsoft Visual Studio solution file. There is no default value.

MSVS_SCC_PROVIDER
The string placed in a generated Microsoft Visual Studio project file as the value of the SccProvider attribute.
The string is also placed in the SccProvider0 attribute of the GlobalSection(SourceCodeControl)
section of the Microsoft Visual Studio solution file. There is no default value.

MSVS_VERSION
Sets the preferred version of Microsoft Visual Studio to use.

If $MSVS_VERSION is not set, SCons will (by default) select the latest version of Visual Studio installed on your
system. So, if you have version 6 and version 7 (MSVS .NET) installed, it will prefer version 7. You can override
this by specifying the MSVS_VERSION variable in the Environment initialization, setting it to the appropriate
version ('6.0' or '7.0', for example). If the specified version isn't installed, tool initialization will fail.

This is obsolete: use $MSVC_VERSION instead. If $MSVS_VERSION is set and $MSVC_VERSION is not,
$MSVC_VERSION will be set automatically to $MSVS_VERSION. If both are set to different values, scons will
raise an error.

149

MSVSBUILDCOM
The build command line placed in a generated Microsoft Visual Studio project file. The default is to have Visual
Studio invoke SCons with any specified build targets.

MSVSCLEANCOM
The clean command line placed in a generated Microsoft Visual Studio project file. The default is to have Visual
Studio invoke SCons with the -c option to remove any specified targets.

MSVSENCODING
The encoding string placed in a generated Microsoft Visual Studio project file. The default is encoding
Windows-1252.

MSVSPROJECTCOM
The action used to generate Microsoft Visual Studio project files.

MSVSPROJECTSUFFIX
The suffix used for Microsoft Visual Studio project (DSP) files. The default value is .vcproj when using Visual
Studio version 7.x (.NET) or later version, and .dsp when using earlier versions of Visual Studio.

MSVSREBUILDCOM
The rebuild command line placed in a generated Microsoft Visual Studio project file. The default is to have Visual
Studio invoke SCons with any specified rebuild targets.

MSVSSCONS
The SCons used in generated Microsoft Visual Studio project files. The default is the version of SCons being
used to generate the project file.

MSVSSCONSCOM
The default SCons command used in generated Microsoft Visual Studio project files.

MSVSSCONSCRIPT
The sconscript file (that is, SConstruct or SConscript file) that will be invoked by Visual Studio project
files (through the $MSVSSCONSCOM variable). The default is the same sconscript file that contains the call to
MSVSProject to build the project file.

MSVSSCONSFLAGS
The SCons flags used in generated Microsoft Visual Studio project files.

MSVSSOLUTIONCOM
The action used to generate Microsoft Visual Studio solution files.

MSVSSOLUTIONSUFFIX
The suffix used for Microsoft Visual Studio solution (DSW) files. The default value is .sln when using Visual
Studio version 7.x (.NET), and .dsw when using earlier versions of Visual Studio.

MT
The program used on Windows systems to embed manifests into DLLs and EXEs. See also
$WINDOWS_EMBED_MANIFEST.

MTEXECOM
The Windows command line used to embed manifests into executables. See also $MTSHLIBCOM.

MTFLAGS
Flags passed to the $MT manifest embedding program (Windows only).

MTSHLIBCOM
The Windows command line used to embed manifests into shared libraries (DLLs). See also $MTEXECOM.

150

MWCW_VERSION
The version number of the MetroWerks CodeWarrior C compiler to be used.

MWCW_VERSIONS
A list of installed versions of the MetroWerks CodeWarrior C compiler on this system.

NAME
Specfies the name of the project to package.

See the Package builder.

NINJA_ALIAS_NAME
The name of the alias target which will cause SCons to create the ninja build file, and then (optionally) run ninja.
The default value is generate-ninja.

NINJA_CMD_ARGS
A string which will pass arguments through SCons to the ninja command when scons executes ninja. Has no effect
if $NINJA_DISABLE_AUTO_RUN is set.

This value can also be passed on the command line:

scons NINJA_CMD_ARGS=-v
or
scons NINJA_CMD_ARGS="-v -j 3"

NINJA_COMPDB_EXPAND
Boolean value to instruct ninja to expand the command line arguments normally put into response files. If true,
prevents unexpanded lines in the compilation database like “gcc @rsp_file” and instead yields expanded
lines like “gcc -c -o myfile.o myfile.c -Ia -DXYZ”.

Ninja's compdb tool added the -x flag in Ninja V1.9.0

NINJA_DEPFILE_PARSE_FORMAT
Determines the type of format ninja should expect when parsing header include depfiles. Can be msvc, gcc, or
clang. The msvc option corresponds to /showIncludes format, and gcc or clang correspond to -MMD
-MF.

NINJA_DIR
The builddir value. Propagates directly into the generated ninja build file. From Ninja's docs: “ A directory for
some Ninja output files. ... (You can also store other build output in this directory.) ” The default value is .ninja.

NINJA_DISABLE_AUTO_RUN
Boolean. Default: False. If true, SCons will not run ninja automatically after creating the ninja build file.

If not explicitly set, this will be set to True if --disable_execute_ninja or
SetOption('disable_execute_ninja', True) is seen.

NINJA_ENV_VAR_CACHE
A string that sets the environment for any environment variables that differ between the OS environment and the
SCons execution environment.

It will be compatible with the default shell of the operating system.

If not explicitly set, SCons will generate this dynamically from the execution environment stored in the current
construction environment (e.g. env['ENV']) where those values differ from the existing shell..

151

NINJA_FILE_NAME
The filename for the generated Ninja build file. The default is ninja.build.

NINJA_FORCE_SCONS_BUILD
If true, causes the build nodes to callback to scons instead of using ninja to build them. This is intended to be
passed to the environment on the builder invocation. It is useful if you have a build node which does something
which is not easily translated into ninja.

NINJA_GENERATED_SOURCE_ALIAS_NAME
A string matching the name of a user defined alias which represents a list of all generated sources. This will
prevent the auto-detection of generated sources from $NINJA_GENERATED_SOURCE_SUFFIXES. Then all
other source files will be made to depend on this in the ninja build file, forcing the generated sources to be built first.

NINJA_GENERATED_SOURCE_SUFFIXES
The list of source file suffixes which are generated by SCons build steps. All source files which match these
suffixes will be added to the _generated_sources alias in the output ninja build file. Then all other source files will
be made to depend on this in the ninja build file, forcing the generated sources to be built first.

NINJA_MSVC_DEPS_PREFIX
The msvc_deps_prefix string. Propagates directly into the generated ninja build file. From Ninja's docs:
“defines the string which should be stripped from msvc's /showIncludes output”

NINJA_POOL
Set the ninja_pool for this or all targets in scope for this env var.

NINJA_REGENERATE_DEPS
A generator function used to create a ninja depfile which includes all the files which would require SCons to be
invoked if they change. Or a list of said files.

_NINJA_REGENERATE_DEPS_FUNC
Internal value used to specify the function to call with argument env to generate the list of files which if changed
would require the ninja build file to be regenerated.

NINJA_SCONS_DAEMON_KEEP_ALIVE
The number of seconds for the SCons deamon launched by ninja to stay alive. (Default: 180000)

NINJA_SCONS_DAEMON_PORT
The TCP/IP port for the SCons daemon to listen on. NOTE: You cannot use a port already being listened to on
your build machine. (Default: random number between 10000,60000)

NINJA_SYNTAX
The path to a custom ninja_syntax.py file which is used in generation. The tool currently assumes you have
ninja installed as a Python module and grabs the syntax file from that installation if $NINJA_SYNTAX is not
explicitly set.

no_import_lib
When set to non-zero, suppresses creation of a corresponding Windows static import lib by the SharedLibrary
builder when used with MinGW, Microsoft Visual Studio or Metrowerks. This also suppresses creation of an
export (.exp) file when using Microsoft Visual Studio.

OBJPREFIX
The prefix used for (static) object file names.

OBJSUFFIX
The suffix used for (static) object file names.

152

PACKAGEROOT
Specifies the directory where all files in resulting archive will be placed if applicable. The default value is “$NAME-
$VERSION”.

See the Package builder.

PACKAGETYPE
Selects the package type to build when using the Package builder. May be a string or list of strings. See the
docuentation for the builder for the currently supported types.

$PACKAGETYPE may be overridden with the --package-type command line option.

See the Package builder.

PACKAGEVERSION
The version of the package (not the underlying project). This is currently only used by the rpm packager and
should reflect changes in the packaging, not the underlying project code itself.

See the Package builder.

PCH
The Microsoft Visual C++ precompiled header that will be used when compiling object files. This variable is
ignored by tools other than Microsoft Visual C++. When this variable is defined SCons will add options to the
compiler command line to cause it to use the precompiled header, and will also set up the dependencies for the
PCH file. Example:

env['PCH'] = File('StdAfx.pch')

PCHCOM
The command line used by the PCH builder to generated a precompiled header.

PCHCOMSTR
The string displayed when generating a precompiled header. If this is not set, then $PCHCOM (the command line)
is displayed.

PCHPDBFLAGS
A construction variable that, when expanded, adds the /yD flag to the command line only if the $PDB construction
variable is set.

PCHSTOP
This variable specifies how much of a source file is precompiled. This variable is ignored by tools other than
Microsoft Visual C++, or when the PCH variable is not being used. When this variable is define it must be a string
that is the name of the header that is included at the end of the precompiled portion of the source files, or the
empty string if the "#pragma hrdstop" construct is being used:

env['PCHSTOP'] = 'StdAfx.h'

PDB
The Microsoft Visual C++ PDB file that will store debugging information for object files, shared libraries, and
programs. This variable is ignored by tools other than Microsoft Visual C++. When this variable is defined
SCons will add options to the compiler and linker command line to cause them to generate external debugging
information, and will also set up the dependencies for the PDB file. Example:

env['PDB'] = 'hello.pdb'

153

The Visual C++ compiler switch that SCons uses by default to generate PDB information is /Z7. This works
correctly with parallel (-j) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple object files. This is also the only way to get debug
information embedded into a static library. Using the /Zi instead may yield improved link-time performance,
although parallel builds will no longer work. You can generate PDB files with the /Zi switch by overriding the
default $CCPDBFLAGS variable; see the entry for that variable for specific examples.

PDFLATEX
The pdflatex utility.

PDFLATEXCOM
The command line used to call the pdflatex utility.

PDFLATEXCOMSTR
The string displayed when calling the pdflatex utility. If this is not set, then $PDFLATEXCOM (the command line)
is displayed.

env = Environment(PDFLATEX;COMSTR = "Building $TARGET from LaTeX input $SOURCES")

PDFLATEXFLAGS
General options passed to the pdflatex utility.

PDFPREFIX
The prefix used for PDF file names.

PDFSUFFIX
The suffix used for PDF file names.

PDFTEX
The pdftex utility.

PDFTEXCOM
The command line used to call the pdftex utility.

PDFTEXCOMSTR
The string displayed when calling the pdftex utility. If this is not set, then $PDFTEXCOM (the command line)
is displayed.

env = Environment(PDFTEXCOMSTR = "Building $TARGET from TeX input $SOURCES")

PDFTEXFLAGS
General options passed to the pdftex utility.

PKGCHK
On Solaris systems, the package-checking program that will be used (along with $PKGINFO) to look for installed
versions of the Sun PRO C++ compiler. The default is /usr/sbin/pgkchk.

PKGINFO
On Solaris systems, the package information program that will be used (along with $PKGCHK) to look for installed
versions of the Sun PRO C++ compiler. The default is pkginfo.

PLATFORM
The name of the platform used to create this construction environment. SCons sets this when initializing the
platform, which by default is auto-detected (see the platform argument to Environment).

154

env = Environment(tools=[])
if env['PLATFORM'] == 'cygwin':
 Tool('mingw')(env)
else:
 Tool('msvc')(env)

POAUTOINIT
The $POAUTOINIT variable, if set to True (on non-zero numeric value), let the msginit tool to automatically
initialize missing PO files with msginit(1). This applies to both, POInit and POUpdate builders (and others
that use any of them).

POCREATE_ALIAS
Common alias for all PO files created with POInit builder (default: 'po-create'). See msginit tool and
POInit builder.

POSUFFIX
Suffix used for PO files (default: '.po') See msginit tool and POInit builder.

POTDOMAIN
The $POTDOMAIN defines default domain, used to generate POT filename as $POTDOMAIN.pot when no POT
file name is provided by the user. This applies to POTUpdate, POInit and POUpdate builders (and builders,
that use them, e.g. Translate). Normally (if $POTDOMAIN is not defined), the builders use messages.pot
as default POT file name.

POTSUFFIX
Suffix used for PO Template files (default: '.pot'). See xgettext tool and POTUpdate builder.

POTUPDATE_ALIAS
Name of the common phony target for all PO Templates created with POUpdate (default: 'pot-update').
See xgettext tool and POTUpdate builder.

POUPDATE_ALIAS
Common alias for all PO files being defined with POUpdate builder (default: 'po-update'). See msgmerge
tool and POUpdate builder.

PRINT_CMD_LINE_FUNC
A Python function used to print the command lines as they are executed (assuming command printing is not
disabled by the -q or -s options or their equivalents). The function must accept four arguments: s, target,
source and env. s is a string showing the command being executed, target, is the target being built (file
node, list, or string name(s)), source, is the source(s) used (file node, list, or string name(s)), and env is the
environment being used.

The function must do the printing itself. The default implementation, used if this variable is not set or is None,
is to just print the string, as in:

def print_cmd_line(s, target, source, env):
 sys.stdout.write(s + "\n")

Here is an example of a more interesting function:

def print_cmd_line(s, target, source, env):
 sys.stdout.write(

155

 "Building %s -> %s...\n"
 % (
 ' and '.join([str(x) for x in source]),
 ' and '.join([str(x) for x in target]),
)
)

env = Environment(PRINT_CMD_LINE_FUNC=print_cmd_line)
env.Program('foo', ['foo.c', 'bar.c'])

This prints:

...
scons: Building targets ...
Building bar.c -> bar.o...
Building foo.c -> foo.o...
Building foo.o and bar.o -> foo...
scons: done building targets.

Another example could be a function that logs the actual commands to a file.

PROGEMITTER
Contains the emitter specification for the Program builder. The manpage section "Builder Objects" contains
general information on specifying emitters.

PROGPREFIX
The prefix used for executable file names.

PROGSUFFIX
The suffix used for executable file names.

PSCOM
The command line used to convert TeX DVI files into a PostScript file.

PSCOMSTR
The string displayed when a TeX DVI file is converted into a PostScript file. If this is not set, then $PSCOM (the
command line) is displayed.

PSPREFIX
The prefix used for PostScript file names.

PSSUFFIX
The prefix used for PostScript file names.

QT_AUTOSCAN
Turn off scanning for mocable files. Use the Moc Builder to explicitly specify files to run moc on.

QT_BINPATH
The path where the Qt binaries are installed. The default value is '$QTDIR/bin'.

QT_CPPPATH
The path where the Qt header files are installed. The default value is '$QTDIR/include'. Note: If you set this
variable to None, the tool won't change the $CPPPATH construction variable.

QT_DEBUG
Prints lots of debugging information while scanning for moc files.

156

QT_LIB
Default value is 'qt'. You may want to set this to 'qt-mt'. Note: If you set this variable to None, the tool
won't change the $LIBS variable.

QT_LIBPATH
The path where the Qt libraries are installed. The default value is '$QTDIR/lib'. Note: If you set this variable
to None, the tool won't change the $LIBPATH construction variable.

QT_MOC
Default value is '$QT_BINPATH/moc'.

QT_MOCCXXPREFIX
Default value is ''. Prefix for moc output files when source is a C++ file.

QT_MOCCXXSUFFIX
Default value is '.moc'. Suffix for moc output files when source is a C++ file.

QT_MOCFROMCXXCOM
Command to generate a moc file from a C++ file.

QT_MOCFROMCXXCOMSTR
The string displayed when generating a moc file from a C++ file. If this is not set, then $QT_MOCFROMCXXCOM
(the command line) is displayed.

QT_MOCFROMCXXFLAGS
Default value is '-i'. These flags are passed to moc when moccing a C++ file.

QT_MOCFROMHCOM
Command to generate a moc file from a header.

QT_MOCFROMHCOMSTR
The string displayed when generating a moc file from a C++ file. If this is not set, then $QT_MOCFROMHCOM
(the command line) is displayed.

QT_MOCFROMHFLAGS
Default value is ''. These flags are passed to moc when moccing a header file.

QT_MOCHPREFIX
Default value is 'moc_'. Prefix for moc output files when source is a header.

QT_MOCHSUFFIX
Default value is '$CXXFILESUFFIX'. Suffix for moc output files when source is a header.

QT_UIC
Default value is '$QT_BINPATH/uic'.

QT_UICCOM
Command to generate header files from .ui files.

QT_UICCOMSTR
The string displayed when generating header files from .ui files. If this is not set, then $QT_UICCOM (the
command line) is displayed.

QT_UICDECLFLAGS
Default value is ''. These flags are passed to uic when creating a header file from a .ui file.

QT_UICDECLPREFIX
Default value is ''. Prefix for uic generated header files.

157

QT_UICDECLSUFFIX
Default value is '.h'. Suffix for uic generated header files.

QT_UICIMPLFLAGS
Default value is ''. These flags are passed to uic when creating a C++ file from a .ui file.

QT_UICIMPLPREFIX
Default value is 'uic_'. Prefix for uic generated implementation files.

QT_UICIMPLSUFFIX
Default value is '$CXXFILESUFFIX'. Suffix for uic generated implementation files.

QT_UISUFFIX
Default value is '.ui'. Suffix of designer input files.

QTDIR
The path to the Qt installation to build against. If not already set, qt tool tries to obtain this from os.environ;
if not found there, it tries to make a guess.

RANLIB
The archive indexer.

RANLIBCOM
The command line used to index a static library archive.

RANLIBCOMSTR
The string displayed when a static library archive is indexed. If this is not set, then $RANLIBCOM (the command
line) is displayed.

env = Environment(RANLIBCOMSTR = "Indexing $TARGET")

RANLIBFLAGS
General options passed to the archive indexer.

RC
The resource compiler used to build a Microsoft Visual C++ resource file.

RCCOM
The command line used to build a Microsoft Visual C++ resource file.

RCCOMSTR
The string displayed when invoking the resource compiler to build a Microsoft Visual C++ resource file. If this
is not set, then $RCCOM (the command line) is displayed.

RCFLAGS
The flags passed to the resource compiler by the RES builder.

RCINCFLAGS
An automatically-generated construction variable containing the command-line options for specifying directories
to be searched by the resource compiler. The value of $RCINCFLAGS is created by respectively prepending and
appending $RCINCPREFIX and $RCINCSUFFIX to the beginning and end of each directory in $CPPPATH.

RCINCPREFIX
The prefix (flag) used to specify an include directory on the resource compiler command line. This will be
prepended to the beginning of each directory in the $CPPPATH construction variable when the $RCINCFLAGS
variable is expanded.

158

RCINCSUFFIX
The suffix used to specify an include directory on the resource compiler command line. This will be appended to
the end of each directory in the $CPPPATH construction variable when the $RCINCFLAGS variable is expanded.

RDirs
A function that converts a string into a list of Dir instances by searching the repositories.

REGSVR
The program used on Windows systems to register a newly-built DLL library whenever the SharedLibrary
builder is passed a keyword argument of register=True.

REGSVRCOM
The command line used on Windows systems to register a newly-built DLL library whenever the
SharedLibrary builder is passed a keyword argument of register=True.

REGSVRCOMSTR
The string displayed when registering a newly-built DLL file. If this is not set, then $REGSVRCOM (the command
line) is displayed.

REGSVRFLAGS
Flags passed to the DLL registration program on Windows systems when a newly-built DLL library is registered.
By default, this includes the /s that prevents dialog boxes from popping up and requiring user attention.

RMIC
The Java RMI stub compiler.

RMICCOM
The command line used to compile stub and skeleton class files from Java classes that contain RMI
implementations. Any options specified in the $RMICFLAGS construction variable are included on this command
line.

RMICCOMSTR
The string displayed when compiling stub and skeleton class files from Java classes that contain RMI
implementations. If this is not set, then $RMICCOM (the command line) is displayed.

env = Environment(RMICCOMSTR = "Generating stub/skeleton class files $TARGETS from $SOURCES")

RMICFLAGS
General options passed to the Java RMI stub compiler.

RPATH
A list of paths to search for shared libraries when running programs. Currently only used in the GNU (gnulink),
IRIX (sgilink) and Sun (sunlink) linkers. Ignored on platforms and toolchains that don't support it. Note that the
paths added to RPATH are not transformed by scons in any way: if you want an absolute path, you must make
it absolute yourself.

_RPATH
An automatically-generated construction variable containing the rpath flags to be used when linking a program
with shared libraries. The value of $_RPATH is created by respectively prepending $RPATHPREFIX and
appending $RPATHSUFFIX to the beginning and end of each directory in $RPATH.

RPATHPREFIX
The prefix used to specify a directory to be searched for shared libraries when running programs. This will be
prepended to the beginning of each directory in the $RPATH construction variable when the $_RPATH variable
is automatically generated.

159

RPATHSUFFIX
The suffix used to specify a directory to be searched for shared libraries when running programs. This will be
appended to the end of each directory in the $RPATH construction variable when the $_RPATH variable is
automatically generated.

RPCGEN
The RPC protocol compiler.

RPCGENCLIENTFLAGS
Options passed to the RPC protocol compiler when generating client side stubs. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENFLAGS
General options passed to the RPC protocol compiler.

RPCGENHEADERFLAGS
Options passed to the RPC protocol compiler when generating a header file. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENSERVICEFLAGS
Options passed to the RPC protocol compiler when generating server side stubs. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENXDRFLAGS
Options passed to the RPC protocol compiler when generating XDR routines. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

SCANNERS
A list of the available implicit dependency scanners. New file scanners may be added by appending to this list,
although the more flexible approach is to associate scanners with a specific Builder. See the manpage sections
"Builder Objects" and "Scanner Objects" for more information.

SCONS_HOME
The (optional) path to the SCons library directory, initialized from the external environment. If set, this is used to
construct a shorter and more efficient search path in the $MSVSSCONS command line executed from Microsoft
Visual Studio project files.

SHCC
The C compiler used for generating shared-library objects. See also $CC for compiling to static objects.

SHCCCOM
The command line used to compile a C source file to a shared-library object file. Any options specified in the
$SHCFLAGS, $SHCCFLAGS and $CPPFLAGS construction variables are included on this command line. See
also $CCCOM for compiling to static objects.

SHCCCOMSTR
If set, the string displayed when a C source file is compiled to a shared object file. If not set, then $SHCCCOM (the
command line) is displayed. See also $CCCOMSTR for compiling to static objects.

env = Environment(SHCCCOMSTR = "Compiling shared object $TARGET")

SHCCFLAGS
Options that are passed to the C and C++ compilers to generate shared-library objects. See also $CCFLAGS for
compiling to static objects.

160

SHCFLAGS
Options that are passed to the C compiler (only; not C++) to generate shared-library objects. See also $CFLAGS
for compiling to static objects.

SHCXX
The C++ compiler used for generating shared-library objects. See also $CXX for compiling to static objects.

SHCXXCOM
The command line used to compile a C++ source file to a shared-library object file. Any options specified in the
$SHCXXFLAGS and $CPPFLAGS construction variables are included on this command line. See also $CXXCOM
for compiling to static objects.

SHCXXCOMSTR
If set, the string displayed when a C++ source file is compiled to a shared object file. If not set, then $SHCXXCOM
(the command line) is displayed. See also $CXXCOMSTR for compiling to static objects.

env = Environment(SHCXXCOMSTR = "Compiling shared object $TARGET")

SHCXXFLAGS
Options that are passed to the C++ compiler to generate shared-library objects. See also $CXXFLAGS for
compiling to static objects.

SHDC
The name of the compiler to use when compiling D source destined to be in a shared objects. See also $DC for
compiling to static objects.

SHDCOM
The command line to use when compiling code to be part of shared objects. See also $DCOM for compiling to
static objects.

SHDCOMSTR
If set, the string displayed when a D source file is compiled to a (shared) object file. If not set, then $SHDCOM
(the command line) is displayed. See also $DCOMSTR for compiling to static objects.

SHDLIBVERSIONFLAGS
Extra flags added to $SHDLINKCOM when building versioned SharedLibrary. These flags are only used
when $SHLIBVERSION is set.

SHDLINK
The linker to use when creating shared objects for code bases include D sources. See also $DLINK for linking
static objects.

SHDLINKCOM
The command line to use when generating shared objects. See also $DLINKCOM for linking static objects.

SHDLINKFLAGS
The list of flags to use when generating a shared object. See also $DLINKFLAGS for linking static objects.

SHELL
A string naming the shell program that will be passed to the $SPAWN function. See the $SPAWN construction
variable for more information.

SHELL_ENV_GENERATORS
Must be a list (or an iterable) containing functions where each function generates or alters the environment
dictionary which will be used when executing the $SPAWN function. The functions will initially be passed a
reference of the current execution environment (e.g. env['ENV']), and each called while iterating the list. Each

161

function must return a dictionary which will then be passed to the next function iterated. The return dictionary
should contain keys which represent the environment variables and their respective values. This primary purpose
of this construction variable is to give the user the ability to substitute execution environment variables based on
env, targets, and sources. If desired, the user can completely customize the execution environment for particular
targets.

def custom_shell_env(env, target, source, shell_env):
 """customize shell_env if desired"""
 if str(target[0]) == 'special_target':
 shell_env['SPECIAL_VAR'] = env.subst('SOME_VAR', target=target, source=source)
 return shell_env

env["SHELL_ENV_GENERATORS"] = [custom_shell_env]

env The SCons construction environment from which the execution environment can be derived from.

target The list of targets associated with this action.

source The list of sources associated with this action.

shell_env The current shell_env after iterating other SHELL_ENV_GENERATORS functions. This can be
compared to the passed env['ENV'] to detect any changes.

SHF03
The Fortran 03 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF03 if
you need to use a specific compiler or compiler version for Fortran 03 files.

SHF03COM
The command line used to compile a Fortran 03 source file to a shared-library object file. You only need to
set $SHF03COM if you need to use a specific command line for Fortran 03 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF03COMSTR
If set, the string displayed when a Fortran 03 source file is compiled to a shared-library object file. If not set, then
$SHF03COM or $SHFORTRANCOM (the command line) is displayed.

SHF03FLAGS
Options that are passed to the Fortran 03 compiler to generated shared-library objects. You only need to set
$SHF03FLAGS if you need to define specific user options for Fortran 03 files. You should normally set the
$FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF03PPCOM
The command line used to compile a Fortran 03 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF03FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF03PPCOM if you need to use a specific
C-preprocessor command line for Fortran 03 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF03PPCOMSTR
If set, the string displayed when a Fortran 03 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF03PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

162

SHF08
The Fortran 08 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF08 if
you need to use a specific compiler or compiler version for Fortran 08 files.

SHF08COM
The command line used to compile a Fortran 08 source file to a shared-library object file. You only need to
set $SHF08COM if you need to use a specific command line for Fortran 08 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF08COMSTR
If set, the string displayed when a Fortran 08 source file is compiled to a shared-library object file. If not set, then
$SHF08COM or $SHFORTRANCOM (the command line) is displayed.

SHF08FLAGS
Options that are passed to the Fortran 08 compiler to generated shared-library objects. You only need to set
$SHF08FLAGS if you need to define specific user options for Fortran 08 files. You should normally set the
$FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF08PPCOM
The command line used to compile a Fortran 08 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF08FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF08PPCOM if you need to use a specific
C-preprocessor command line for Fortran 08 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF08PPCOMSTR
If set, the string displayed when a Fortran 08 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF08PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHF77
The Fortran 77 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF77 if
you need to use a specific compiler or compiler version for Fortran 77 files.

SHF77COM
The command line used to compile a Fortran 77 source file to a shared-library object file. You only need to
set $SHF77COM if you need to use a specific command line for Fortran 77 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF77COMSTR
If set, the string displayed when a Fortran 77 source file is compiled to a shared-library object file. If not set, then
$SHF77COM or $SHFORTRANCOM (the command line) is displayed.

SHF77FLAGS
Options that are passed to the Fortran 77 compiler to generated shared-library objects. You only need to set
$SHF77FLAGS if you need to define specific user options for Fortran 77 files. You should normally set the
$FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF77PPCOM
The command line used to compile a Fortran 77 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF77FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF77PPCOM if you need to use a specific

163

C-preprocessor command line for Fortran 77 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF77PPCOMSTR
If set, the string displayed when a Fortran 77 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF77PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHF90
The Fortran 90 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF90 if
you need to use a specific compiler or compiler version for Fortran 90 files.

SHF90COM
The command line used to compile a Fortran 90 source file to a shared-library object file. You only need to
set $SHF90COM if you need to use a specific command line for Fortran 90 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF90COMSTR
If set, the string displayed when a Fortran 90 source file is compiled to a shared-library object file. If not set, then
$SHF90COM or $SHFORTRANCOM (the command line) is displayed.

SHF90FLAGS
Options that are passed to the Fortran 90 compiler to generated shared-library objects. You only need to set
$SHF90FLAGS if you need to define specific user options for Fortran 90 files. You should normally set the
$FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF90PPCOM
The command line used to compile a Fortran 90 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF90FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF90PPCOM if you need to use a specific
C-preprocessor command line for Fortran 90 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF90PPCOMSTR
If set, the string displayed when a Fortran 90 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF90PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHF95
The Fortran 95 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF95 if
you need to use a specific compiler or compiler version for Fortran 95 files.

SHF95COM
The command line used to compile a Fortran 95 source file to a shared-library object file. You only need to
set $SHF95COM if you need to use a specific command line for Fortran 95 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF95COMSTR
If set, the string displayed when a Fortran 95 source file is compiled to a shared-library object file. If not set, then
$SHF95COM or $SHFORTRANCOM (the command line) is displayed.

SHF95FLAGS
Options that are passed to the Fortran 95 compiler to generated shared-library objects. You only need to set
$SHF95FLAGS if you need to define specific user options for Fortran 95 files. You should normally set the

164

$FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF95PPCOM
The command line used to compile a Fortran 95 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF95FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF95PPCOM if you need to use a specific
C-preprocessor command line for Fortran 95 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF95PPCOMSTR
If set, the string displayed when a Fortran 95 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF95PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHFORTRAN
The default Fortran compiler used for generating shared-library objects.

SHFORTRANCOM
The command line used to compile a Fortran source file to a shared-library object file. By default, any options
specified in the $SHFORTRANFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS construction
variables are included on this command line. See also $FORTRANCOM.

SHFORTRANCOMSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file. If not set, then
$SHFORTRANCOM (the command line) is displayed.

SHFORTRANFLAGS
Options that are passed to the Fortran compiler to generate shared-library objects.

SHFORTRANPPCOM
The command line used to compile a Fortran source file to a shared-library object file after first running the
file through the C preprocessor. By default, any options specified in the $SHFORTRANFLAGS, $CPPFLAGS,
$_CPPDEFFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS construction variables are included
on this command line. See also $SHFORTRANCOM.

SHFORTRANPPCOMSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHFORTRANPPCOM (the command line) is displayed.

SHLIBEMITTER
Contains the emitter specification for the SharedLibrary builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

SHLIBNOVERSIONSYMLINKS
Instructs the SharedLibrary builder to not create symlinks for versioned shared libraries.

SHLIBPREFIX
The prefix used for shared library file names.

_SHLIBSONAME
A macro that automatically generates shared library's SONAME based on $TARGET, $SHLIBVERSION and
$SHLIBSUFFIX. Used by SharedLibrary builder when the linker tool supports SONAME (e.g. gnulink).

SHLIBSUFFIX
The suffix used for shared library file names.

165

SHLIBVERSION
When this construction variable is defined, a versioned shared library is created by the SharedLibrary
builder. This activates the $_SHLIBVERSIONFLAGS and thus modifies the $SHLINKCOM as required, adds the
version number to the library name, and creates the symlinks that are needed. $SHLIBVERSION versions should
exist as alpha-numeric, decimal-delimited values as defined by the regular expression "\w+[\.\w+]*". Example
$SHLIBVERSION values include '1', '1.2.3', and '1.2.gitaa412c8b'.

_SHLIBVERSIONFLAGS
This macro automatically introduces extra flags to $SHLINKCOM when building versioned SharedLibrary
(that is when $SHLIBVERSION is set). _SHLIBVERSIONFLAGS usually adds $SHLIBVERSIONFLAGS
and some extra dynamically generated options (such as -Wl,-soname=$_SHLIBSONAME. It is unused by
"plain" (unversioned) shared libraries.

SHLIBVERSIONFLAGS
Extra flags added to $SHLINKCOM when building versioned SharedLibrary. These flags are only used when
$SHLIBVERSION is set.

SHLINK
The linker for programs that use shared libraries. See also $LINK for linking static objects.

On POSIX systems (those using the link tool), you should normally not change this value as it defaults to a
"smart" linker tool which selects a compiler driver matching the type of source files in use. So for example, if you
set $SHCXX to a specific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

SHLINKCOM
The command line used to link programs using shared libraries. See also $LINKCOM for linking static objects.

SHLINKCOMSTR
The string displayed when programs using shared libraries are linked. If this is not set, then $SHLINKCOM (the
command line) is displayed. See also $LINKCOMSTR for linking static objects.

env = Environment(SHLINKCOMSTR = "Linking shared $TARGET")

SHLINKFLAGS
General user options passed to the linker for programs using shared libraries. Note that this variable should not
contain -l (or similar) options for linking with the libraries listed in $LIBS, nor -L (or similar) include search
path options that scons generates automatically from $LIBPATH. See $_LIBFLAGS above, for the variable that
expands to library-link options, and $_LIBDIRFLAGS above, for the variable that expands to library search path
options. See also $LINKFLAGS for linking static objects.

SHOBJPREFIX
The prefix used for shared object file names.

SHOBJSUFFIX
The suffix used for shared object file names.

SONAME
Variable used to hard-code SONAME for versioned shared library/loadable module.

env.SharedLibrary('test', 'test.c', SHLIBVERSION='0.1.2', SONAME='libtest.so.2')

The variable is used, for example, by gnulink linker tool.

166

SOURCE
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOURCE_URL
The URL (web address) of the location from which the project was retrieved. This is used to fill in the Source:
field in the controlling information for Ipkg and RPM packages.

See the Package builder.

SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOVERSION
This will construct the SONAME using on the base library name (test in the example below) and use specified
SOVERSION to create SONAME.

env.SharedLibrary('test', 'test.c', SHLIBVERSION='0.1.2', SOVERSION='2')

The variable is used, for example, by gnulink linker tool.

In the example above SONAME would be libtest.so.2 which would be a symlink and point to
libtest.so.0.1.2

SPAWN
A command interpreter function that will be called to execute command line strings. The function must accept
five arguments:

def spawn(shell, escape, cmd, args, env):

shell is a string naming the shell program to use, escape is a function that can be called to escape shell special
characters in the command line, cmd is the path to the command to be executed, args holds the arguments to
the command and env is a dictionary of environment variables defining the execution environment in which the
command should be executed.

STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME
When this variable is true, static objects and shared objects are assumed to be the same; that is, SCons does not
check for linking static objects into a shared library.

SUBST_DICT
The dictionary used by the Substfile or Textfile builders for substitution values. It can be anything
acceptable to the dict() constructor, so in addition to a dictionary, lists of tuples are also acceptable.

SUBSTFILEPREFIX
The prefix used for Substfile file names, an empty string by default.

SUBSTFILESUFFIX
The suffix used for Substfile file names, an empty string by default.

SUMMARY
A short summary of what the project is about. This is used to fill in the Summary: field in the controlling
information for Ipkg and RPM packages, and as the Description: field in MSI packages.

See the Package builder.

167

SWIG
The name of the SWIG compiler to use.

SWIGCFILESUFFIX
The suffix that will be used for intermediate C source files generated by SWIG. The default value is '_wrap
$CFILESUFFIX' - that is, the concatenation of the string _wrap and the current C suffix $CFILESUFFIX.
By default, this value is used whenever the -c++ option is not specified as part of the $SWIGFLAGS construction
variable.

SWIGCOM
The command line used to call SWIG.

SWIGCOMSTR
The string displayed when calling SWIG. If this is not set, then $SWIGCOM (the command line) is displayed.

SWIGCXXFILESUFFIX
The suffix that will be used for intermediate C++ source files generated by SWIG. The default value is
'_wrap$CXXFILESUFFIX' - that is, the concatenation of the string _wrap and the current C++ suffix
$CXXFILESUFFIX. By default, this value is used whenever the -c++ option is specified as part of the
$SWIGFLAGS construction variable.

SWIGDIRECTORSUFFIX
The suffix that will be used for intermediate C++ header files generated by SWIG. These are only generated for
C++ code when the SWIG 'directors' feature is turned on. The default value is _wrap.h.

SWIGFLAGS
General options passed to SWIG. This is where you should set the target language (-python, -perl5, -tcl,
etc.) and whatever other options you want to specify to SWIG, such as the -c++ to generate C++ code instead
of C Code.

_SWIGINCFLAGS
An automatically-generated construction variable containing the SWIG command-line options for specifying
directories to be searched for included files. The value of $_SWIGINCFLAGS is created by respectively
prepending and appending $SWIGINCPREFIX and $SWIGINCSUFFIX to the beginning and end of each
directory in $SWIGPATH.

SWIGINCPREFIX
The prefix used to specify an include directory on the SWIG command line. This will be prepended to the
beginning of each directory in the $SWIGPATH construction variable when the $_SWIGINCFLAGS variable is
automatically generated.

SWIGINCSUFFIX
The suffix used to specify an include directory on the SWIG command line. This will be appended to the end of
each directory in the $SWIGPATH construction variable when the $_SWIGINCFLAGS variable is automatically
generated.

SWIGOUTDIR
Specifies the output directory in which SWIG should place generated language-specific files. This will be used
by SCons to identify the files that will be generated by the SWIG call, and translated into the swig -outdir
option on the command line.

SWIGPATH
The list of directories that SWIG will search for included files. SCons' SWIG implicit dependency scanner will
search these directories for include files. The default value is an empty list.

Don't explicitly put include directory arguments in $SWIGFLAGS the result will be non-portable and the
directories will not be searched by the dependency scanner. Note: directory names in $SWIGPATH will be looked-

168

up relative to the SConscript directory when they are used in a command. To force scons to look-up a directory
relative to the root of the source tree use a top-relative path (#):

env = Environment(SWIGPATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(SWIGPATH=include)

The directory list will be added to command lines through the automatically-generated $_SWIGINCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$SWIGINCPREFIX and $SWIGINCSUFFIX construction variables to the beginning and end of each directory
in $SWIGPATH. Any command lines you define that need the SWIGPATH directory list should include
$_SWIGINCFLAGS:

env = Environment(SWIGCOM="my_swig -o $TARGET $_SWIGINCFLAGS $SOURCES")

SWIGVERSION
The detected version string of the SWIG tool.

TAR
The tar archiver.

TARCOM
The command line used to call the tar archiver.

TARCOMSTR
The string displayed when archiving files using the tar archiver. If this is not set, then $TARCOM (the command
line) is displayed.

env = Environment(TARCOMSTR = "Archiving $TARGET")

TARFLAGS
General options passed to the tar archiver.

TARGET
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

TARGET_ARCH
The name of the hardware architecture that objects created using this construction environment should target. Can
be set when creating a construction environment by passing as a keyword argument in the Environment call.

On the win32 platform, if the Microsoft Visual C++ compiler is available, msvc tool setup is done using
$HOST_ARCH and $TARGET_ARCH. If a value is not specified, will be set to the same value as $HOST_ARCH.
Changing the value after the environment is initialized will not cause the tool to be reinitialized. Compiled objects
will be in the target architecture if the compilation system supports generating for that target. The latest compiler
which can fulfill the requirement will be selected, unless a different version is directed by the value of the
$MSVC_VERSION construction variable.

On the win32/msvc combination, valid target arch values are x86, arm, i386 for 32-bit targets and amd64,
arm64, x86_64 and ia64 (Itanium) for 64-bit targets. For example, if you want to compile 64-bit binaries,

169

you would set TARGET_ARCH='x86_64' when creating the construction environment. Note that not all target
architectures are supported for all Visual Studio / MSVC versions. Check the relevant Microsoft documentation.

$TARGET_ARCH is not currently used by other compilation tools, but the option is reserved to do so in future

TARGET_OS
The name of the operating system that objects created using this construction environment should target. Can be
set when creating a construction environment by passing as a keyword argument in the Environment call;.

$TARGET_OS is not currently used by SCons but the option is reserved to do so in future

TARGETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

TARSUFFIX
The suffix used for tar file names.

TEMPFILE
A callable object used to handle overly long command line strings, since operations which call out to a shell
will fail if the line is longer than the shell can accept. This tends to particularly impact linking. The tempfile
object stores the command line in a temporary file in the appropriate format, and returns an alternate command
line so the invoked tool will make use of the contents of the temporary file. If you need to replace the default
tempfile object, the callable should take into account the settings of $MAXLINELENGTH, $TEMPFILEPREFIX,
$TEMPFILESUFFIX, $TEMPFILEARGJOIN, $TEMPFILEDIR and $TEMPFILEARGESCFUNC.

TEMPFILEARGESCFUNC
The default argument escape function is SCons.Subst.quote_spaces. If you need to apply extra operations
on a command argument (to fix Windows slashes, normalize paths, etc.) before writing to the temporary file,
you can set the $TEMPFILEARGESCFUNC variable to a custom function. Such a function takes a single string
argument and returns a new string with any modifications applied. Example:

import sys
import re
from SCons.Subst import quote_spaces

WINPATHSEP_RE = re.compile(r"\\([^\"'\\]|$)")

def tempfile_arg_esc_func(arg):
 arg = quote_spaces(arg)
 if sys.platform != "win32":
 return arg
 # GCC requires double Windows slashes, let's use UNIX separator
 return WINPATHSEP_RE.sub(r"/\1", arg)

env["TEMPFILEARGESCFUNC"] = tempfile_arg_esc_func

TEMPFILEARGJOIN
The string to use to join the arguments passed to $TEMPFILE when the command line exceeds the limit set by
$MAXLINELENGTH. The default value is a space. However for MSVC, MSLINK the default is a line separator
as defined by os.linesep. Note this value is used literally and not expanded by the subst logic.

TEMPFILEDIR
The directory to create the long-lines temporary file in.

170

TEMPFILEPREFIX
The prefix for the name of the temporary file used to store command lines exceeding $MAXLINELENGTH. The
default prefix is '@', which works for the Microsoft and GNU toolchains on Windows. Set this appropriately for
other toolchains, for example '-@' for the diab compiler or '-via' for ARM toolchain.

TEMPFILESUFFIX
The suffix for the name of the temporary file used to store command lines exceeding $MAXLINELENGTH. The
suffix should include the dot ('.') if one is wanted as it will not be added automatically. The default is .lnk.

TEX
The TeX formatter and typesetter.

TEXCOM
The command line used to call the TeX formatter and typesetter.

TEXCOMSTR
The string displayed when calling the TeX formatter and typesetter. If this is not set, then $TEXCOM (the command
line) is displayed.

env = Environment(TEXCOMSTR = "Building $TARGET from TeX input $SOURCES")

TEXFLAGS
General options passed to the TeX formatter and typesetter.

TEXINPUTS
List of directories that the LaTeX program will search for include directories. The LaTeX implicit dependency
scanner will search these directories for \include and \import files.

TEXTFILEPREFIX
The prefix used for Textfile file names, an empty string by default.

TEXTFILESUFFIX
The suffix used for Textfile file names; .txt by default.

TOOLS
A list of the names of the Tool specifications that are part of this construction environment.

UNCHANGED_SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

UNCHANGED_TARGETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

VENDOR
The person or organization who supply the packaged software. This is used to fill in the Vendor: field in the
controlling information for RPM packages, and the Manufacturer: field in the controlling information for
MSI packages.

See the Package builder.

VERSION
The version of the project, specified as a string.

See the Package builder.

171

VSWHERE
Specify the location of vswhere.exe.

The vswhere.exe executable is distributed with Microsoft Visual Studio and Build Tools since the 2017
edition, but is also available standalone. It provides full information about installations of 2017 and later editions.
With the -legacy argument, vswhere.exe can detect installations of the 2010 through 2015 editions with
limited data returned. If VSWHERE is set, SCons will use that location.

Otherwise SCons will look in the following locations and set VSWHERE to the path of the first vswhere.exe
located.

• %ProgramFiles(x86)%\Microsoft Visual Studio\Installer

• %ProgramFiles%\Microsoft Visual Studio\Installer

• %ChocolateyInstall%\bin

Note that VSWHERE must be set at the same time or prior to any of msvc, msvs , and/or mslink Tool being
initialized. Either set it as follows

env = Environment(VSWHERE='c:/my/path/to/vswhere')

or if your construction environment is created specifying an empty tools list (or a list of tools which omits all of
default, msvs, msvc, and mslink), and also before env.Tool is called to ininitialize any of those tools:

 env = Environment(tools=[])
 env['VSWHERE'] = r'c:/my/vswhere/install/location/vswhere.exe'
 env.Tool('msvc')
 env.Tool('mslink')
 env.Tool('msvs')

WINDOWS_EMBED_MANIFEST
Set to True to embed the compiler-generated manifest (normally ${TARGET}.manifest) into all Windows
executables and DLLs built with this environment, as a resource during their link step. This is done using $MT
and $MTEXECOM and $MTSHLIBCOM. See also $WINDOWS_INSERT_MANIFEST.

WINDOWS_INSERT_DEF
If set to true, a library build of a Windows shared library (.dll file) will include a reference to the corresponding
module-definition file at the same time, if a module-definition file is not already listed as a build target. The name
of the module-definition file will be constructed from the base name of the library and the construction variables
$WINDOWSDEFSUFFIX and $WINDOWSDEFPREFIX. The default is to not add a module-definition file. The
module-definition file is not created by this directive, and must be supplied by the developer.

WINDOWS_INSERT_MANIFEST
If set to true, scons will add the manifest file generated by Microsoft Visual C++ 8.0 and later to the target
list so SCons will be aware they were generated. In the case of an executable, the manifest file name is
constructed using $WINDOWSPROGMANIFESTSUFFIX and $WINDOWSPROGMANIFESTPREFIX. In the case
of a shared library, the manifest file name is constructed using $WINDOWSSHLIBMANIFESTSUFFIX and
$WINDOWSSHLIBMANIFESTPREFIX. See also $WINDOWS_EMBED_MANIFEST.

WINDOWSDEFPREFIX
The prefix used for a Windows linker module-definition file name. Defaults to empty.

WINDOWSDEFSUFFIX
The suffix used for a Windows linker module-definition file name. Defaults to .def.

172

WINDOWSEXPPREFIX
The prefix used for Windows linker exports file names. Defaults to empty.

WINDOWSEXPSUFFIX
The suffix used for Windows linker exports file names. Defaults to .exp.

WINDOWSPROGMANIFESTPREFIX
The prefix used for executable program manifest files generated by Microsoft Visual C/C++. Defaults to empty.

WINDOWSPROGMANIFESTSUFFIX
The suffix used for executable program manifest files generated by Microsoft Visual C/C++. Defaults to
.manifest.

WINDOWSSHLIBMANIFESTPREFIX
The prefix used for shared library manifest files generated by Microsoft Visual C/C++. Defaults to empty.

WINDOWSSHLIBMANIFESTSUFFIX
The suffix used for shared library manifest files generated by Microsoft Visual C/C++. Defaults to .manifest.

X_IPK_DEPENDS
This is used to fill in the Depends: field in the controlling information for Ipkg packages.

See the Package builder.

X_IPK_DESCRIPTION
This is used to fill in the Description: field in the controlling information for Ipkg packages. The default
value is “$SUMMARY\n$DESCRIPTION”

X_IPK_MAINTAINER
This is used to fill in the Maintainer: field in the controlling information for Ipkg packages.

X_IPK_PRIORITY
This is used to fill in the Priority: field in the controlling information for Ipkg packages.

X_IPK_SECTION
This is used to fill in the Section: field in the controlling information for Ipkg packages.

X_MSI_LANGUAGE
This is used to fill in the Language: attribute in the controlling information for MSI packages.

See the Package builder.

X_MSI_LICENSE_TEXT
The text of the software license in RTF format. Carriage return characters will be replaced with the RTF equivalent
\\par.

See the Package builder.

X_MSI_UPGRADE_CODE
TODO

X_RPM_AUTOREQPROV
This is used to fill in the AutoReqProv: field in the RPM .spec file.

See the Package builder.

X_RPM_BUILD
internal, but overridable

173

X_RPM_BUILDREQUIRES
This is used to fill in the BuildRequires: field in the RPM .spec file. Note this should only be used on a
host managed by rpm as the dependencies will not be resolvable at build time otherwise.

X_RPM_BUILDROOT
internal, but overridable

X_RPM_CLEAN
internal, but overridable

X_RPM_CONFLICTS
This is used to fill in the Conflicts: field in the RPM .spec file.

X_RPM_DEFATTR
This value is used as the default attributes for the files in the RPM package. The default value is “(-,root,root)”.

X_RPM_DISTRIBUTION
This is used to fill in the Distribution: field in the RPM .spec file.

X_RPM_EPOCH
This is used to fill in the Epoch: field in the RPM .spec file.

X_RPM_EXCLUDEARCH
This is used to fill in the ExcludeArch: field in the RPM .spec file.

X_RPM_EXLUSIVEARCH
This is used to fill in the ExclusiveArch: field in the RPM .spec file.

X_RPM_EXTRADEFS
A list used to supply extra defintions or flags to be added to the RPM .spec file. Each item is added as-is
with a carriage return appended. This is useful if some specific RPM feature not otherwise anticipated by SCons
needs to be turned on or off. Note if this variable is omitted, SCons will by default supply the value '%global
debug_package %{nil}' to disable debug package generation. To enable debug package generation, include
this variable set either to None, or to a custom list that does not include the default line. Added in version 3.1.

env.Package(
 NAME="foo",
 ...
 X_RPM_EXTRADEFS=[
 "%define _unpackaged_files_terminate_build 0"
 "%define _missing_doc_files_terminate_build 0"
],
 ...
)

X_RPM_GROUP
This is used to fill in the Group: field in the RPM .spec file.

X_RPM_GROUP_lang
This is used to fill in the Group(lang): field in the RPM .spec file. Note that lang is not literal and should
be replaced by the appropriate language code.

X_RPM_ICON
This is used to fill in the Icon: field in the RPM .spec file.

X_RPM_INSTALL
internal, but overridable

174

X_RPM_PACKAGER
This is used to fill in the Packager: field in the RPM .spec file.

X_RPM_POSTINSTALL
This is used to fill in the %post: section in the RPM .spec file.

X_RPM_POSTUNINSTALL
This is used to fill in the %postun: section in the RPM .spec file.

X_RPM_PREFIX
This is used to fill in the Prefix: field in the RPM .spec file.

X_RPM_PREINSTALL
This is used to fill in the %pre: section in the RPM .spec file.

X_RPM_PREP
internal, but overridable

X_RPM_PREUNINSTALL
This is used to fill in the %preun: section in the RPM .spec file.

X_RPM_PROVIDES
This is used to fill in the Provides: field in the RPM .spec file.

X_RPM_REQUIRES
This is used to fill in the Requires: field in the RPM .spec file.

X_RPM_SERIAL
This is used to fill in the Serial: field in the RPM .spec file.

X_RPM_URL
This is used to fill in the Url: field in the RPM .spec file.

XGETTEXT
Path to xgettext(1) program (found via Detect()). See xgettext tool and POTUpdate builder.

XGETTEXTCOM
Complete xgettext command line. See xgettext tool and POTUpdate builder.

XGETTEXTCOMSTR
A string that is shown when xgettext(1) command is invoked (default: '', which means "print
$XGETTEXTCOM"). See xgettext tool and POTUpdate builder.

_XGETTEXTDOMAIN
Internal "macro". Generates xgettext domain name form source and target (default:
'${TARGET.filebase}').

XGETTEXTFLAGS
Additional flags to xgettext(1). See xgettext tool and POTUpdate builder.

XGETTEXTFROM
Name of file containing list of xgettext(1)'s source files. Autotools' users know this as POTFILES.in so they
will in most cases set XGETTEXTFROM="POTFILES.in" here. The $XGETTEXTFROM files have same syntax
and semantics as the well known GNU POTFILES.in. See xgettext tool and POTUpdate builder.

_XGETTEXTFROMFLAGS
Internal "macro". Genrates list of -D<dir> flags from the $XGETTEXTPATH list.

175

XGETTEXTFROMPREFIX
This flag is used to add single $XGETTEXTFROM file to xgettext(1)'s commandline (default: '-f').

XGETTEXTFROMSUFFIX
(default: '')

XGETTEXTPATH
List of directories, there xgettext(1) will look for source files (default: []).

Note

This variable works only together with $XGETTEXTFROM
See also xgettext tool and POTUpdate builder.

_XGETTEXTPATHFLAGS
Internal "macro". Generates list of -f<file> flags from $XGETTEXTFROM.

XGETTEXTPATHPREFIX
This flag is used to add single search path to xgettext(1)'s commandline (default: '-D').

XGETTEXTPATHSUFFIX
(default: '')

YACC
The parser generator.

YACC_GRAPH_FILE
If supplied, write a graph of the automaton to a file with the name taken from this variable. Will be emitted as a
--graph= command-line option. Use this in preference to including --graph= in $YACCFLAGS directly.

YACC_HEADER_FILE
If supplied, generate a header file with the name taken from this variable. Will be emitted as a --header=
command-line option. Use this in preference to including --header= in $YACCFLAGS directly.

YACCCOM
The command line used to call the parser generator to generate a source file.

YACCCOMSTR
The string displayed when generating a source file using the parser generator. If this is not set, then $YACCCOM
(the command line) is displayed.

env = Environment(YACCCOMSTR="Yacc'ing $TARGET from $SOURCES")

YACCFLAGS
General options passed to the parser generator. In addition to passing the value on during invocation, the yacc
tool also examines this construction variable for options which cause additional output files to be generated, and
adds those to the target list.

If a -d option is present, scons assumes that the call will also create a header file with the suffix defined
by $YACCHFILESUFFIX if the yacc source file ends in a .y suffix, or a file with the suffix defined by
$YACCHXXFILESUFFIX if the yacc source file ends in a .yy suffix.

If a -g option is present, scons assumes that the call will also create a graph file with the suffix defined by
$YACCVCGFILESUFFIX.

If a -v option is present, scons assumes that the call will also create an output debug file with the suffix .output.

176

Also recognized are GNU bison options --header= and its deprecated synonym --defines=, which is
similar to -d but the output filename is named by the option argument; and --graph=, which is similar to -g
but the output filename is named by the option argument.

Note that files specified by --header= and --graph= may not be properly handled by SCons in all situations.
Consider using $YACC_HEADER_FILE and $YACC_GRAPH_FILE instead.

YACCHFILESUFFIX
The suffix of the C header file generated by the parser generator when the -d option is used. Note that setting this
variable does not cause the parser generator to generate a header file with the specified suffix, it exists to allow
you to specify what suffix the parser generator will use of its own accord. The default value is .h.

YACCHXXFILESUFFIX
The suffix of the C++ header file generated by the parser generator when the -d option is used. Note that setting
this variable does not cause the parser generator to generate a header file with the specified suffix, it exists to
allow you to specify what suffix the parser generator will use of its own accord. The default value is .hpp, except
on Mac OS X, where the default is ${TARGET.suffix}.h. because the default bison parser generator just
appends .h to the name of the generated C++ file.

YACCVCGFILESUFFIX
The suffix of the file containing the VCG grammar automaton definition when the --graph= option is used.
Note that setting this variable does not cause the parser generator to generate a VCG file with the specified suffix,
it exists to allow you to specify what suffix the parser generator will use of its own accord. The default value
is .vcg.

ZIP
The zip compression and file packaging utility.

ZIP_OVERRIDE_TIMESTAMP
An optional timestamp which overrides the last modification time of the file when stored inside the Zip archive.
This is a tuple of six values: Year (>= 1980) Month (one-based) Day of month (one-based) Hours (zero-based)
Minutes (zero-based) Seconds (zero-based)

ZIPCOM
The command line used to call the zip utility, or the internal Python function used to create a zip archive.

ZIPCOMPRESSION
The compression flag from the Python zipfile module used by the internal Python function to control
whether the zip archive is compressed or not. The default value is zipfile.ZIP_DEFLATED, which creates a
compressed zip archive. This value has no effect if the zipfile module is unavailable.

ZIPCOMSTR
The string displayed when archiving files using the zip utility. If this is not set, then $ZIPCOM (the command
line or internal Python function) is displayed.

env = Environment(ZIPCOMSTR = "Zipping $TARGET")

ZIPFLAGS
General options passed to the zip utility.

ZIPROOT
An optional zip root directory (default empty). The filenames stored in the zip file will be relative to this directory,
if given. Otherwise the filenames are relative to the current directory of the command. For instance:

177

env = Environment()
env.Zip('foo.zip', 'subdir1/subdir2/file1', ZIPROOT='subdir1')

will produce a zip file foo.zip containing a file with the name subdir2/file1 rather than subdir1/
subdir2/file1.

ZIPSUFFIX
The suffix used for zip file names.

Configure Contexts

SCons supports a configure context, an integrated mechanism similar to the various AC_CHECK macros in GNU
Autoconf for testing the existence of external items needed for the build, such as C header files, libraries, etc. The
mechanism is portable across platforms.

scons does not maintain an explicit cache of the tested values (this is different than Autoconf), but uses its normal
dependency tracking to keep the checked values up to date. However, users may override this behaviour with the --
config command line option.

Configure(env, [custom_tests, conf_dir, log_file, config_h, clean, help])
env.Configure([custom_tests, conf_dir, log_file, config_h, clean, help])

Create a configure context, which tracks information discovered while running tests. The context includes a local
construction environment (available as context.env) which is used when running the tests and which can be
updated with the check results. Only one context may be active at a time (since 4.0, scons will raise an exception
on an attempt to create a new context when there is an active context), but a new context can be created after the
active one is completed. For the global function form, the required env describes the initial values for the context's
local construction environment; for the construction environment method form the instance provides the values.

custom_tests specifies a dictionary containing custom tests (see the section on custom tests below). The
default value is None, meaning no custom tests are added to the configure context.

conf_dir specifies a directory where the test cases are built. This directory is not used for building normal
targets. The default value is “#/.sconf_temp”.

log_file specifies a file which collects the output from commands that are executed to check for the existence
of header files, libraries, etc. The default is “#/config.log”. If you are using the VariantDir function, you
may want to specify a subdirectory under your variant directory.

config_h specifies a C header file where the results of tests will be written. The results will consist of lines like
#define HAVE_STDIO_H, #define HAVE_LIBM, etc. Customarily, the name chosen is “config.h”.
The default is to not write a config_h file. You can specify the same config_h file in multiple calls to
Configure, in which case SCons will concatenate all results in the specified file. Note that SCons uses its
normal dependency checking to decide if it's necessary to rebuild the specified config_h file. This means that
the file is not necessarily re-built each time scons is run, but is only rebuilt if its contents will have changed and
some target that depends on the config_h file is being built.

The clean and help arguments can be used to suppress execution of the configuration tests when the -c/--
clean or -H/-h/--help options are used, respectively. The default behavior is always to execute configure
context tests, since the results of the tests may affect the list of targets to be cleaned or the help text. If the configure
tests do not affect these, then you may add the clean=False or help=False arguments (or both) to avoid
unnecessary test execution.

context.Finish()
This method must be called after configuration is done. Though required, this is not enforced except if
Configure is called again while there is still an active context, in which case an exception is raised. Finish
returns the environment as modified during the course of running the configuration checks. After this method

178

is called, no further checks can be performed with this configuration context. However, you can create a new
configure context to perform additional checks.

Example of a typical Configure usage:

env = Environment()
conf = Configure(env)
if not conf.CheckCHeader("math.h"):
 print("We really need math.h!")
 Exit(1)
if conf.CheckLibWithHeader("qt", "qapp.h", "c++", "QApplication qapp(0,0);"):
 # do stuff for qt - usage, e.g.
 conf.env.Append(CPPDEFINES="WITH_QT")
env = conf.Finish()

A configure context has the following predefined methods which can be used to perform checks. Where language
is a required or optional parameter, the choice can currently be C or C++. The spellings accepted for C are “C” or “c”;
for C++ the value can be “CXX”, “cxx”, “C++” or “c++”.

context.CheckHeader(header, [include_quotes, language])
Checks if header is usable in the specified language. header may be a list, in which case the last item in the
list is the header file to be checked, and the previous list items are header files whose #include lines should
precede the header line being checked for. The optional argument include_quotes must be a two character
string, where the first character denotes the opening quote and the second character denotes the closing quote. By
default, both characters are " (double quote). The optional argument language should be either C or C++ and
selects the compiler to be used for the check. Returns a boolean indicating success or failure.

context.CheckCHeader(header, [include_quotes])
Checks if header is usable when compiling a C language program. header may be a list, in which case the
last item in the list is the header file to be checked, and the previous list items are header files whose #include
lines should precede the header line being checked for. The optional argument include_quotes must be a
two character string, where the first character denotes the opening quote and the second character denotes the
closing quote. By default, both characters are " (double quote). Note this is a wrapper around CheckHeader.
Returns a boolean indicating success or failure.

context.CheckCXXHeader(header, [include_quotes])
Checks if header is usable when compiling a C++ language program. header may be a list, in which case the
last item in the list is the header file to be checked, and the previous list items are header files whose #include
lines should precede the header line being checked for. The optional argument include_quotes must be a
two character string, where the first character denotes the opening quote and the second character denotes the
closing quote. By default, both characters are " (double quote). Note this is a wrapper around CheckHeader.
Returns a boolean indicating success or failure.

context.CheckFunc(function_name, [header, language])
Checks if the specified C or C++ library function is available based on the context's local environment settings
(that is, using the values of $CFLAGS, $CPPFLAGS, $LIBS or other relevant construction variables).

function_name is the name of the function to check for. The optional header argument is a string that will
be placed at the top of the test file that will be compiled to check if the function exists; the default is:

#ifdef __cplusplus
extern "C"
#endif
char function_name();

179

Returns an empty string on success, a string containing an error message on failure.

context.CheckLib([library, symbol, header, language, autoadd=True])
Checks if library provides symbol. If autoadd is true (the default) and the library provides the specified
symbol, appends the library to the LIBS construction variable library may also be None (the default), in
which case symbol is checked with the current LIBS variable, or a list of library names, in which case each
library in the list will be checked for symbol. If symbol is not set or is None, then CheckLib just checks if
you can link against the specified library. Note though it is legal syntax, it would not be very useful to call
this method with library and symbol both omitted or None. Returns a boolean indicating success or failure.

context.CheckLibWithHeader(library, header, language, [call, autoadd=True])
Provides a more sophisticated way to check against libraries then the CheckLib call. library specifies the
library or a list of libraries to check. header specifies a header to check for. header may be a list, in which
case the last item in the list is the header file to be checked, and the previous list items are header files whose
#include lines should precede the header line being checked for. call can be any valid expression (with
a trailing ';'). If call is not set, the default simply checks that you can link against the specified library.
autoadd (default true) specifies whether to add the library to the environment if the check succeeds. Returns
a boolean indicating success or failure.

context.CheckType(type_name, [includes, language])
Checks for the existence of a type defined by typedef. type_name specifies the typedef name to check for.
includes is a string containing one or more #include lines that will be inserted into the program that will
be run to test for the existence of the type. Example:

sconf.CheckType('foo_type', '#include "my_types.h"', 'C++')

Returns an empty string on success, a string containing an error message on failure.

context.CheckTypeSize(type_name, [header, language, expect])
Checks for the size of a type defined by typedef. type_name specifies the typedef name to check for. The
optional header argument is a string that will be placed at the top of the test file that will be compiled to
check if the type exists; the default is empty. If the optional expect, is supplied, it should be an integer size;
CheckTypeSize will fail unless type_name is actually that size. Returns the size in bytes, or zero if the type
was not found (or if the size did not match expect).

For example,

CheckTypeSize('short', expect=2)

will return the size 2 only if short is actually two bytes.

context.CheckCC()
Checks whether the C compiler (as defined by the $CC construction variable) works, by trying to compile a small
source file. This provides a more rigorous check: by default, SCons itself only detects if there is a program with
the correct name, not if it is a functioning compiler. Returns a boolean indicating success or failure.

The test program will be built with the same command line as the one used by the Object builder for C source
files, so by setting relevant construction variables it can be used to detect if particular compiler flags will be
accepted or rejected by the compiler.

context.CheckCXX()
Checks whether the C++ compiler (as defined by the $CXX construction variable) works, by trying to compile a
small source file. This provides a more rigorous check: by default, SCons itself only detects if there is a program
with the correct name, not if it is a functioning compiler. Returns a boolean indicating success or failure.

180

The test program will be built with the same command line as the one used by the Object builder for C++
source files, so by setting relevant construction variables it can be used to detect if particular compiler flags will
be accepted or rejected by the compiler.

context.CheckSHCC()
Checks whether the shared-object C compiler (as defined by the $SHCC construction variable) works by trying to
compile a small source file. This provides a more rigorous check: by default, SCons itself only detects if there is a
program with the correct name, not if it is a functioning compiler. Returns a boolean indicating success or failure.

The test program will be built with the same command line as the one used by the SharedObject builder for C
source files, so by setting relevant construction variables it can be used to detect if particular compiler flags will
be accepted or rejected by the compiler. Note this does not check whether a shared library/dll can be created.

context.CheckSHCXX()
Checks whether the shared-object C++ compiler (as defined by the $SHCXX construction variable) works by
trying to compile a small source file. This provides a more rigorous check: by default, SCons itself only detects if
there is a program with the correct name, not if it is a functioning compiler. Returns a boolean indicating success
or failure.

The test program will be built with the same command line as the one used by the SharedObject builder for
C++ source files, so by setting relevant construction variables it can be used to detect if particular compiler flags
will be accepted or rejected by the compiler. Note this does not check whether a shared library/dll can be created.

context.CheckProg(prog_name)
Checks if prog_name exists in the path SCons will use at build time. (context.env['ENV']['PATH']).
Returns a string containing the path to the program, or None on failure.

context.CheckDeclaration(symbol, [includes, language])
Checks if the specified symbol is declared. includes is a string containing one or more #include lines
that will be inserted into the program that will be run to test for the existence of the symbol. Returns a boolean
indicating success or failure.

context.CheckMember(aggregate_member, [header, language])
Checks for the existence of a member of the C/C++ struct or class. aggregate_member specifies the struct/
class and member to check for. header is a string containing one or more #include lines that will be inserted
into the program that will be run to test for the existence of the member. Example:

sconf.CheckMember('struct tm.tm_sec', '#include <time.h>')

Returns a boolean indicating success or failure.

context.Define(symbol, [value, comment])
This method does not check for anything, but rather forces the definition of a preprocessor macro that will be
added to the configuration header file. name is the macro's identifier. If value is given, it will be be used as the
macro replacement value. If value is a string and needs to display with quotes, the quotes need to be included,
as in '"string"' If the optional comment is given, it is inserted as a comment above the macro definition
(suitable comment marks will be added automatically). This is analogous to using AC_DEFINE in Autoconf.

Examples:

env = Environment()
conf = Configure(env)

181

Puts the following line in the config header file:
#define A_SYMBOL
conf.Define("A_SYMBOL")

Puts the following line in the config header file:
#define A_SYMBOL 1
conf.Define("A_SYMBOL", 1)

Examples of quoting string values:

env = Environment()
conf = Configure(env)

Puts the following line in the config header file:
#define A_SYMBOL YA
conf.Define("A_SYMBOL", "YA")

Puts the following line in the config header file:
#define A_SYMBOL "YA"
conf.Define("A_SYMBOL", '"YA"')

Example including comment:

env = Environment()
conf = Configure(env)

Puts the following lines in the config header file:
/* Set to 1 if you have a symbol */
#define A_SYMBOL 1
conf.Define("A_SYMBOL", 1, "Set to 1 if you have a symbol")

You can define your own custom checks in addition to using the predefined checks. To enable custom checks, pass
a dictionary to the Configure function as the custom_tests parameter. The dictionary maps the names of the
checks to the custom check callables (either a Python function or an instance of a class implementing a __call__
method). Each custom check will be called with a a CheckContext instance as the first parameter followed by
the remaining arguments, which must be supplied by the user of the check. A CheckContext is not the same as a
configure context; rather it is an instance of a class which contains a configure context (available as chk_ctx.sconf).
A CheckContext provides the following methods which custom checks can make use of::

chk_ctx.Message(text)
Displays text as an indicator of progess. For example: Checking for library X.... Usually called
before the check is started.

chk_ctx.Result(res)
Displays a result message as an indicator of progress. If res is an integer, displays yes if res evaluates true or
no if false. If res is a string, it is displayed as-is. Usually called after the check has completed.

chk_ctx.TryCompile(text, extension='')
Checks if a file containing text and given the specified extension (e.g. '.c') can be compiled to an object
file using the environment's Object builder. Returns a boolean indicating success or failure.

chk_ctx.TryLink(text, extension='')
Checks if a file containing text and given the specified extension (e.g. '.c') can be compiled to an
executable program using the environment's Program builder. Returns a boolean indicating success or failure.

182

chk_ctx.TryRun(text, extension='')
Checks if a file containing text and given the specified extension (e.g. '.c') can be compiled to an excutable
program using the environment's Program builder and subsequently executed. Execution is only attempted if the
build succeeds. If the program executes successfully (that is, its return status is 0), a tuple (True, outputStr)
is returned, where outputStr is the standard output of the program. If the program fails execution (its return
status is non-zero), then (False, '') is returned.

chk_ctx.TryAction(action, [text, extension=''])
Checks if the specified action with an optional source file (contents text, given extension extension) can
be executed. action may be anything which can be converted to an Action Object. On success, a tuple (True,
outputStr) is returned, where outputStr is the content of the target file. On failure (False, '') is
returned.

chk_ctx.TryBuild(builder, [text, extension=''])
Low level implementation for testing specific builds; the methods above are based on this method. Given the
Builder instance builder and the optional text of a source file with optional extension, returns a boolean
indicating success or failure. In addition, chk_ctx.lastTarget is set to the build target node if the build was
successful.

Example of implementing and using custom tests:

def CheckQt(chk_ctx, qtdir):
 chk_ctx.Message('Checking for qt ...')
 lastLIBS = chk_ctx.env['LIBS']
 lastLIBPATH = chk_ctx.env['LIBPATH']
 lastCPPPATH = chk_ctx.env['CPPPATH']
 chk_ctx.env.Append(LIBS='qt', LIBPATH=qtdir + '/lib', CPPPATH=qtdir + '/include')
 ret = chk_ctx.TryLink(
 """\
#include <qapp.h>
int main(int argc, char **argv) {
 QApplication qapp(argc, argv);
 return 0;
}
"""
)
 if not ret:
 chkctx.env.Replace(LIBS=lastLIBS, LIBPATH=lastLIBPATH, CPPPATH=lastCPPPATH)
 chkctx.Result(ret)
 return ret

env = Environment()
conf = Configure(env, custom_tests={'CheckQt': CheckQt})
if not conf.CheckQt('/usr/lib/qt'):
 print('We really need qt!')
 Exit(1)
env = conf.Finish()

Command-Line Construction Variables

Often when building software, some variables need to be specified at build time. For example, libraries needed for
the build may be in non-standard locations, or site-specific compiler options may need to be passed to the compiler.
SCons provides a Variables object to support overriding construction variables with values obtained from various
sources, often from the command line:

183

scons VARIABLE=foo

The variable values can also be specified in a configuration file or an SConscript file.

To obtain the object for manipulating values, call the Variables function:

Variables([files, [args]])
If files is a file or list of files, they are executed as Python scripts, and the values of (global) Python variables
set in those files are added as construction variables in the Default Environment. If no files are specified, or the
files argument is None, then no files will be read (supplying None is necessary if there are no files but you
want to specify args as a positional argument).

The following example file contents could be used to set an alternative C compiler:

CC = 'my_cc'

If args is specified, it is a dictionary of values that will override anything read from files. The primary use is
to pass the ARGUMENTS dictionary that holds variables specified on the command line, allowing you to indicate
that if a setting appears on both the command line and in the file(s), the command line setting takes precedence.
However, any dictionary can be passed. Examples:

vars = Variables('custom.py')
vars = Variables('overrides.py', ARGUMENTS)
vars = Variables(None, {FOO:'expansion', BAR:7})

Calling Variables with no arguments is equivalent to:

vars = Variables(files=None, args=ARGUMENTS)

Note that since the variables are eventually added as construction variables, you should choose variable names
which do not unintentionally change pre-defined construction variables that your project will make use of (see
the section called “Construction Variables”).

Variables objects have the following methods:

vars.Add(key, [help, default, validator, converter])
Add a customizable construction variable to the Variables object. key is either the name of the variable, or a
tuple (or list), in which case the first item in the tuple is taken as the variable name, and any remaining values are
considered aliases for the variable. help is the help text for the variable (default empty string). default is the
default value of the variable (default None). If default is None and a value is not specified, the construction
variable will not be added to the construction environment.

As a special case, if key is a tuple (or list) and is the only argument, the tuple is unpacked into the five parameters
listed above left to right, with any missing members filled with the respecitive default values. This form allows Add
to consume a tuple emitted by the convenience functions BoolVariable, EnumVariable, ListVariable,
PackageVariable and PathVariable.

If the optional validator is supplied, it is called to validate the value of the variable. A function supplied as a
validator must accept three arguments: key, value and env, and should raise an exception with a helpful error
message if value is invalid. No return value is expected from the validator.

If the optional converter is supplied, it is called to convert the value before putting it in the environment,
and should take either a value or a value and environment as parameters. The converter function must return a

184

value, which will be converted into a string and be passed to the validator (if any) and then added to the
construction environment.

Examples:

vars.Add('CC', help='The C compiler')

def valid_color(key, val, env):
 if not val in ['red', 'blue', 'yellow']:
 raise Exception("Invalid color value '%s'" % val)

vars.Add('COLOR', validator=valid_color)

vars.AddVariables(args)
A convenience method that adds one or more customizable construction variables to a Variables object in one
call; equivalent to calling Add multiple times. The args are tuples (or lists) that contain the arguments for an
individual call to the Add method. Since tuples are not Python mappings, the arguments cannot use the keyword
form, but rather are positional arguments as documented for Add: a required name, the other four optional, but
must be in the specified order if used.

opt.AddVariables(
 ("debug", "", 0),
 ("CC", "The C compiler"),
 ("VALIDATE", "An option for testing validation", "notset", validator, None),
)

vars.Update(env, [args])
Update a construction environment env with the customized construction variables. Any specified variables that
are not configured for the Variables object will be saved and may be retrieved using the UnknownVariables
method.

Normally this method is not called directly, but rather invoked indirectly by passing the Variables object to the
Environment function:

env = Environment(variables=vars)

vars.UnknownVariables()
Returns a dictionary containing any variables that were specified either in the files or the dictionary with which
the Variables object was initialized, but for which the Variables object was not configured.

env = Environment(variables=vars)
for key, value in vars.UnknownVariables():
 print("unknown variable: %s=%s" % (key, value))

vars.Save(filename, env)
Save the currently set variables into a script file named by filename. Only variables that are set to non-default
values are saved. You can load these saved settings on a subsequent run by passing filename to the Variables
function, providing a way to cache particular settings for reuse.

env = Environment()
vars = Variables(['variables.cache', 'custom.py'])
vars.Add(...)

185

vars.Update(env)
vars.Save('variables.cache', env)

vars.GenerateHelpText(env, [sort])
Generate help text documenting the customizable construction variables, suitable for passing in to the Help
function. env is the construction environment that will be used to get the actual values of the customizable
variables. If the (optional) value of sort is callable, it is used as a comparison function to determine how to sort
the added variables. This function must accept two arguments, compare them, and return a negative integer if the
first is less-than the second, zero for equality, or a positive integer for greater-than. Optionally a Boolean value
of True for sort will cause a standard alphabetical sort to be performed.

Help(vars.GenerateHelpText(env))

def cmp(a, b):
 return (a > b) - (a < b)

Help(vars.GenerateHelpText(env, sort=cmp))

vars.FormatVariableHelpText(env, opt, help, default, actual)
Returns a formatted string containing the printable help text for one option. It is normally not called directly, but
is called by the GenerateHelpText method to create the returned help text. It may be overridden with your
own function that takes the arguments specified above and returns a string of help text formatted to your liking.
Note that GenerateHelpText will not put any blank lines or extra characters in between the entries, so you
must add those characters to the returned string if you want the entries separated.

def my_format(env, opt, help, default, actual):
 fmt = "\n%s: default=%s actual=%s (%s)\n"
 return fmt % (opt, default, actual, help)

vars.FormatVariableHelpText = my_format

To make it more convenient to work with customizable Variables, scons provides a number of functions that make it
easy to set up various types of Variables. Each of these return a tuple ready to be passed to the Add or AddVariables
method:

BoolVariable(key, help, default)
Returns a tuple of arguments to set up a Boolean option. The option will use the specified name key, have a
default value of default, and help will form the descriptive part of the help text. The option will interpret the
values y, yes, t, true, 1, on and all as true, and the values n, no, f, false, 0, off and none as false.

EnumVariable(key, help, default, allowed_values, [map, ignorecase])
Returns a tuple of arguments to set up an option whose value may be one of a specified list of legal enumerated
values. The option will use the specified name key, have a default value of default, and help will form the
descriptive part of the help text. The option will only support those values in the allowed_values list. The
optional map argument is a dictionary that can be used to convert input values into specific legal values in the
allowed_values list. If the value of ignore_case is 0 (the default), then the values are case-sensitive. If
the value of ignore_case is 1, then values will be matched case-insensitively. If the value of ignore_case
is 2, then values will be matched case-insensitively, and all input values will be converted to lower case.

ListVariable(key, help, default, names, [map])
Returns a tuple of arguments to set up an option whose value may be one or more of a specified list of legal
enumerated values. The option will use the specified name key, have a default value of default, and help
will form the descriptive part of the help text. The option will only accept the values “all”, “none”, or the values
in the names list. More than one value may be specified, separated by commas. The default may be a string of

186

comma-separated default values, or a list of the default values. The optional map argument is a dictionary that
can be used to convert input values into specific legal values in the names list. (Note that the additional values
accepted through the use of a map are not reflected in the generated help message).

PackageVariable(key, help, default)
Returns a tuple of arguments to set up an option whose value is a path name of a package that may be enabled,
disabled or given an explicit path name. The option will use the specified name key, have a default value of
default, and help will form the descriptive part of the help text. The option will support the values yes,
true, on, enable or search, in which case the specified default will be used, or the option may be set to
an arbitrary string (typically the path name to a package that is being enabled). The option will also support the
values no, false, off or disable to disable use of the specified option.

PathVariable(key, help, default, [validator])
Returns a tuple of arguments to set up an option whose value is expected to be a path name. The option will use
the specified name key, have a default value of default, and help will form the descriptive part of the help
text. An additional validator may be specified that will be called to verify that the specified path is acceptable.
SCons supplies the following ready-made validators:

PathVariable.PathExists
Verify that the specified path exists (this the default behavior if no validator is supplied).

PathVariable.PathIsFile
Verify that the specified path exists and is a regular file.

PathVariable.PathIsDir
Verify that the specified path exists and is a directory.

PathVariable.PathIsDirCreate
Verify that the specified path exists and is a directory; if it does not exist, create the directory.

PathVariable.PathAccept
Accept the specific path name argument without validation, suitable for when you want your users to be able
to specify a directory path that will be created as part of the build process, for example.

You may supply your own validator function, which must accept three arguments (key, the name of the variable
to be set; val, the specified value being checked; and env, the construction environment) and should raise an
exception if the specified value is not acceptable.

These functions make it convenient to create a number of variables with consistent behavior in a single call to the
AddVariables method:

vars.AddVariables(
 BoolVariable(
 "warnings",
 help="compilation with -Wall and similar",
 default=1,
),
 EnumVariable(
 "debug",
 help="debug output and symbols",
 default="no",
 allowed_values=("yes", "no", "full"),
 map={},
 ignorecase=0, # case sensitive
),

187

 ListVariable(
 "shared",
 help="libraries to build as shared libraries",
 default="all",
 names=list_of_libs,
),
 PackageVariable(
 "x11",
 help="use X11 installed here (yes = search some places)",
 default="yes",
),
 PathVariable(
 "qtdir",
 help="where the root of Qt is installed",
 default=qtdir),
 PathVariable(
 "foopath",
 help="where the foo library is installed",
 default=foopath,
 validator=PathVariable.PathIsDir,
),
)

Node Objects

SCons represents objects that are the sources or targets of build operations as Nodes, which are internal data structures.
There are a number of user-visible types of nodes: File Nodes, Directory Nodes, Value Nodes and Alias Nodes. Some
of the node types have public attributes and methods, described below. Each of the node types has a global function
and a matching environment method to create instances: File, Dir, Value and Alias.

Filesystem Nodes

The File and Dir functions/methods return File and Directory Nodes, respectively. File and Directory Nodes
(collectively, Filesystem Nodes) represent build components that correspond to an entry in the computer's filesystem,
whether or not such an entry exists at the time the Node is created. You do not usually need to explicitly create
filesystem Nodes, since when you supply a string as a target or source of a Builder, SCons will create the Nodes as
needed to populate the dependency graph. Builders return the target Node(s) in the form of a list, which you can then
make use of. However, since filesystem Nodes have some useful public attributes and methods that you can use in
SConscript files, it is sometimes appropriate to create them manually, outside the regular context of a Builder call.

The following attributes provide information about a Node:

node.path
The build path of the given file or directory. This path is relative to the top-level directory (where the
SConstruct file is found). The build path is the same as the source path if variant_dir is not being used.

node.abspath
The absolute build path of the given file or directory.

node.relpath
The build path of the given file or directory relative to the root SConstruct file's directory.

node.srcnode()
The srcnode method returns another File or Directory Node representing the source path of the given File or
Directory Node.

188

Examples:

Get the current build dir's path, relative to top.
Dir('.').path

Current dir's absolute path
Dir('.').abspath

Current dir's path relative to the root SConstruct file's directory
Dir('.').relpath

Next line is always '.', because it is the top dir's path relative to itself.
Dir('#.').path

Source path of the given source file.
File('foo.c').srcnode().path

Builders return lists of File objects:
foo = env.Program('foo.c')
print("foo will be built in", foo[0].path)

Filesystem Node objects have methods to create new File and Directory Nodes relative to the original Node. There
are also times when you may need to refer to an entry in a filesystem without knowing in advance whether it's a file
or a directory. For those situations, there is an Entry method of filesystem node objects, which returns a Node that
can represent either a file or a directory.

If the original Node is a Directory Node, these methods will place the new Node within the directory the original
Node represents:

node.Dir(name)
Returns a directory Node name which is a subdirectory of the directory represented by node.

node.File(name)
Returns a file Node name in the directory represented by node.

node.Entry(name)
Returns an unresolved Node name in the directory represented by node.

If the original Node is a File Node, these methods will place the the new Node in the same directory as the one the
original Node represents:

node.Dir(name)
Returns a Node name for a directory in the parent directory of the file represented by node.

node.File(name)
Returns a Node name for a file in the parent directory of the file represented by node.

node.Entry(name)
Returns an unresolved Node name in the parent directory of the file represented by node.

For example:

Get a Node for a file within a directory
incl = Dir('include')

189

f = incl.File('header.h')

Get a Node for a subdirectory within a directory
dist = Dir('project-3.2.1')
src = dist.Dir('src')

Get a Node for a file in the same directory
cfile = File('sample.c')
hfile = cfile.File('sample.h')

Combined example
docs = Dir('docs')
html = docs.Dir('html')
index = html.File('index.html')
css = index.File('app.css')

Value and Alias Nodes

SCons provides two other Node types to represent object that will not have an equivalent filesystem entry. Such Nodes
always need to be created explicitly.

The Alias method returns an Alias Node. Aliases are virtual objects - they will not themselves result in physical
objects being constructed, but are entered into the dependency graph related to their sources. An alias is checked for
up to date by checking if its sources are up to date. An alias is built by making sure its sources have been built, and if
any building took place, applying any Actions that are defined as part of the alias.

An Alias call creates an entry in the alias namespace, which is used for disambiguation. If an alias source has a string
valued name, it will be resolved to a filesystem entry Node, unless it is found in the alias namespace, in which case it it
resolved to the matching alias Node. As a result, the order of Alias calls is significant. An alias can refer to another
alias, but only if the other alias has previously been created.

The Value method returns a Value Node. Value nodes are often used for generated data that will not have any
corresponding filesystem entry, but will be used to determine whether a build target is out of date, or to include as
part of a build Action. Common examples are timestamp strings, revision control version strings and other run-time
generated strings.

A Value Node can also be the target of a builder.

EXTENDING SCONS
SCons is designed to be extensible through provided facilities, so changing the code of SCons itself is only rarely
needed to customize its behavior. A number of the main operations use callable objects which can be supplemented
by writing your own. Builders, Scanners and Tools each use a kind of plugin system, allowing you to easily drop
in new ones. Information about creating Builder Objects and Scanner Objects appear in the following sections. The
instructions SCons actually uses to construct things are called Actions, and it is easy to create Action Objects and hand
them to the objects that need to know about those actions (besides Builders, see AddPostAction, AddPreAction
and Alias for some examples of other places that take Actions). Action Objects are also described below. Adding
new Tool modules is described in Tool Modules

Builder Objects

scons can be extended to build different types of targets by adding new Builder objects to a construction environment.
In general, you should only need to add a new Builder object when you want to build a new type of file or other external
target. For output file types scons already knows about, you can usually modify the behavior of premade Builders
such as Program, Object or Library by changing the construction variables they use ($CC, $LINK, etc.). In this

190

manner you can, for example, change the compiler to use, which is simpler and less error-prone than writing a new
builder. The documentation for each Builder lists which construction variables it uses.

Builder objects are created using the Builder factory function. Once created, a builder is added to an environment
by entering it in the $BUILDERS dictionary in that environment (some of the examples in this section illustrate this).
Doing so automatically triggers SCons to add a method with the name of the builder to the environment.

The Builder function accepts the following keyword arguments:

action
The command used to build the target from the source. action may be a string representing a template command
line to execute, a list of strings representing the command to execute with its arguments (suitable for enclosing
white space in an argument), a dictionary mapping source file name suffixes to any combination of command
line strings (if the builder should accept multiple source file extensions), a Python function, an Action object (see
Action Objects) or a list of any of the above.

An action function must accept three arguments: source, target and env. source is a list of source nodes;
target is a list of target nodes; env is the construction environment to use for context.

The action and generator arguments must not both be used for the same Builder.

prefix
The prefix to prepend to the target file name. prefix may be a string, a function (or other callable) that takes two
arguments (a construction environment and a list of sources) and returns a prefix string, or a dictionary specifying
a mapping from a specific source suffix (of the first source specified) to a corresponding target prefix string. For
the dictionary form, both the source suffix (key) and target prefix (value) specifications may use environment
variable substitution, and the target prefix may also be a callable object. The default target prefix may be indicated
by a dictionary entry with a key of None.

b = Builder("build_it < $SOURCE > $TARGET",
 prefix="file-")

def gen_prefix(env, sources):
 return "file-" + env['PLATFORM'] + '-'

b = Builder("build_it < $SOURCE > $TARGET",
 prefix=gen_prefix)

b = Builder("build_it < $SOURCE > $TARGET",
 suffix={None: "file-", "$SRC_SFX_A": gen_prefix})

suffix
The suffix to append to the target file name. Specified in the same manner as for prefix above. If the suffix is a
string, then scons prepends a '.' to the suffix if it's not already there. The string returned by the callable object
or obtained from the dictionary is untouched and you need to manually prepend a '.' if one is required.

b = Builder("build_it < $SOURCE > $TARGET"
 suffix="-file")

def gen_suffix(env, sources):
 return "." + env['PLATFORM'] + "-file"

b = Builder("build_it < $SOURCE > $TARGET",
 suffix=gen_suffix)

191

b = Builder("build_it < $SOURCE > $TARGET",
 suffix={None: ".sfx1", "$SRC_SFX_A": gen_suffix})

ensure_suffix
If set to a true value, ensures that targets will end in suffix. Thus, the suffix will also be added to any target
strings that have a suffix that is not already suffix. The default behavior (also indicated by a false value) is to
leave unchanged any target string that looks like it already has a suffix.

b1 = Builder("build_it < $SOURCE > $TARGET"
 suffix = ".out")
b2 = Builder("build_it < $SOURCE > $TARGET"
 suffix = ".out",
 ensure_suffix=True)
env = Environment()
env['BUILDERS']['B1'] = b1
env['BUILDERS']['B2'] = b2

Builds "foo.txt" because ensure_suffix is not set.
env.B1('foo.txt', 'foo.in')

Builds "bar.txt.out" because ensure_suffix is set.
env.B2('bar.txt', 'bar.in')

src_suffix
The expected source file name suffix. src_suffix may be a string or a list of strings.

target_scanner
A Scanner object that will be invoked to find implicit dependencies for this target file. This keyword argument
should be used for Scanner objects that find implicit dependencies based only on the target file and the construction
environment, not for implicit dependencies based on source files. See the section called “Scanner Objects” for
information about creating Scanner objects.

source_scanner
A Scanner object that will be invoked to find implicit dependencies in any source files used to build this target
file. This is where you would specify a scanner to find things like #include lines in source files. The pre-
built DirScanner Scanner object may be used to indicate that this Builder should scan directory trees for on-
disk changes to files that scons does not know about from other Builder or function calls. See the section called
“Scanner Objects” for information about creating your own Scanner objects.

target_factory
A factory function that the Builder will use to turn any targets specified as strings into SCons Nodes. By default,
SCons assumes that all targets are files. Other useful target_factory values include Dir, for when a Builder creates
a directory target, and Entry, for when a Builder can create either a file or directory target.

Example:

MakeDirectoryBuilder = Builder(action=my_mkdir, target_factory=Dir)
env = Environment()
env.Append(BUILDERS={'MakeDirectory': MakeDirectoryBuilder})
env.MakeDirectory('new_directory', [])

Note that the call to this MakeDirectory Builder needs to specify an empty source list to make the string
represent the builder's target; without that, it would assume the argument is the source, and would try to deduce

192

the target name from it, which in the absence of an automatically-added prefix or suffix would lead to a matching
target and source name and a circular dependency.

source_factory
A factory function that the Builder will use to turn any sources specified as strings into SCons Nodes. By default,
SCons assumes that all source are files. Other useful source_factory values include Dir, for when a Builder uses
a directory as a source, and Entry, for when a Builder can use files or directories (or both) as sources.

Example:

CollectBuilder = Builder(action=my_mkdir, source_factory=Entry)
env = Environment()
env.Append(BUILDERS={'Collect': CollectBuilder})
env.Collect('archive', ['directory_name', 'file_name'])

emitter
A function or list of functions to manipulate the target and source lists before dependencies are established and
the target(s) are actually built. emitter can also be a string containing a construction variable to expand to an
emitter function or list of functions, or a dictionary mapping source file suffixes to emitter functions. (Only the
suffix of the first source file is used to select the actual emitter function from an emitter dictionary.)

A function passed as emitter must accept three arguments: source, target and env. source is a list of
source nodes, target is a list of target nodes, env is the construction environment to use for context.

An emitter must return a tuple containing two lists, the list of targets to be built by this builder, and the list of
sources for this builder.

Example:

def e(target, source, env):
 return target + ['foo.foo'], source + ['foo.src']

Simple association of an emitter function with a Builder.
b = Builder("my_build < $TARGET > $SOURCE", emitter=e)

def e2(target, source, env):
 return target + ['bar.foo'], source + ['bar.src']

Simple association of a list of emitter functions with a Builder.
b = Builder("my_build < $TARGET > $SOURCE", emitter=[e, e2])

Calling an emitter function through a construction variable.
env = Environment(MY_EMITTER=e)
b = Builder("my_build < $TARGET > $SOURCE", emitter='$MY_EMITTER')

Calling a list of emitter functions through a construction variable.
env = Environment(EMITTER_LIST=[e, e2])
b = Builder("my_build < $TARGET > $SOURCE", emitter='$EMITTER_LIST')

Associating multiple emitters with different file
suffixes using a dictionary.
def e_suf1(target, source, env):
 return target + ['another_target_file'], source

193

def e_suf2(target, source, env):
 return target, source + ['another_source_file']

b = Builder(
 action="my_build < $TARGET > $SOURCE",
 emitter={'.suf1': e_suf1, '.suf2': e_suf2}
)

multi
Specifies whether this builder is allowed to be called multiple times for the same target file(s). The default is
False, which means the builder can not be called multiple times for the same target file(s). Calling a builder
multiple times for the same target simply adds additional source files to the target; it is not allowed to change the
environment associated with the target, specify additional environment overrides, or associate a different builder
with the target.

env
A construction environment that can be used to fetch source code using this Builder. (Note that this environment
is not used for normal builds of normal target files, which use the environment that was used to call the Builder
for the target file.)

generator
A function that returns a list of actions that will be executed to build the target(s) from the source(s). The returned
action(s) may be an Action object, or anything that can be converted into an Action object (see the next section).

A function passed as generator must accept four arguments: source, target, env and for_signature.
source is a list of source nodes, target is a list of target nodes, env is the construction environment to use
for context, and for_signature is a Boolean value that tells the function if it is being called for the purpose
of generating a build signature (as opposed to actually executing the command). Since the build signature is used
for rebuild determination, the function should omit those elements that do not affect whether a rebuild should be
triggered if for_signature is true.

Example:

def g(source, target, env, for_signature):
 return [["gcc", "-c", "-o"] + target + source]

b = Builder(generator=g)

The generator and action arguments must not both be used for the same Builder.

src_builder
Specifies a builder to use when a source file name suffix does not match any of the suffixes of the builder. Using
this argument produces a multi-stage builder.

single_source
Specifies that this builder expects exactly one source file per call. Giving more than one source file without target
files results in implicitly calling the builder multiple times (once for each source given). Giving multiple source
files together with target files results in a UserError exception.

source_ext_match
When the specified action argument is a dictionary, the default behavior when a builder is passed multiple
source files is to make sure that the extensions of all the source files match. If it is legal for this builder to be called
with a list of source files with different extensions, this check can be suppressed by setting source_ext_match
to False or some other non-true value. In this case, scons will use the suffix of the first specified source file to
select the appropriate action from the action dictionary.

194

In the following example, the setting of source_ext_match prevents scons from exiting with an error due to
the mismatched suffixes of foo.in and foo.extra.

b = Builder(action={'.in' : 'build $SOURCES > $TARGET'},
 source_ext_match=False)

env = Environment(BUILDERS={'MyBuild':b})
env.MyBuild('foo.out', ['foo.in', 'foo.extra'])

env
A construction environment that can be used to fetch source code using this Builder. (Note that this environment
is not used for normal builds of normal target files, which use the environment that was used to call the Builder
for the target file.)

b = Builder(action="build < $SOURCE > $TARGET")
env = Environment(BUILDERS={'MyBuild' : b})
env.MyBuild('foo.out', 'foo.in', my_arg='xyzzy')

chdir
A directory from which scons will execute the action(s) specified for this Builder. If the chdir argument is a
string or a directory Node, scons will change to the specified directory. If the chdir is not a string or Node and
is non-zero, then scons will change to the target file's directory.

Note that scons will not automatically modify its expansion of construction variables like $TARGET and
$SOURCE when using the chdir keyword argument--that is, the expanded file names will still be relative
to the top-level directory containing the SConstruct file, and consequently incorrect relative to the chdir
directory. Builders created using chdir keyword argument, will need to use construction variable expansions
like ${TARGET.file} and ${SOURCE.file} to use just the filename portion of the targets and source.

b = Builder(action="build < ${SOURCE.file} > ${TARGET.file}",
 chdir=1)
env = Environment(BUILDERS={'MyBuild' : b})
env.MyBuild('sub/dir/foo.out', 'sub/dir/foo.in')

Warning

Python only keeps one current directory location even if there are multiple threads. This means that use
of the chdir argument will not work with the SCons -j option, because individual worker threads
spawned by SCons interfere with each other when they start changing directory.

Any additional keyword arguments supplied when a Builder object is created (that is, when the Builder function is
called) will be set in the executing construction environment when the Builder object is called. The canonical example
here would be to set a construction variable to the repository of a source code system.

Any such keyword arguments supplied when a Builder object is called will only be associated with the target created
by that particular Builder call (and any other files built as a result of the call). These extra keyword arguments are
passed to the following functions: command generator functions, function Actions, and emitter functions.

Action Objects

The Builder factory function will turn its action keyword argument into an appropriate internal Action object, as
will the Command function. You can also explicitly create Action objects for passing to Builder, or other functions
that take actions as arguments, by calling the Action factory function. This may more efficient when multiple Builder

195

objects need to do the same thing rather than letting each of those Builder objects create a separate Action object. It
also allows more flexible configuration of an Action object. For example, to control the message printed when the
action is taken you need to create the action object using Action.

The Action factory function returns an appropriate object for the action represented by the type of the action
argument (the first positional parameter):

• If action is already an Action object, the object is simply returned.

• If action is a string, a command-line Action is returned. If such a string begins with @, the command line is
not printed. If the string begins with hyphen (-), the exit status from the specified command is ignored, allowing
execution to continue even if the command reports failure:

Action('$CC -c -o $TARGET $SOURCES')

Doesn't print the line being executed.
Action('@build $TARGET $SOURCES')

Ignores return value
Action('-build $TARGET $SOURCES')

• If action is a list, then a list of Action objects is returned. An Action object is created as necessary for each element
in the list. If an element within the list is itself a list, the embedded list is taken as the command and arguments to
be executed via the command line. This allows white space to be enclosed in an argument rather than taken as a
separator by defining a command in a list within a list:

Action([['cc', '-c', '-DWHITE SPACE', '-o', '$TARGET', '$SOURCES']])

• If action is a callable object, a Function Action is returned. The callable must accept three keyword arguments:
target, source and env. target is a Node object representing the target file, source is a Node object
representing the source file and env is the construction environment used for building the target file.

The target and source arguments may be lists of Node objects if there is more than one target file or source
file. The actual target and source file name(s) may be retrieved from their Node objects via the built-in Python str
function:

target_file_name = str(target)
source_file_names = [str(x) for x in source]

The function should return 0 or None to indicate a successful build of the target file(s). The function may raise an
exception or return a non-zero exit status to indicate an unsuccessful build.

def build_it(target=None, source=None, env=None):
 # build the target from the source
 return 0

a = Action(build_it)

• If action is not one of the above types, no action object is generated and Action returns None.

The environment method form env.Action will expand construction variables in any argument strings, including
action, at the time it is called, using the construction variables in the construction environment through which it was
called. The global function form Action delays variable expansion until the Action object is actually used.

196

The optional second argument to Action is used to control the output which is printed when the Action is actually
performed. If this parameter is omitted, or if the value is an empty string, a default output depending on the type of
the action is used. For example, a command-line action will print the executed command. The following argument
types are accepted:

• If the second argument is a string, or if the cmdstr keyword argument is supplied, the string defines what is
printed. Substitution is performed on the string before it is printed. The string typically contains substitutable
variables, notably $TARGET(S) and $SOURCE(S), or consists of just a single variable which is optionally defined
somewhere else. SCons itself heavily uses the latter variant.

• If the second argument is a function, or if the strfunction keyword argument is supplied, the function will
be called to obtain the string to be printed when the action is performed. The function must accept three keyword
arguments: target, source and env, with the same interpretation as for a callable action argument above.
The function is responsible for handling any required substitutions.

• If the second argument is None, or if cmdstr=None is supplied, output is suppressed entirely.

The cmdstr and strfunction keyword arguments may not both be supplied in a single call to Action

Printing of action strings is affected by the setting of $PRINT_CMD_LINE_FUNC.

Examples:

def build_it(target, source, env):
 # build the target from the source
 return 0

def string_it(target, source, env):
 return "building '%s' from '%s'" % (target[0], source[0])

Use a positional argument.
f = Action(build_it, string_it)
s = Action(build_it, "building '$TARGET' from '$SOURCE'")

Alternatively, use a keyword argument.
f = Action(build_it, strfunction=string_it)
s = Action(build_it, cmdstr="building '$TARGET' from '$SOURCE'")

You can provide a configurable variable.
l = Action(build_it, '$STRINGIT')

Any additional positional arguments, if present, may either be construction variables or lists of construction variables
whose values will be included in the signature of the Action (the build signature) when deciding whether a target should
be rebuilt because the action changed. Such variables may also be specified using the varlist keyword parameter;
both positional and keyword forms may be present, and will be combined. This is necessary whenever you want a
target to be rebuilt when a specific construction variable changes. This is not often needed for a string action, as the
expanded variables will normally be part of the command line, but may be needed if a Python function action uses the
value of a construction variable when generating the command line.

def build_it(target, source, env):
 # build the target from the 'XXX' construction variable
 with open(target[0], 'w') as f:
 f.write(env['XXX'])
 return 0

197

Use positional arguments.
a = Action(build_it, '$STRINGIT', ['XXX'])

Alternatively, use a keyword argument.
a = Action(build_it, varlist=['XXX'])

The Action factory function can be passed the following optional keyword arguments to modify the Action object's
behavior:

chdir
If chdir is true (the default is False), SCons will change directories before executing the action. If the value
of chdir is a string or a directory Node, SCons will change to the specified directory. Otherwise, if chdir
evaluates true, SCons will change to the target file's directory.

Note that SCons will not automatically modify its expansion of construction variables like $TARGET and
$SOURCE when using the chdir parameter - that is, the expanded file names will still be relative to the top-
level directory containing the SConstruct file, and consequently incorrect relative to the chdir directory.
Builders created using chdir keyword argument, will need to use construction variable expansions like
${TARGET.file} and ${SOURCE.file} to use just the filename portion of the targets and source. Example:

a = Action("build < ${SOURCE.file} > ${TARGET.file}", chdir=True)

exitstatfunc
If provided, must be a callable which accepts a single parameter, the exit status (or return value) from the specified
action, and which returns an arbitrary or modified value. This can be used, for example, to specify that an Action
object's return value should be ignored under special conditions and SCons should, therefore, consider that the
action always succeeds. Example:

def always_succeed(s):
 # Always return 0, which indicates success.
 return 0

a = Action("build < ${SOURCE.file} > ${TARGET.file}",
 exitstatfunc=always_succeed)

batch_key
If provided, indicates that the Action can create multiple target files by processing multiple independent source
files simultaneously. (The canonical example is "batch compilation" of multiple object files by passing multiple
source files to a single invocation of a compiler such as Microsoft's Visual C / C++ compiler.) If the batch_key
argument evaluates True and is not a callable object, the configured Action object will cause scons to collect
all targets built with the Action object and configured with the same construction environment into single
invocations of the Action object's command line or function. Command lines will typically want to use the
$CHANGED_SOURCES construction variable (and possibly $CHANGED_TARGETS as well) to only pass to the
command line those sources that have actually changed since their targets were built. Example:

a = Action('build $CHANGED_SOURCES', batch_key=True)

The batch_key argument may also be a callable function that returns a key that will be used to identify different
"batches" of target files to be collected for batch building. A batch_key function must accept four parameters:
action, env, target and source. The first parameter, action, is the active action object. The second
parameter, env, is the construction environment configured for the target. The target and source parameters
are the lists of targets and sources for the configured action.

198

The returned key should typically be a tuple of values derived from the arguments, using any appropriate logic to
decide how multiple invocations should be batched. For example, a batch_key function may decide to return
the value of a specific construction variable from env which will cause scons to batch-build targets with matching
values of that construction variable, or perhaps return the Python id() of the entire construction environment,
in which case scons will batch-build all targets configured with the same construction environment. Returning
None indicates that the particular target should not be part of any batched build, but instead will be built by a
separate invocation of action's command or function. Example:

def batch_key(action, env, target, source):
 tdir = target[0].dir
 if tdir.name == 'special':
 # Don't batch-build any target
 # in the special/ subdirectory.
 return None
 return (id(action), id(env), tdir)
a = Action('build $CHANGED_SOURCES', batch_key=batch_key)

Miscellaneous Action Functions

SCons supplies Action functions that arrange for various common file and directory manipulations to be performed.
These are similar in concept to "tasks" in the Ant build tool, although the implementation is slightly different. These
functions do not actually perform the specified action at the time the function is called, but rather are factory functions
which return an Action object that can be executed at the appropriate time.

There are two natural ways that these Action Functions are intended to be used.

First, if you need to perform the action at the time the SConscript file is being read, you can use the Execute global
function:

Execute(Touch('file'))

Second, you can use these functions to supply Actions in a list for use by the env.Command method. This can
allow you to perform more complicated sequences of file manipulation without relying on platform-specific external
commands:

env = Environment(TMPBUILD='/tmp/builddir')
env.Command(
 target='foo.out',
 source='foo.in',
 action=[
 Mkdir('$TMPBUILD'),
 Copy('$TMPBUILD', '${SOURCE.dir}'),
 "cd $TMPBUILD && make",
 Delete('$TMPBUILD'),
],
)

Chmod(dest, mode)
Returns an Action object that changes the permissions on the specified dest file or directory to the specified
mode which can be octal or string, similar to the bash command. Examples:

Execute(Chmod('file', 0o755))

199

env.Command('foo.out', 'foo.in',
 [Copy('$TARGET', '$SOURCE'),
 Chmod('$TARGET', 0o755)])

Execute(Chmod('file', "ugo+w"))

env.Command('foo.out', 'foo.in',
 [Copy('$TARGET', '$SOURCE'),
 Chmod('$TARGET', "ugo+w")])

The behavior of Chmod is limited on Windows, see the notes in the Python documentation for os.chmod, which
is the underlying function.

Copy(dest, src)
Returns an Action object that will copy the src source file or directory to the dest destination file or directory.
Examples:

Execute(Copy('foo.output', 'foo.input'))

env.Command('bar.out', 'bar.in', Copy('$TARGET', '$SOURCE'))

Delete(entry, [must_exist])
Returns an Action that deletes the specified entry, which may be a file or a directory tree. If a directory is
specified, the entire directory tree will be removed. If the must_exist flag is set to a true value, then a Python
error will be raised if the specified entry does not exist; the default is false, that is, the Action will silently do
nothing if the entry does not exist. Examples:

Execute(Delete('/tmp/buildroot'))

env.Command(
 'foo.out',
 'foo.in',
 action=[
 Delete('${TARGET.dir}'),
 MyBuildAction,
],
)

Execute(Delete('file_that_must_exist', must_exist=True))

Mkdir(name)
Returns an Action that creates the directory name and all needed intermediate directories. name may also be a
list of directories to create. Examples:

Execute(Mkdir('/tmp/outputdir'))

env.Command(
 'foo.out',
 'foo.in',
 action=[
 Mkdir('/tmp/builddir'),

200

 Copy('/tmp/builddir/foo.in', '$SOURCE'),
 "cd /tmp/builddir && make",
 Copy('$TARGET', '/tmp/builddir/foo.out'),
],
)

Move(dest, src)
Returns an Action that moves the specified src file or directory to the specified dest file or directory. Examples:

Execute(Move('file.destination', 'file.source'))

env.Command(
 'output_file',
 'input_file',
 action=[MyBuildAction, Move('$TARGET', 'file_created_by_MyBuildAction')],
)

Touch(file)
Returns an Action that updates the modification time on the specified file. Examples:

Execute(Touch('file_to_be_touched'))

env.Command('marker', 'input_file', action=[MyBuildAction, Touch('$TARGET')])

Variable Substitution

Before executing a command, scons performs parameter expansion (substitution) on the string that makes up the action
part of the builder. The format of a substitutable parameter is ${expression}. If expression refers to a variable,
the braces in ${expression} can be omitted unless the variable name is immediately followed by a character that
could either be interpreted as part of the name, or is Python syntax such as [(for indexing/slicing) or . (for attribute
access - see Special Attributes below).

If expression refers to a construction variable, it is replaced with the value of that variable in the construction
environment at the time of execution. If expression looks like a variable name but is not defined in the construction
environment it is replaced with an empty string. If expression refers to one of the Special Variables (see below)
the corresponding value of the variable is substituted. expression may also be a Python expression to be evaluated.
See Python Code Substitution below for a description.

SCons uses the following rules when converting construction variables into command line strings:

• If the value is a string it is interpreted as space delimited command line arguments.

• If the value is a list it is interpreted as a list of command line arguments. Each element of the list is converted to
a string.

• Anything that is not a list or string is converted to a string and interpreted as a single command line argument.

• Newline characters (\n) delimit lines. The newline parsing is done after all other parsing, so it is not possible for
arguments (e.g. file names) to contain embedded newline characters.

• For a literal $ use $$. For example, $$FOO will be left in the final string as $FOO.

When a build action is executed, a hash of the command line is saved, together with other information about the target(s)
built by the action, for future use in rebuild determination. This is called the build signature (or build action signature).

201

The escape sequence $(subexpression $) may be used to indicate parts of a command line that may change
without causing a rebuild--that is, which are not to be included when calculating the build signature. All text from $(
up to and including the matching $) will be removed from the command line before it is added to the build signature
while only the $(and $) will be removed before the command is executed. For example, the command line string:

"echo Last build occurred $($TODAY $). > $TARGET"

would execute the command:

echo Last build occurred $TODAY. > $TARGET

but the build signature added to any target files would be computed from:

echo Last build occurred . > $TARGET

While construction variables are normally directly substituted, if a construction variable has a value which is a callable
Python object (a function, or a class with a __call__ method), that object is called during substitution. The callable
must accept four arguments: target, source, env and for_signature. source is a list of source nodes,
target is a list of target nodes, env is the construction environment to use for context, and for_signature is a
boolean value that tells the callable if it is being called for the purpose of generating a build signature. Since the build
signature is used for rebuild determination, variable elements that do not affect whether a rebuild should be triggered
should be omitted from the returned string if for_signature is true. See $(and $) above for the syntax.

SCons will insert whatever the callable returns into the expanded string:

def foo(target, source, env, for_signature):
 return "bar"

Will expand $BAR to "bar baz"
env = Environment(FOO=foo, BAR="$FOO baz")

As a reminder, substitution happens when $BAR is actually used in a builder action. The value of env['BAR'] will
be exactly as it was set: "$FOO baz". This can make debugging tricky, as the substituted result is not available at
the time the SConscript files are being interpreted and thus not available to print(). However, you can perform the
substitution on demand by calling the env.subst method for this purpose.

You can use this feature to pass arguments to a callable variable by creating a callable class that stores passed arguments
in the instance, and then uses them (in the __call__ method) when the instance is called. Note that in this case,
the entire variable expansion must be enclosed by curly braces so that the arguments will be associated with the
instantiation of the class:

class foo:
 def __init__(self, arg):
 self.arg = arg

 def __call__(self, target, source, env, for_signature):
 return self.arg + " bar"

Will expand $BAR to "my argument bar baz"
env=Environment(FOO=foo, BAR="${FOO('my argument')} baz")

202

Substitution: Special Variables

Besides regular construction variables, scons provides the following Special Variables for use in expanding commands:

$CHANGED_SOURCES
The file names of all sources of the build command that have changed since the target was last built.

$CHANGED_TARGETS
The file names of all targets that would be built from sources that have changed since the target was last built.

$SOURCE
The file name of the source of the build command, or the file name of the first source if multiple sources are
being built.

$SOURCES
The file names of the sources of the build command.

$TARGET
The file name of the target being built, or the file name of the first target if multiple targets are being built.

$TARGETS
The file names of all targets being built.

$UNCHANGED_SOURCES
The file names of all sources of the build command that have not changed since the target was last built.

$UNCHANGED_TARGETS
The file names of all targets that would be built from sources that have not changed since the target was last built.

These names are reserved and may not be assigned to or used as construction variables. SCons computes them in a
context-dependent manner and they and are not retrieved from a construction environment.

For example, the following builder call:

env = Environment(CC='cc')
env.Command(
 target=['foo'],
 source=['foo.c', 'bar.c'],
 action='@echo $CC -c -o $TARGET $SOURCES'
)

would produce the following output:

cc -c -o foo foo.c bar.c

In the previous example, a string ${SOURCES[1]} would expand to: bar.c.

Substitution: Special Attributes

A variable name may have the following modifiers appended within the enclosing curly braces to access properties of
the interpolated string. These are known as special attributes.

base - The base path of the file name, including the directory path but excluding any suffix.
dir - The name of the directory in which the file exists.

203

file - The file name, minus any directory portion.
filebase - Like file but minus its suffix.
suffix - Just the file suffix.
abspath - The absolute path name of the file.
relpath - The path name of the file relative to the root SConstruct file's directory.
posix - The path with directories separated by forward slashes (/). Sometimes necessary on Windows systems when
a path references a file on other (POSIX) systems.
windows - The path with directories separated by backslashes (\\). Sometimes necessary on POSIX-style systems
when a path references a file on other (Windows) systems. win32 is a (deprecated) synonym for windows.
srcpath - The directory and file name to the source file linked to this file through VariantDir(). If this file isn't
linked, it just returns the directory and filename unchanged.
srcdir - The directory containing the source file linked to this file through VariantDir(). If this file isn't linked,
it just returns the directory part of the filename.
rsrcpath - The directory and file name to the source file linked to this file through VariantDir(). If the file does
not exist locally but exists in a Repository, the path in the Repository is returned. If this file isn't linked, it just returns
the directory and filename unchanged.
rsrcdir - The Repository directory containing the source file linked to this file through VariantDir(). If this file
isn't linked, it just returns the directory part of the filename.

For example, the specified target will expand as follows for the corresponding modifiers:

$TARGET => sub/dir/file.x
${TARGET.base} => sub/dir/file
${TARGET.dir} => sub/dir
${TARGET.file} => file.x
${TARGET.filebase} => file
${TARGET.suffix} => .x
${TARGET.abspath} => /top/dir/sub/dir/file.x
${TARGET.relpath} => sub/dir/file.x

$TARGET => ../dir2/file.x
${TARGET.abspath} => /top/dir2/file.x
${TARGET.relpath} => ../dir2/file.x

SConscript('src/SConscript', variant_dir='sub/dir')
$SOURCE => sub/dir/file.x
${SOURCE.srcpath} => src/file.x
${SOURCE.srcdir} => src

Repository('/usr/repository')
$SOURCE => sub/dir/file.x
${SOURCE.rsrcpath} => /usr/repository/src/file.x
${SOURCE.rsrcdir} => /usr/repository/src

Some modifiers can be combined, like ${TARGET.srcpath.base), ${TARGET.file.suffix}, etc.

Python Code Substitution

If a substitutable expression using the notation ${expression} does not appear to match one of the other
substitution patterns, it is evaluated as a Python expression. This uses Python's eval function, with the globals
parameter set to the current environment's set of construction variables, and the result substituted in. So in the following
case:

204

env.Command(
 'foo.out', 'foo.in', "echo ${COND==1 and 'FOO' or 'BAR'} > $TARGET"
)

the command executed will be either

echo FOO > foo.out

or

echo BAR > foo.out

according to the current value of env['COND'] when the command is executed. The evaluation takes place when the
target is being built, not when the SConscript is being read. So if env['COND'] is changed later in the SConscript,
the final value will be used.

Here's a more complete example. Note that all of COND, FOO, and BAR are construction variables, and their values are
substituted into the final command. FOO is a list, so its elements are interpolated separated by spaces.

env=Environment()
env['COND'] = 1
env['FOO'] = ['foo1', 'foo2']
env['BAR'] = 'barbar'
env.Command(
 'foo.out', 'foo.in', "echo ${COND==1 and FOO or BAR} > $TARGET"
)

will execute:

echo foo1 foo2 > foo.out

In point of fact, Python expression evaluation is how the special attributes are substituted: they are simply attributes of
the Python objects that represent $TARGET, $SOURCES, etc., which SCons passes to eval which returns the value.

Note

Use of the Python eval function is considered to have security implications, since, depending on input
sources, arbitrary unchecked strings of code can be executed by the Python interpreter. Although SCons makes
use of it in a somewhat restricted context, you should be aware of this issue when using the ${python-
expression-for-subst} form.

Scanner Objects

Scanner objects are used to scan specific file types for implicit dependencies, for example embedded preprocessor/
compiler directives that cause other files to be included during processing. SCons has a number of pre-built Scanner
objects, so it is usually only necessary to set up Scanners for new file types. You do this by calling the Scanner
factory function. Scanner accepts the following arguments. Only function is required; the rest are optional:

function
A scanner function to call to process a given Node (usually a file) and return a list of Nodes representing the
implicit dependencies (usually files) found in the contents. The function must accept three required arguments,
node, env and path, and an optional fourth, arg. node is the internal SCons node representing the file to

205

scan, env is the construction environment to use during the scan, and path is a tuple of directories that can
be searched for files, as generated by the optional scanner path_function (see below). If argument was
supplied when the Scanner object was created, it is given as arg when the scanner function is called; since
argument is optional, the default is no arg.

The function can use use str(node) to fetch the name of the file, node.dir to fetch the directory the file is in,
node.get_contents() to fetch the contents of the file as bytes or node.get_text_contents() to fetch
the contents of the file as text.

The function must take into account the path directories when generating the dependency Nodes. To illustrate
this, a C language source file may contain a line like #include "foo.h". However, there is no guarantee
that foo.h exists in the current directory: the contents of $CPPPATH is passed to the C preprocessor which will
look in those places for the header, so the scanner function needs to look in those places as well in order to build
Nodes with correct paths. Using FindPathDirs with an argument of CPPPATH as the path_function in
the Scanner call means the scanner function will be called with the paths extracted from $CPPPATH in the
environment env passed as the paths parameter.

Note that the file to scan is not guaranteed to exist at the time the scanner is called - it could be a generated file
which has not been generated yet - so the scanner function must be tolerant of that.

Alternatively, you can supply a dictionary as the function parameter, to map keys (such as file suffixes) to
other Scanner objects. A Scanner created this way serves as a dispatcher: the Scanner's skeys parameter is
automatically populated with the dictionary's keys, indicating that the Scanner handles Nodes which would be
selected by those keys; the mapping is then used to pass the file on to a different Scanner that would not have
been selected to handle that Node based on its own skeys.

name
The name to use for the Scanner. This is mainly used to identify the Scanner internally. The default value is
"NONE".

argument
If specified, will be passed to the scanner function function and the path function path_function when
called, as the optional parameter each of those functions takes.

skeys
Scanner key(s) indicating the file types this scanner is associated with. Used internally to select an appropriate
scanner. In the usual case of scanning for file names, this argument will be a list of suffixes for the different file
types that this Scanner knows how to scan. If skeys is a string, it will be expanded into a list by the current
environment.

path_function
A Python function that takes four or five arguments: a construction environment, a Node for the directory
containing the SConscript file in which the first target was defined, a list of target nodes, a list of source nodes,
and the value of argument if it was supplied when the Scanner was created. Must return a tuple of directories
that can be searched for files to be returned by this Scanner object. (Note that the FindPathDirs function can
be used to return a ready-made path_function for a given construction variable name, instead of having to
write your own function from scratch.)

node_class
The class of Node that should be returned by this Scanner object. Any strings or other objects returned by the
scanner function that are not of this class will be run through the function supplied by the node_factory
argument. A value of None can be supplied to indicate no conversion; the default is to return File nodes.

node_factory
A Python function that will take a string or other object and turn it into the appropriate class of Node to be returned
by this Scanner object, as indicated by node_class.

206

scan_check
A Python function that takes two arguments, a Node (file) and a construction environment, and returns whether
the Node should, in fact, be scanned for dependencies. This check can be used to eliminate unnecessary calls to
the scanner function when, for example, the underlying file represented by a Node does not yet exist.

recursive
Specifies whether this scanner should be re-invoked on the dependency files returned by the scanner. If omitted, the
Node subsystem will only invoke the scanner on the file being scanned and not recurse. Recursion is needed when
the files returned by the scanner may themselves contain further file dependencies, as in the case of preprocessor
#include lines. A value that evaluates true enables recursion; recursive may be a callable function, in which
case it will be called with a list of Nodes found and should return a list of Nodes that should be scanned recursively;
this can be used to select a specific subset of Nodes for additional scanning.

Once created, a Scanner can added to an environment by setting it in the $SCANNERS list, which automatically
triggers SCons to also add it to the environment as a method. However, usually a scanner is not truly standalone,
but needs to be plugged in to the existing selection mechanism for deciding how to scan source files based on
filename extensions. For this, SCons has a global SourceFileScanner object that is used by the Object,
SharedObject and StaticObject builders to decide which scanner should be used. You can use the
SourceFileScanner.add_scanner() method to add your own Scanner object to the SCons infrastructure
that builds target programs or libraries from a list of source files of different types:

def xyz_scan(node, env, path):
 contents = node.get_text_contents()
 # Scan the contents and return the included files.

XYZScanner = Scanner(xyz_scan)

SourceFileScanner.add_scanner('.xyz', XYZScanner)

env.Program('my_prog', ['file1.c', 'file2.f', 'file3.xyz'])

Tool Modules

Additional tools can be added to a project either by placing them in a site_tools subdirectory of a site directory,
or in a custom location specified to scons by giving the toolpath keyword argument to Environment. A tool
module is a form of Python module, invoked internally using the Python import mechanism, so a tool can consist either
of a single source file taking the name of the tool (e.g. mytool.py) or a directory taking the name of the tool (e.g.
mytool/) which contains at least an __init__.py file.

The toolpath parameter takes a list as its value:

env = Environment(tools=['default', 'foo'], toolpath=['tools'])

This looks for a tool specification module (mytool.py, or directory mytool) in directory tools and in the standard
locations, as well as using the ordinary default tools for the platform.

Directories specified via toolpath are prepended to the existing tool path. The default tool path is any site_tools
directories, so tools in a specified toolpath take priority, followed by tools in a site_tools directory, followed
by built-in tools. For example, adding a tool specification module gcc.py to the toolpath directory would override
the built-in gcc tool. The tool path is stored in the environment and will be used by subsequent calls to the Tool
method, as well as by env.Clone.

207

base = Environment(toolpath=['custom_path'])
derived = base.Clone(tools=['custom_tool'])
derived.CustomBuilder()

A tool specification module must include two functions:

generate(env, **kwargs)
Modify the construction environment env to set up necessary construction variables, Builders, Emitters, etc., so
the facilities represented by the tool can be executed. Care should be taken not to overwrite construction variables
intended to be settable by the user. For example:

def generate(env):
 ...
 if 'MYTOOL' not in env:
 env['MYTOOL'] = env.Detect("mytool")
 if 'MYTOOLFLAGS' not in env:
 env['MYTOOLFLAGS'] = SCons.Util.CLVar('--myarg')
 ...

The generate function may use any keyword arguments that the user supplies via kwargs to vary its
initialization.

exists(env)
Return a true value if the tool can be called in the context of env. else false. Usually this means looking up one
or more known programs using the PATH from the supplied env, but the tool can make the exists decision in
any way it chooses.

Note

At the moment, user-added tools do not automatically have their exists function called. As a result, it
is recommended that the generate function be defensively coded - that is, do not rely on any necessary
existence checks already having been performed. This is expected to be a temporary limitation, and the
exists function should still be provided.

The elements of the tools list may also be functions or callable objects, in which case the Environment method
will call those objects to update the new construction environment (see Tool for more details):

def my_tool(env):
 env['XYZZY'] = 'xyzzy'

env = Environment(tools=[my_tool])

The individual elements of the tools list may also themselves be lists or tuples of the form (toolname,
kw_dict). SCons searches for the toolname specification file as described above, and passes kw_dict, which
must be a dictionary, as keyword arguments to the tool's generate function. The generate function can use the
arguments to modify the tool's behavior by setting up the environment in different ways or otherwise changing its
initialization.

in tools/my_tool.py:
def generate(env, **kwargs):
 # Sets MY_TOOL to the value of keyword 'arg1' '1' if not supplied
 env['MY_TOOL'] = kwargs.get('arg1', '1')

208

def exists(env):
 return True

in SConstruct:
env = Environment(tools=['default', ('my_tool', {'arg1': 'abc'})],
 toolpath=['tools'])

The tool specification (my_tool in the example) can use the $PLATFORM variable from the construction environment
it is passed to customize the tool for different platforms.

Tools can be "nested" - that is, they can be located within a subdirectory in the toolpath. A nested tool name uses a
dot to represent a directory separator

namespaced builder
env = Environment(ENV=os.environ.copy(), tools=['SubDir1.SubDir2.SomeTool'])
env.SomeTool(targets, sources)

Search Paths
SCons\Tool\SubDir1\SubDir2\SomeTool.py
SCons\Tool\SubDir1\SubDir2\SomeTool__init__.py
.\site_scons\site_tools\SubDir1\SubDir2\SomeTool.py
.\site_scons\site_tools\SubDir1\SubDir2\SomeTool__init__.py

SYSTEM-SPECIFIC BEHAVIOR
scons and its configuration files are very portable, due largely to its implementation in Python. There are, however,
a few portability issues waiting to trap the unwary.

.C File Suffix

scons handles the upper-case .C file suffix differently, depending on the capabilities of the underlying system. On
a case-sensitive system such as Linux or UNIX, scons treats a file with a .C suffix as a C++ source file. On a case-
insensitive system such as Windows, scons treats a file with a .C suffix as a C source file.

Fortran File Suffixes

There are several ways source file suffixes impact the behavior of SCons when working with Fortran language code
(not all are system-specific, but they are included here for completeness).

As the Fortran language has evolved through multiple standards editions, projects might have a need to handle files
from different language generations differently. To this end, SCons dispatches to a different compiler dialect setup
(expressed as a set of construction variables) depending on the file suffix. By default, all of these setups start out the
same, but individual construction variables can be modified as needed to tune a given dialect. Each of these dialacts has
a tool specification module whose documentation describes the construction variables associated with that dialect: .f
(as well as .for and .ftn) in fortran; (construction variables start with FORTRAN) .f77 in f77; (construction
variables start with F77) .f90 in f90; (construction variables start with F90) .f95 in f95; (construction variables
start with F95) .f03 in f03; (construction variables start with F03) .f08 in f08 (construction variables start with
F08).

While SCons recognizes multiple internal dialects based on filename suffixes, the convention of various available
Fortran compilers is to assign an actual meaning to only two of these suffixes: .f (as well as .for and .ftn) refers to
the fixed-format source code that was the only available option in FORTRAN 77 and earlier, and .f90 refers to free-
format source code which became available as of the Fortran 90 standard. Some compilers recognize suffixes which
correspond to Fortran specifications later then F90 as equivalent to .f90 for this purpose, while some do not - check

209

the documentation for your compiler. An occasionally suggested policy suggestion is to use only .f and .f90 as
Fortran filename suffixes. The fixed/free form determination can usually be controlled explicitly with compiler flags
(e.g. -ffixed-form for gfortran), overriding any assumption that may be made based on the source file suffix.

The source file suffix does not imply conformance with the similarly-named Fortran standard - a suffix of .f08 does
not mean you are compiling specifically for Fortran 2008. Normally, compilers provide command-line options for
making this selection (e.g. -std=f2008 for gfortran).

For dialects from F90 on (including the generic FORTRAN dialect), a suffix of .mod is recognized for Fortran
modules. These files are a side effect of compiling a Fortran source file containing module declarations, and must
be available when other code which declares that it uses the module is processed. SCons does not currently have
integrated support for submodules, introduced in the Fortran 2008 standard - the invoked compiler will produce results,
but SCons will not recognize .smod files as tracked objects.

On a case-sensitive system such as Linux or UNIX, a file with a an upper-cased suffix from the set .F, .FOR,
.FTN, .F90, .F95, .F03 and .F08 is treated as a Fortran source file which shall first be run through the standard
C preprocessor. The lower-cased versions of these suffixes do not trigger this behavior. On systems which do not
distinguish between uppper and lower case in filenames, this behavior is not available, but files suffixed with either
.FPP or .fpp are always passed to the preprocessor first. This matches the convention of gfortran from the
GNU Compiler Collection, and also followed by certain other Fortran compilers. For these two suffixes, the generic
FORTRAN dialect will be selected.

SCons itself does not invoke the preprocessor, that is handled by the compiler, but it adds construction variables
which are applicable to the preprocessor run. You can see this difference by examining $FORTRANPPCOM and
$FORTRANPPCOMSTR which are used instead of $FORTRANCOM and $FORTRANCOMSTR for that dialect.

Windows: Cygwin Tools and Cygwin Python vs. Windows Pythons

Cygwin supplies a set of tools and utilities that let users work on a Windows system using a POSIX-like environment.
The Cygwin tools, including Cygwin Python, do this, in part, by sharing an ability to interpret POSIX-style path
names. For example, the Cygwin tools will internally translate a Cygwin path name like /cygdrive/c/mydir to
an equivalent Windows pathname of C:/mydir (equivalent to C:\mydir).

Versions of Python that are built for native Windows execution, such as the python.org and ActiveState versions,
do not understand the Cygwin path name semantics. This means that using a native Windows version of Python to
build compiled programs using Cygwin tools (such as gcc, bison and flex) may yield unpredictable results. "Mixing
and matching" in this way can be made to work, but it requires careful attention to the use of path names in your
SConscript files.

In practice, users can sidestep the issue by adopting the following guidelines: When using Cygwin's gcc for compiling,
use the Cygwin-supplied Python interpreter to run scons; when using Microsoft Visual C/C++ (or some other "native"
Windows compiler) use the python.org, Microsoft Store, ActiveState or other native version of Python to run scons.

This discussion largely applies to the msys2 environment as well (with the use of the mingw compiler toolchain), in
particular the recommendation to use the msys2 version of Python if running scons from inside an msys2 shell.

Windows: scons.bat file

On Windows, if scons is executed via a wrapper scons.bat batch file, there are (at least) two ramifications. Note
this is no longer the default - scons installed via Python''s pip installer will have an scons.exe which does not have
these limitations:

First, Windows command-line users that want to use variable assignment on the command line may have to put double
quotes around the assignments, otherwise the Windows command shell will consume those as arguments to itself,
not to scons:

210

scons "FOO=BAR" "BAZ=BLEH"

Second, the Cygwin shell does not recognize typing scons at the command line prompt as referring to this wrapper.
You can work around this either by executing scons.bat (including the extension) from the Cygwin command line,
or by creating a wrapper shell script named scons which invokes scons.bat.

MinGW

The MinGW bin directory must be in your PATH environment variable or the ['ENV']['PATH'] construction
variable for scons to detect and use the MinGW tools. When running under the native Windows Python; interpreter,
scons will prefer the MinGW tools over the Cygwin tools, if they are both installed, regardless of the order of the bin
directories in the PATH variable. If you have both MSVC and MinGW installed and you want to use MinGW instead
of MSVC, then you must explicitly tell scons to use MinGW by passing tools=['mingw'] to the Environment
function, because scons will prefer the MSVC tools over the MinGW tools.

ENVIRONMENT
In general, scons is not controlled by environment variables set in the shell used to invoke it, leaving it up to the
SConscript file author to import those if desired. However the following variables are imported by scons itself if set:

SCONS_LIB_DIR
Specifies the directory that contains the scons Python module directory. Normally scons can deduce this, but in
some circumstances, such as working with a source release, it may be necessary to specify (for example, /home/
aroach/scons-src-0.01/src/engine).

SCONSFLAGS
A string containing options that will be used by scons in addition to those passed on the command line. Can be
used to reduce frequent retyping of common options. The contents of SCONSFLAGS are considered before any
passed command line options, so the command line can be used to override SCONSFLAGS options if necessary.

SCONS_CACHE_MSVC_CONFIG
(Windows only). If set, save the shell environment variables generated when setting up the Microsoft Visual
C++ compiler (and/or Build Tools) to a cache file, to give these settings, which are relatively expensive to
generate, persistence across scons invocations. Use of this option is primarily intended to aid performance in
tightly controlled Continuous Integration setups.

If set to a True-like value ("1", "true" or "True") will cache to a file named .scons_msvc_cache.json
in the user's home directory. If set to a pathname, will use that pathname for the cache.

Note: use this cache with caution as it might be somewhat fragile: while each major toolset version (e.g. Visual
Studio 2017 vs 2019) and architecture pair will get separate cache entries, if toolset updates cause a change to
settings within a given release series, scons will not detect the change and will reuse old settings. Remove the
cache file in case of problems with this. scons will ignore failures reading or writing the file and will silently
revert to non-cached behavior in such cases.

Available since scons 3.1 (experimental).

QTDIR
If using the qt tool, this is the path to the Qt installation to build against. SCons respects this setting because it is
a long-standing convention in the Qt world, where multiple Qt installations are possible.

SEE ALSO
The SCons User Guide at https://scons.org/doc/production/HTML/scons-user.html

https://scons.org/doc/production/HTML/scons-user.html

211

The SCons Design Document (old)
The SCons Cookbook at https://scons-cookbook.readthedocs.io for examples of how to solve various problems with
SCons.
SCons source code on GitHub [https://github.com/SCons/scons]
The SCons API Reference https://scons.org/doc/production/HTML/scons-api/index.html (for internal details)

AUTHORS
Originally: Steven Knight <knight@baldmt.com> and Anthony Roach
<aroach@electriceyeball.com>.

Since 2010: The SCons Development Team <scons-dev@scons.org>.

https://scons-cookbook.readthedocs.io
https://github.com/SCons/scons
https://github.com/SCons/scons
https://scons.org/doc/production/HTML/scons-api/index.html

