1y
mmmm SCONS

Build your software, better.

SCons 2.4.0

MAN page

Steven Knight and the SCons Development Team

version 2.4.02004 - 2015The SCons Foundation2004 - 2015

Name

scons — a software construction tool
Synopsis
scons [opti ons..] [name=val ...][targets..]

DESCRIPTION

The scons utility builds software (or other files) by determining which component pieces must be rebuilt and executing
the necessary commands to rebuild them.

By default, scons searchesfor afile named SConstruct, Sconstruct, or sconstruct (in that order) in the current directory
and reads its configuration from the first file found. An alternate file name may be specified viathe - f option.

The SConstruct file can specify subsidiary configuration files using the SConscript() function. By convention, these
subsidiary files are named SConscript, although any name may be used. (Because of this naming convention, theterm
"SConscript files" is sometimes used to refer generically to all sconsconfiguration files, regardless of actual file name.)

The configuration files specify the target files to be built, and (optionally) the rules to build those targets. Reasonable
default rules exist for building common software components (executable programs, object files, libraries), so that for
most software projects, only the target and input files need be specified.

Before reading the SConstruct file, scons looks for a directory named site_scons in various system directories (see
below) and the directory containing the SConstruct file; for each of those dirs which exists, site_sconsis prepended to
sys.path, thefile site_scong/site init.py, isevaluated if it exists, and the directory site_scong/site_toolsis prepended to
the default toolpath if it exists. Seethe- - no-si te-dir and--sit e-di r optionsfor more details.

scons reads and executes the SConscript files as Python scripts, so you may use normal Python scripting capabilities
(such asflow control, data manipulation, and imported Python libraries) to handle complicated build situations. scons,
however, reads and executes all of the SConscript files before it begins building any targets. To make this obvious,
scons prints the following messages about what it is doing:

$ scons fo0o0. out

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets

cp foo.in foo. out

scons: done buil ding targets.

$

The status messages (everything except the line that reads " cp foo.in foo.out") may be suppressed using the - Qoption.

scons does not automatically propagate the external environment used to execute sconsto the commands used to build
target files. Thisis so that builds will be guaranteed repeatable regardless of the environment variables set at the time
scons is invoked. This also means that if the compiler or other commands that you want to use to build your target
filesare not in standard system locations, sconswill not find them unless you explicitly set the PATH to include those
locations. Whenever you create an scons construction environment, you can propagate the value of PATH from your
external environment as follows:

i mport os
env = Environment (ENV = {' PATH : os.environ[' PATH]})

Iy
=== SCONS 3

Similarly, if the commands use external environment variables like $PATH, $SHOME, $JAVA_HOME, $LANG,
$SHELL, $STERM, etc., these variables can also be explicitly propagated:

i mport os
env = Environment (ENV = {' PATH : os.environ[' PATH],
'HOVE' : os.environ[' HOVE]})

Or you may explicitly propagate the invoking user's complete external environment:

i mport os
env = Environment (ENV = o0s. environ)

This comes at the expense of making your build dependent on the user's environment being set correctly, but it may
be more convenient for many configurations.

scons can scan known input files automatically for dependency information (for example, #include statementsin C or
C++ files) and will rebuild dependent files appropriately whenever any "included" input file changes. scons supports
the ability to define new scanners for unknown input file types.

scons knows how to fetch files automatically from SCCS or RCS subdirectories using SCCS, RCS or BitKeeper.

sconsisnormally executed in atop-level directory containing aSConstruct file, optionally specifying ascommand-line
arguments the target file or files to be built.

By default, the command

scons

will build all target files in or below the current directory. Explicit default targets (to be built when no targets are
specified on the command line) may be defined the SConscript file(s) using the Default() function, described below.

Even when Default() targets are specified in the SConscript file(s), all target files in or below the current directory
may be built by explicitly specifying the current directory (.) as a command-line target:

scons .

Building all target files, including any files outside of the current directory, may be specified by supplying a com-
mand-line target of the root directory (on POSIX systems):

scons /

or the path name(s) of the volume(s) in which all the targets should be built (on Windows systems):

scons C.\ D\

To build only specific targets, supply them as command-line arguments:

scons foo bar
in which case only the specified targets will be built (along with any derived files on which they depend).

Specifying "cleanup” targets in SConscript filesis not usually necessary. The - ¢ flag removes all files necessary to
build the specified target:

Iy
=== SCONS 4

scons -C .

to remove al target files, or:

scons -c build export

to remove target files under build and export. Additional files or directories to remove can be specified using the
Clean() function. Conversely, targets that would normally be removed by the - ¢ invocation can be prevented from
being removed by using the NoClean() function.

A subset of ahierarchical tree may be built by remaining at the top-level directory (where the SConstruct file lives)
and specifying the subdirectory as the target to be built:

scons src/subdir

or by changing directory and invoking scons with the - u option, which traverses up the directory hierarchy until it
finds the SConstruct file, and then builds targets relatively to the current subdirectory:

cd src/subdir
scons -u .

scons supports building multiple targets in parallel viaa- | option that takes, as its argument, the number of simul-
taneous tasks that may be spawned:

scons -j 4
builds four targetsin parallel, for example.

scons can maintain a cache of target (derived) files that can be shared between multiple builds. When caching is
enabled in a SConscript file, any target files built by scons will be copied to the cache. If an up-to-date target file
is found in the cache, it will be retrieved from the cache instead of being rebuilt locally. Caching behavior may be
disabled and controlled in other waysby the- - cache-f or ce, - - cache-di sabl e, - - cache-readonl y, and
- - cache- show command-line options. The - - r andomoption is useful to prevent multiple builds from trying to
update the cache simultaneously.

Values of variables to be passed to the SConscript file(s) may be specified on the command line:

scons debug=1 .

These variables are available in SConscript files through the ARGUMENTS dictionary, and can be used in the SCon-
script file(s) to modify the build in any way:

i f ARGUMENTS. get (' debug', 0):

env = Environment (CCFLAGS = '-g')
el se:

env = Environnent ()

The command-line variable arguments are also availablein the ARGLIST list, indexed by their order on the command
line. Thisallowsyouto processthemin order rather than by name, if necessary. ARGLIST][Q] returnsatuple containing
(argname, argvalue). A Python exception is thrown if you try to access alist member that does not exist.

Iy
=== SCONS 5

scons requires Python version 2.7 or later. There should be no other dependencies or requirements to run scons.

By default, scons knows how to search for available programming tools on various systems. On Windows systems,
scons searches in order for the Microsoft Visual C++ tools, the MinGW tool chain, the Intel compiler tools, and the
PharLap ETS compiler. On OS/2 systems, scons searches in order for the OS/2 compiler, the GCC tool chain, and
the Microsoft Visual C++ toals, On SGI IRIX, IBM AlX, Hewlett Packard HP-UX, and Sun Solaris systems, scons
searches for the native compiler tools (MIPSpro, Visual Age, aCC, and Forte tools respectively) and the GCC tool
chain. On al other platforms, including POSIX (Linux and UNIX) platforms, scons searches in order for the GCC
tool chain, the Microsoft Visual C++ tools, and the Intel compiler tools. You may, of course, override these default
values by appropriate configuration of Environment construction variables.

OPTIONS

In general, scons supports the same command-line options as GNU make, and many of those supported by cons.

-b
Ignored for compatibility with non-GNU versions of make.

-c, --Clean, --remove
Clean up by removing al target files for which a construction command is specified. Also remove any files
or directories associated to the construction command using the Clean() function. Will not remove any targets
specified by the NoClean() function.

--cache-debug=file
Print debug information about the CacheDir () derived-file caching to the specified file. If fileis- (ahyphen), the
debug information are printed to the standard output. The printed messages describe what signature file names
are being looked for in, retrieved from, or written to the CacheDir () directory tree.

--cache-disable, --no-cache
Disablethe derived-file caching specified by CacheDir (). sconswill neither retrieve filesfrom the cache nor copy
filesto the cache.

--cache-force, --cache-populate
When using CacheDir (), populate a cache by copying any already-existing, up-to-date derived files to the cache,
in addition to filesbuilt by thisinvocation. Thisisuseful to popul ate anew cache with all the current derived files,
or to add to the cache any derived files recently built with caching disabled viathe - - cache- di sabl e option.

--cache-readonly
Use the cache (if enabled) for reading, but do not not update the cache with changed files.

--cache-show
When using CacheDir () and retrieving a derived file from the cache, show the command that would have been
executed to build the file, instead of the usua report, "Retrieved “file' from cache." This will produce consistent
output for build logs, regardless of whether atarget file was rebuilt or retrieved from the cache.

--config=mode
This specifies how the Configur e call should use or generate the results of configuration tests. The option should
be specified from among the following choices:

--config=auto
sconswill useits normal dependency mechanismsto decide if atest must berebuilt or not. This savestime by not
running the same configuration tests every time you invoke scons, but will overlook changesin system header files
or external commands (such as compilers) if you don't specify those dependecies explicitly. This is the default
behavior.

Iy
=== SCONS 6

--config=force
If this option is specified, all configuration tests will be re-run regardless of whether the cached results are out
of date. This can be used to explicitly force the configuration tests to be updated in response to an otherwise
unconfigured change in a system header file or compiler.

--config=cache
If this option is specified, no configuration tests will be rerun and all results will be taken from cache. Note that
sconswill still consider it an error if --config=cache is specified and a necessary test does not yet have any results
in the cache.

-C directory, --directory=directory
Change to the specified directory before searching for the SConstruct, Sconstruct, or sconstruct file, or doing
anything else. Multiple - Coptions are interpreted relative to the previous one, and the right-most - C option wins.
(This option is nearly equivalentto-f di rect ory/ SConst r uct , except that it will search for SConstruct,
Sconstruct, or sconstruct in the specified directory.)

Works exactly the same way as the - u option except for the way default targets are handled. When this option
is used and no targets are specified on the command line, all default targets are built, whether or not they are
below the current directory.

--debug=type
Debug the build process. type] ,type...] specifies what type of debugging. Multiple types may be specified, sepa-
rated by commas. The following types are valid:

--debug=count
Print how many objects are created of the various classes used internally by SCons before and after reading the
SConscript files and before and after building targets. This is not supported when SCons is executed with the
Python - O (optimized) option or when the SCons modules have been compiled with optimization (that is, when
executing from *.pyo files).

--debug=duplicate
Print a line for each unlink/relink (or copy) of a variant file from its source file. Includes debugging info for
unlinking stale variant files, aswell as unlinking old targets before building them.

--debug=dtree
A synonym for the newer - - t r ee=der i ved option. Thiswill be deprecated in some future release and ulti-
mately removed.

--debug=explain
Print an explanation of precisely why sconsisdeciding to (re-)build any targets. (Note: thisdoes not print anything
for targets that are not rebuilt.)

--debug=findlibs
Instruct the scanner that searches for libraries to print a message about each potential library name it is searching
for, and about the actual librariesit finds.

--debug=includes
Print the include tree after each top-level target is built. Thisis generally used to find out what files are included
by the sources of a given derived file:

$ scons --debug=i ncl udes foo0.o0

--debug=memoizer
Prints asummary of hits and misses using the Memoizer, an internal subsystem that counts how often SCons uses
cached values in memory instead of recomputing them each time they're needed.

Iy
=== SCONS 7

--debug=memory
Prints how much memory SCons uses before and after reading the SConscript files and before and after building
targets.

--debug=nomemoizer
A deprecated option preserved for backwards compatibility.

--debug=objects
Prints alist of the various objects of the various classes used internally by SCons.

--debug=pdb
Re-run SCons under the control of the pdb Python debugger.

--debug=prepare
Print aline each time any target (internal or external) is prepared for building. scons prints this for each target it
considers, even if that target is up to date (see also --debug=explain). This can help debug problems with targets
that aren't being built; it shows whether sconsis at least considering them or not.

--debug=presub
Print the raw command line used to build each target before the construction environment variables are substituted.
Also shows which targets are being built by this command. Output |ooks something like this:

$ scons --debug=presub
Bui | di ng nyprog.o with action(s):
$SHCC $SHCFLAGS $SHCCFLAGS $CPPFLAGS $_CPPI NCFLAGS -c -0 $TARGET $SOURCES

--debug=stacktrace
Prints an internal Python stack trace when encountering an otherwise unexplained error.

--debug=stree
A synonym for the newer - -t ree=al | , st at us option. This will be deprecated in some future release and
ultimately removed.

--debug=time

Prints various time profiling information: the time spent executing each individua build command; the total build
time (time SCons ran from beginning to end); the total time spent reading and executing SConscript files; the total
time spent SCons itself spend running (that is, not counting reading and executing SConscript files); and both
the total time spent executing al build commands and the elapsed wall-clock time spent executing those build
commands. (When sconsis executed without the - j option, the elapsed wall-clock time will typically be slightly
longer than the total time spent executing all the build commands, due to the SCons processing that takes place
in between executing each command. When scons is executed with the - j option, and your build configuration
allows good parallelization, the elapsed wall-clock time should be significantly smaller than the total time spent
executing all the build commands, since multiple build commands and intervening SCons processing should take
placein parallel.)

--debug=tree
A synonym for the newer - -t r ee=al | option. This will be deprecated in some future release and ultimately
removed.

--diskcheck=types
Enable specific checks for whether or not thereis afile on disk where the SCons configuration expects a directory
(or vice versa), and whether or not RCS or SCCS sources exist when searching for source and include files. The
types argument can be set to: all, to enable all checks explicitly (the default behavior); none, to disable all such
checks; match, to check that files and directories on disk match SCons' expected configuration; rcs, to check

Iy
=== SCONS 8

for the existence of an RCS source for any missing source or include files; sccs, to check for the existence of
an SCCS source for any missing source or include files. Multiple checks can be specified separated by commas;
for example, - - di skcheck=sccs, r cs would still check for SCCS and RCS sources, but disable the check
for on-disk matches of files and directories. Disabling some or all of these checks can provide a performance
boost for large configurations, or when the configuration will check for files and/or directories across networked
or shared file systems, at the dight increased risk of an incorrect build or of not handling errors gracefully (if
include files really should be found in SCCS or RCS, for example, or if afile really does exist where the SCons
configuration expects a directory).

--duplicate=ORDER
There are three ways to duplicate files in a build tree: hard links, soft (symbolic) links and copies. The default
behaviour of SConsisto prefer hard links to soft links to copies. Y ou can specify different behaviours with this
option. ORDER must be one of hard-soft-copy (the default), soft-hard-copy, hard-copy, soft-copy or copy. SCons
will attempt to duplicate files using the mechanismsin the specified order.

-f file, --file=file, --makefile=file, --sconstruct=file
Use file as the initial SConscript file. Multiple - f options may be specified, in which case scons will read all
of the specified files.

-h, --help
Print alocal help message for this build, if oneis defined in the SConscript file(s), plus a line that describes the
- H option for command-line option help. If no local help message is defined, prints the standard help message
about command-line options. Exits after displaying the appropriate message.

-H, --help-options
Print the standard help message about command-line options and exit.

-i, --ignore-errors
Ignore all errors from commands executed to rebuild files.

- directory, --include-dir=directory
Specifies a directory to search for imported Python modules. If several - | options are used, the directories are
searched in the order specified.

--implicit-cache
Cache implicit dependencies. This causes scons to use the implicit (scanned) dependencies from the last time it
was run instead of scanning the files for implicit dependencies. This can significantly speed up SCons, but with
the following limitations:

sconswill not detect changesto implicit dependency search paths (e.g. CPPPATH, LIBPATH) that would ordinarily
cause different versions of same-named filesto be used.

sconswill miss changesin the implicit dependenciesin cases where anew implicit dependency is added earlier in the
implicit dependency search path (e.g. CPPPATH, LIBPATH) than acurrent implicit dependency with the same name.

--implicit-deps-changed
Forces SCons to ignore the cached implicit dependencies. This causes the implicit dependencies to be rescanned
and recached. Thisimplies- -i npl i ci t - cache.

--implicit-deps-unchanged
Force SCons to ignore changes in the implicit dependencies. This causes cached implicit dependencies to always
be used. Thisimplies--i npl i cit-cache.

--interactive
Starts SCons in interactive mode. The SConscript files are read once and a scons>>> prompt is printed. Targets
may now be rebuilt by typing commands at interactive prompt without having to re-read the SConscript files and
re-initialize the dependency graph from scratch.

Iy
=== SCONS 9

SCons interactive mode supports the following commands:

build[OPTIONS] [TARGETS] ...
Builds the specified TARGETS (and their dependencies) with the specified SCons com-
mand-line OPTIONS. b and scons are synonyms.

The following SCons command-line options affect the build command:

- - cache- debug=FI LE

- -cache-di sabl e, --no-cache
--cache-force, --cache-popul ate
--cache-readonly

- - cache- show

- - debug=TYPE

-i, --ignore-errors

-j N, --jobs=N

-k, --keep-going

-n, --no-exec, --just-print, --dry-run, --recon
-Q
-s, --silent, --quiet

--taskmast ertrace=Fl LE
--tree=0PTI ONS

Any other SCons command-line optionsthat are specified do not cause errors but have no effect
on the build command (mainly because they affect how the SConscript files are read, which
only happens once at the beginning of interactive mode).

clean[OPTIONS] [TARGETS] ...
Cleans the specified TARGETS (and their dependencies) with the specified options. cisa
synonym. This command isitself asynonym for bui | d - -cl ean

exit
Exits SConsinteractive mode. Y ou can also exit by terminating input (CTRL+D on UNIX
or Linux systems, CTRL+Z on Windows systems).

helpf COMMAND]
Providesahel p message about the commandsavailablein SConsinteractive mode. If COM-
MAND is specified, h and ? are synonyms.

shel [COMMANDLINE]
Executesthe specified COMMANDLINE in asubshell. If no COMMANDLINE is specified,
executes the interactive command interpreter specified in the SHELL environment variable
(on UNIX and Linux systems) or the COM SPEC environment variable (on Windows sys-
tems). sh and ! are synonyms.

version
Prints SCons version information.

An empty line repeats the last typed command. Command-line editing can be used if the readline module is available.

$ scons --interactive

scons:
scons:

Readi ng SConscript files ...
done readi ng SConscript files.

scons>>> build -n prog
scons>>> exit

~

'—‘-‘ SCONS

10

-j N, --jobs=N
Specifies the number of jobs (commands) to run simultaneously. If there is more than one - | option, the last
oneis effective.

-k, --keep-going
Continue as much as possible after an error. The target that failed and those that depend on it will not be remade,
but other targets specified on the command line will still be processed.

-m
Ignored for compatibility with non-GNU versions of make.

--max-drift=SECONDS
Set the maximum expected drift in the modification time of filesto SECONDS. This value determines how long
afile must be unmodified before its cached content signature will be used instead of calculating a new content
signature (MD5 checksum) of the file's contents. The default value is 2 days, which means a file must have a
modification time of at least two days ago in order to have its cached content signature used. A negative value
means to never cache the content signature and to ignore the cached value if there already is one. A value of 0
means to always use the cached signature, no matter how old the fileis.

--md5-chunksize=KILOBYTES
Set the block size used to compute MD5 signatures to KILOBYTES. This value determines the size of the chunks
which areread in at once when computing MD5 signatures. Filesbelow that size arefully stored in memory before
performing the signature computation while bigger files are read in block-by-block. A huge block-size leads to
high memory consumption while avery small block-size slows down the build considerably.

The default value is to use a chunk size of 64 kilobytes, which should be appropriate for most uses.

-n, --just-print, --dry-run, --recon
No execute. Print the commands that would be executed to build any out-of-date target files, but do not execute
the commands.

--no-site-dir
Prevents the automatic addition of the standard site_scons dirs to sys.path. Also prevents loading the site_scons/
site_init.py modulesif they exist, and prevents adding their site_scons/site_tools dirs to the tool path.

--profile=file
Run SCons under the Python profiler and save the results in the specified file. The results may be analyzed using
the Python pstats module.

-q, --question
Do not run any commands, or print anything. Just return an exit status that is zero if the specified targets are
already up to date, non-zero otherwise.

-Q
Quiets SCons status messages about reading SConscript files, building targets and entering directories. Commands
that are executed to rebuild target files are till printed.

--random
Build dependencies in arandom order. This is useful when building multiple trees simultaneously with caching
enabled, to prevent multiple builds from simultaneously trying to build or retrieve the same target files.

-s, --silent, --quiet
Silent. Do not print commands that are executed to rebuild target files. Also suppresses SCons status messages.

-S, --no-keep-going, --stop
Ignored for compatibility with GNU make.

Iy
=== SCONS 11

--site-dir=dir
Uses the named dir as the site dir rather than the default site_scons dirs. This dir will get prepended to sys.path,
the module dir/site_init.py will get loaded if it exists, and dir/site_tools will get added to the default tool path.

The default set of site_scons dirs used when - - si t e- di r is not specified depends on the system platform, as
follows. Note that the directories are examined in the order given, from most generic to most specific, so the last-
executed site_init.py file is the most specific one (which givesit the chance to override everything else), and the
dirs are prepended to the paths, again so the last dir examined comes first in the resulting path.

Windows:

YALLUSERSPROFI LE/ Appl i cati on Dat a/ scons/site_scons

9%JSERPROFI LE% Local Settings/Application Data/scons/site_scons
Y%APPDATAY% scons/ site_scons

%IOMEYS . scons/ site_scons

./site_scons

Mac OS X:

[Li brary/ Applicati on Support/SCons/site_scons
/opt/ | ocal /sharel/scons/site_scons (for MacPorts)

/ sw/ shar e/ scons/site_scons (for Fink)

$HOMVE/ Li brary/ Appl i cati on Support/SCons/site_scons
$HOMVE/ . scons/ site_scons

./site_scons

Solaris:

[opt/sfw scons/site_scons
[usr/share/ scons/site_scons
$HOMVE/ . scons/ site_scons
./site_scons

Linux, HPUX, and other Posix-like systems:

[usr/share/ scons/site_scons
$HOVE/ . scons/ site_scons
./site_scons

--stack-size=KILOBYTES
Set the size stack used to run threads to KILOBYTES This value determines the stack size of the threads used to
run jobs. These are the threads that execute the actions of the builders for the nodes that are out-of-date. Note that
this option has no effect unlessthe num_j obs option, which correspondsto -j and --jobs, islarger than one. Using
a stack size that istoo small may cause stack overflow errors. This usually shows up as segmentation faults that
cause scons to abort before building anything. Using a stack size that is too large will cause scons to use more
memory than required and may slow down the entire build process.

The default value is to use a stack size of 256 kilobytes, which should be appropriate for most uses. Y ou should
not need to increase this value unless you encounter stack overflow errors.

-t, --touch
Ignored for compatibility with GNU make. (Touching afile to make it appear up-to-date is unnecessary when
using scons.)

Iy
=== SCONS 12

--taskmastertrace=file
Prints trace information to the specified file about how the internal Taskmaster object evaluates and controls the
order in which Nodes are built. A file name of - may be used to specify the standard output.

-tree=options
Printsatree of the dependencies after each top-level target isbuilt. Thisprints out someor al of thetree, invarious
formats, depending on the options specified:

--tree=all
Print the entire dependency tree after each top-level target is built. This prints out the compl ete dependency tree,
including implicit dependencies and ignored dependencies.

--tree=derived
Restricts the tree output to only derived (target) files, not source files.

--tree=status
Prints status information for each displayed node.

--tree=prune
Prunes the tree to avoid repeating dependency information for nodes that have already been displayed. Any node
that has already been displayed will have its name printed in [squar e brackets], as an indication that the depen-
dencies for that node can be found by searching for the relevant output higher up in the tree.

Multiple options may be specified, separated by commas:

Prints only derived files, with status information:
scons --tree=derived, st atus

Prints all dependencies of target, with status information
and pruni ng dependenci es of already-visited Nodes:
scons --tree=all, prune, status target

-u, --up, --sear ch-up
Walks up the directory structure until an SConstruct , Sconstruct or sconstruct fileis found, and uses that as the
top of the directory tree. If no targets are specified on the command line, only targets at or below the current
directory will be built.

Works exactly the same way asthe - u option except for the way default targets are handled. When this option is
used and no targets are specified on the command line, all default targets that are defined in the SConscript(s) in
the current directory are built, regardless of what directory the resultant targets end up in.

-v, --version
Print the scons version, copyright information, list of authors, and any other relevant information. Then exit.

-w, --print-directory
Print a message containing the working directory before and after other processing.

--no-print-directory
Turn off -w, even if it was turned on implicitly.

--war n=type, --war n=no-type
Enable or disable warnings. type specifies the type of warnings to be enabled or disabled:

--war n=all, --warn=no-all
Enables or disables all warnings.

Iy
=== SCONS 13

--war n=cache-write-error, --war n=no-cache-write-error
Enables or disables warnings about errors trying to write a copy of a built file to a specified CacheDir(). These
warnings are disabled by default.

--war n=cor r upt-sconsign, --war n=no-cor r upt-sconsign
Enables or disables warnings about unfamiliar signature data in .sconsign files. These warnings are enabled by
default.

--war n=dependency, --war n=no-dependency
Enables or disables warnings about dependencies. These warnings are disabled by default.

--war n=depr ecated, --war n=no-depr ecated
Enables or disables all warnings about use of currently deprecated features. These warnings are enabled by de-
fault. Notethat the- - war n=no- depr ecat ed option does not disable warnings about absol utely all deprecated
features. Warnings for some deprecated features that have already been through several rel eases with deprecation
warnings may be mandatory for arelease or two before they are officially no longer supported by SCons. Warn-
ings for some specific deprecated features may be enabled or disabled individually; see below.

--war n=depr ecated-copy, --war n=no-depr ecated-copy
Enables or disables warnings about use of the deprecated env.Copy() method.

--war n=depr ecated-sour ce-signatur es, --war n=no-depr ecated-sour ce-sighatur es
Enables or disables warnings about use of the deprecated Sour ceSignatures() function or
env.Sour ceSignatur es() method.

--war n=depr ecated-tar get-signatur es, --war n=no-depr ecated-tar get-signatur es
Enables or disables warnings about use of the deprecated TargetSignatures() function or
env.TargetSignatures() method.

--war n=duplicate-environment, --war n=no-duplicate-envir onment
Enables or disableswarnings about attempts to specify abuild of atarget with two different construction environ-
ments that use the same action. These warnings are enabled by default.

--war n=fortran-cxx-mix, --war n=no-fortran-cxx-mix
Enables or disables the specific warning about linking Fortran and C++ object filesin a single executable, which
can yield unpredictable behavior with some compilers.

--war n=futur e-deprecated, --war n=no-futur e-depr ecated
Enables or disables warnings about features that will be deprecated in the future. These warnings are disabled by
default. Enabling this warning is especially recommended for projects that redistribute SCons configurations for
other users to build, so that the project can be warned as soon as possible about to-be-deprecated features that
may require changes to the configuration.

--war n=link, --war n=no-link
Enables or disables warnings about link steps.

--war n=misleading-keywor ds, --war n=no-misleading-keywor ds
Enables or disables warnings about use of the misspelled keywords tar gets and sour ces when calling Builders.
(Note the last s characters, the correct spellings are target and sour ce.) These warnings are enabled by default.

--war Nn=missing-sconscript, --war n=no-missing-sconscript
Enables or disables warnings about missing SConscript files. These warnings are enabled by default.

--war n=no-md5-module, --war n=no-no-md5-module
Enables or disables warnings about the version of Python not having an MD5 checksum module available. These
warnings are enabled by default.

Iy
=== SCONS 14

--war n=no-metaclass-support, --war n=no-no-metaclass-support
Enables or disables warnings about the version of Python not supporting metaclasses when the - -
debug=nenoi zer option isused. These warnings are enabled by default.

--war n=no-obj ect-count, --war n=no-no-object-count
Enables or disables warnings about the - - debug=0bj ect feature not working when scons is run with the
python - O option or from optimized Python (.pyo) modules.

--war n=no-par allel-support, --war n=no-no-par allel-support
Enables or disables warnings about the version of Python not being able to support parallel builds when the -
option is used. These warnings are enabled by default.

--war n=python-ver sion, --war n=no-python-version
Enables or disables the warning about running SCons with a deprecated version of Python. These warnings are
enabled by default.

--war n=reser ved-variable, --warn=no-reserved-variable
Enables or disables warnings about attempts to set the reserved construction variable names
CHANGED_SOURCES, CHANGED_TARGETS, TARGET, TARGETS, SOURCE, SOURCES,
UNCHANGED_SOURCES or UNCHANGED_TARGETS. These warnings are disabled by default.

--war n=stack-size, --war n=no-stack-size
Enables or disables warnings about requests to set the stack size that could not be honored. These warnings are
enabled by defaullt.

--warn=target_not_build, --warn=no-target_not_built
Enables or disableswarnings about abuild rule not building the expected targets. These warnings are not currently
enabled by default.

-Y repository, --repository=repository, --sr cdir =repository

Search the specified repository for any input and target files not found in the local directory hierarchy. Multiple
- 'Y options may be specified, in which case the repositories are searched in the order specified.

CONFIGURATION FILE REFERENCE

Construction Environments

A construction environment is the basic means by which the SConscript files communicate build information to scons.
A new construction environment is created using the Environment function:

env = Environment ()

Variables, called construction variables, may be set in a construction environment either by specifying them as key-
words when the object is created or by assigning them a value after the object is created:

env = Environment (FOO = 'foo')
env['BAR] = 'bar’

As a convenience, construction variables may also be set or modified by the parse_flags keyword argument, which
applies the Par seFlags method (described below) to the argument value after all other processing is completed. This
is useful either if the exact content of the flags is unknown (for example, read from a control file) or if the flags are
distributed to a number of construction variables.

Iy
=== SCONS 15

env = Environment (parse_flags = '-1linclude -DEBUG -1 mn)
This example adds 'include' to CPPPATH, 'EBUG' to CPPDEFINES, and 'm' to LIBS.

By default, a new construction environment is initialized with a set of builder methods and construction variables
that are appropriate for the current platform. An optiona platform keyword argument may be used to specify that an
environment should be initialized for a different platform:

env = Environnent(platform= "'cygwn')
env = Environnent(platform="0s2")
env = Environnent (platform = 'posix')
env = Environnent (platform = "'w n32')

Specifying a platform initializes the appropriate construction variables in the environment to use and generate file
names with prefixes and suffixes appropriate for the platform.

Note that the win32 platform adds the SystemDrive and SystemRoot variables from the user's external environ-
ment to the construction environment's ENV dictionary. This is so that any executed commands that use sock-
ets to connect with other systems (such as fetching source files from external CV'S repository specifications like
:pser ver :anonymous@cvs.sour cefor ge.net:/cvsr oot/scons) will work on Windows systems.

The platform argument may be function or callable object, in which case the Environment() method will call the
specified argument to update the new construction environment:

def ny_platforn(env):
env[' VAR | = 'xyzzy'

env = Environment(platform= nmy_platform

Additionally, a specific set of tools with which to initialize the environment may be specified as an optional keyword
argument:

env = Environment(tools = ['msvc', 'lex'])

Non-built-in tools may be specified using the toolpath argument:

env = Environment(tools = ['default', 'foo'], toolpath = ['tools'])

Thislooks for atool specification in tools/foo.py (aswell as using the ordinary default tools for the platform). foo.py
should have two functions: generate(env, **kw) and exists(env). The gener at e() function modifies the passed-
in environment to set up variables so that the tool can be executed; it may use any keyword arguments that the user
supplies (seebelow) to vary itsinitialization. Theexi st s() function should return atruevalueif thetool isavailable.
Toolsinthetool path are used before any of the built-in ones. For example, adding gcc.py to thetool path would override
the built-in gce tool. Also note that the toolpath is stored in the environment for use by later calls to Clone() and
Tool() methods:

base = Environnent (t ool pat h=[' custom path'])
derived = base. C one(tool s=[' customtool'])
deri ved. Cust onBui | der ()

The elements of the tools list may also be functions or callable objects, in which case the Environment() method will
call the specified elements to update the new construction environment:

Iy
=== SCONS 16

def ny_tool (env):
env[' XYZZY'] = 'xyzzy'

env = Environment(tools = [my_tool])

The individual elements of the tools list may also themselves be two-element lists of the form (toolname, kw_dict).
SCons searchesfor the toolname specification file as described above, and passes kw_dict, which must be adictionary,
as keyword arguments to the tool's gener ate function. The generate function can use the arguments to modify the
tool's behavior by setting up the environment in different ways or otherwise changing itsinitialization.

in tool s/ ny_tool.py:

def generate(env, **kw):
Sets MY_TOOL to the val ue of keyword argunent 'argl' or 1.
env['MY_TOOL'] = kw.get('argl', '1')

def exists(env):
return 1

in SConstruct:
env = Environnent(tools = ['default', ('ny_tool', {'argl': "abc'})],
t ool path=['tools'])

The tool definition (i.e. my_tool()) can use the PLATFORM variable from the environment it receives to customize
the tool for different platforms.

If no tool list is specified, then SCons will auto-detect the installed tools using the PATH variable in the ENV con-
struction variable and the platform name when the Environment is constructed. Changing the PATH variable after the
Environment is constructed will not cause the tools to be redetected.

SCons supports the following tool specifications out of the box:

386asm
Sets construction variables for the 386ASM assembler for the Phar Lap ETS embedded operating system.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

aixct++
Sets construction variables for the IMB xlc/ Visual Age C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXX, $SHOBJ SUFFI X.

aixcc
Sets construction variables for the IBM xIc / Visual Age C compiler.

Sets: $CC, $CCVERSI ON, $SHCC.

aixf77
Sets construction variables for the IBM Visual Age f77 Fortran compiler.

Sets: $F77, $SHF77.

aixlink
Sets construction variables for the IBM Visua Agelinker.

Iy
=== SCONS 17

Sets: $LI NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.

appleink
Sets construction variables for the Apple linker (similar to the GNU linker).

Sets: $FRAVMEVWORKPATHPREFI X, $LDMODUL ECOM $LDMODUL EFLAGS, $LDMODULEPREFI X, $L.DMOD-
ULESUFFI X, $L1 NKCOM $SHLI NKCOM $SHLI NKFLAGS, $_ FRAVEWORKPATH, $_ FRAMEWORKS.

Uses: $FRAMEWORKSFLAGS.

ar
Sets construction variables for the ar library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $RANLI B, $RANLI BCOM $RANLI BFLAGS.

Sets construction variables for the as assembler.
Sets: $AS, SASCOM $ASFLAGS, SASPPCOM $ASPPFLAGS.
Uses: $CC, $CPPFLAGS, $ CPPDEFFLAGS, $ CPPI NCFLAGS.

bcc32
Sets construction variables for the bcc32 compiler.

Sets: $CC, $CCCOM $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X,
$1 NCPREFI X, $| NCSUFFI X, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHOBJ SUFFI X.

Uses: $_CPPDEFFLAGS, $_CPPI NCFLAGS.

BitK eeper
Sets construction variables for the BitK eeper source code control system.

Sets: $BI TKEEPER, $Bl TKEEPERCOM $BI TKEEPERGET, $BlI TKEEPERGETFLAGS.
Uses: $BI TKEEPERCOMSTR.

cc
Sets construction variables for generic POSIX C copmilers.

Sets: $CC, $CCCOM $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X,
$FRAVEVORKPATH, $FRAVEWORKS, $1 NCPREFI X, $I NCSUFFI X, $SHCC, $SHCCCOM $SHCCFLAGS,
$SHCFLAGS, $SHOBJ SUFFI X.

Uses: $PLATFORM

cvf
Sets construction variables for the Compag Visual Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM $FORTRANMODDI R, $FORTRANMODDI RPREFI X, $FORTRANMOD-
DI RSUFFI X, $FORTRANPPCOM $0BJ SUFFI X, $SHFORTRANCOM $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANFLAGS, $SHFORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANI NCFLAGS,
$_FORTRANMODFLAG

CVs
Sets construction variables for the CV S source code management system.

Sets: $CVS, $CVSCOFLAGS, $CVSCOM $CVSFLAGS.

Iy
=== SCONS 18

Uses: $CVSCOMBTR.

cXX

Sets construction variables for generic POSIX C++ compilers.

Sets: $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X, $CXXFLAGS,
$I NCPREFI X, $1 NCSUFFI X, $O0BJ SUFFI X, $SHCXX, $SHCXXCOM $SHCXXFLAGS, $SHOBJ SUFFI X.

Uses: $CXXCOVBTR.

default

Setsvariables by calling adefault list of Tool modules for the platform on which SCons is running.

dmd

Sets construction variables for D language compiler DMD.

Sets: $DC, $DCOM $DDEBUG, $DDEBUGPREF! X, $DDEBUGSUFFI X, $DFI LESUFFI X, $DFLAGPREFI X,
$DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B, $DLI BCOM $DLI BDI RPREFI X,
$DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X, $DLI BLI NKPREFI X, $DLI BLI NKSUF-
FI X, $DLI NK, $DLI NKCOM $DLI NKFLAGS, $DPATH, $DVERPREFI X, $DVERSI ONS, $DVERSUFFI X,
$RPATHPREFI X, $RPATHSUFFI X, $SHDC, $SHDCOM $SHDLI NK, $SHDLI NKCOM $SHDLI NKFLAGS,
$_DDEBUGFLAGS, $_DFLAGS, $_DI NCFLAGS, $_DLI BDI RFLAGS, $_DLI BFLAGS, $_DLI BFLAGS,
$_DVERFLAGS, $_RPATH.

dochook

Thistool tries to make working with Docbook in SCons a little easier. It provides several toolchains for creating
different output formats, like HTML or PDF. Contained in the package is a distribution of the Docbook XSL
stylesheetsas of version 1.76.1. Aslong asyou don't specify your own stylesheetsfor customization, these official
versions are picked as default...which should reduce the inevitable setup hassles for you.

Implicit dependencies to images and XIncludes are detected automatically if you meet the HTML requirements.
The additional stylesheet ut i | s/ xm depend. xsl by Paul DuBoisis used for this purpose.

Note, that there is no support for XML catalog resolving offered! Thistool callsthe XSLT processors and PDF
renderers with the stylesheets you specified, that'sit. The rest liesin your hands and you still have to know what
you're doing when resolving names via a catalog.

For activating the tool "docbook", you have to add its name to the Environment constructor, like this
env = Environnent (tool s=[' dochook'])

On its startup, the Docbook toal triesto find arequired xsl t pr oc processor, and a PDF renderer, e.g. f op. So
make sure that these are added to your system's environment PATH and can be called directly, without specifying
their full path.

For the most basic processing of Docbook to HTML, you need to have installed

» thePython| xm bindingtol i bxm 2, or

« thedirect Python bindingsfor | i bxm 2/ 1i bxslt, or

» astandalone XSLT processor, currently detected are xsl t pr oc, saxon, saxon- xsl t and xal an.
Rendering to PDF requires you to have one of the applicationsf op or xep installed.

Creating aHTML or PDF document is very simple and straightforward. Say

env = Environnent (t ool s=[' docbhook'])

~

'—‘—' SCONS 19

env. DocbookHt M (' manual . ht ', ' manual . xm ")
env. DocbookPdf (* manual . pdf ', ' manual . xm ")

to get both outputs from your XML source manual . xm . Asashortcut, you can give the stem of the filenames
alone, like this:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m (' manual ')
env. DocbookPdf (* manual ')

and get the same result. Target and source lists are also supported:

env = Environment (t ool s=[' docbhook'])
env. DocbookHt m ([* manual . htm "' ,'reference. htm '], ['manual .xm ', ' reference.xm'])

or even

env = Environnent (t ool s=[' dochook'])
env. DocbookHt M ([' manual ', "' reference'])

I mportant

Whenever you leave out thelist of sources, you may not specify afile extension! The Tool usesthe given
names as file stems, and adds the suffixes for target and source files accordingly.

The rules given above are valid for the Builders DocbookHt m , DocbookPdf , DocbookEpub, Doc-
bookSl i desPdf and DochookXI ncl ude. For the DocbookMan transformation you can specify a target
name, but the actual output names are automatically set from ther ef nanme entriesin your XML source.

TheBuildersDocbookHt m Chunked, DocbookHt m hel pandDocbookSl i desHt ml arespecia, inthat:

1. they create alarge set of files, where the exact names and their number depend on the content of the source
file, and

2. themain target isalwaysnamed i ndex. ht i , i.e. the output name for the XSL transformation is not picked
up by the stylesheets.

As aresult, there is simply no use in specifying a target HTML name. So the basic syntax for these buildersis
aways:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m hel p(' manual ')

If you want to use a specific XSL file, you can set the additional xs| parameter to your Builder call asfollows:
env. DocbookHt m (' other. htm ', 'pmanual.xm ', xsl="htm.xsl")

Sincethismay get tediousif you always use the samelocal naming for your customized X SL files, e.g. ht m . xsl
for HTML and pdf . xsl| for PDF output, a set of variables for setting the default XSL name is provided. These
are:

DOCBOOK_DEFAULT _XSL_HTM.
DOCBOOK_DEFAULT_XSL_HTM.CHUNKED
DOCBOOK_DEFAULT_XSL_HTM.HELP
DOCBOOK_DEFAULT_XSL_PDF
DOCBOOK_DEFAULT_XSL_EPUB
DOCBOOK_DEFAULT_XSL_MAN
DOCBOOK_DEFAULT_XSL_SLI DESPDF

Iy
=== SCONS 20

DOCBOOK_DEFAULT_XSL_SLI DESHTM.
and you can set them when constructing your environment:

env = Envi ronnent (t ool s=[' docbook'],
DOCBOOK_DEFAULT_XSL_HTM.=' htm . xsl ',
DOCBOOK_DEFAULT_XSL_PDF=' pdf . xsl ")
env. DocbookH m (' manual ') # now uses htm . xsl

Sets: $DOCBOOK_DEFAULT_XSL_EPUB, $DOCBOOK_DEFAULT_XSL_HTM.,
$DOCBOOK_DEFAULT _XSL_ HTM.CHUNKED, $DOCBOOK_DEFAULT_XSL_HTM_HELP,
$DOCBOOK_DEFAULT_XSL_MAN, $DOCBOOK_DEFAULT_XSL_ PDF,

$DOCBOOK_DEFAULT_XSL_SLI DESHTM., $DOCBOOK_DEFAULT_XSL_SLI DESPDF, $DOCBOOK_FOP,
$DOCBOOK_FOPCOM $DOCBOOK_FOPFLAGS, $DOCBOOK_XMLLI NT, $DOCBOOK_XML.LI NTCOM
$DOCBOOK_XMLLI NTFLAGS, $DOCBOOK_XSLTPRCC, $DOCBOOK_XSL TPROCCOM
$DOCBOOK_XSL TPROCFLAGS, $DOCBOOK_XSL TPROCPARANS.

Uses: $DOCBOOK_FOPCOMSTR, $DOCBOOK_XML_LI NTCOVSTR, $DOCBOOK_XSLTPROCCOVSTR.

dvi
Attaches the DVI builder to the construction environment.

dvipdf
Sets construction variables for the dvipdf utility.

Sets: $DVI PDF, $DVI PDFCOM $DVI PDFFLAGS.
Uses: $DVI PDFCOMBTR.

dvips
Sets construction variables for the dvips utility.

Sets: $DVI PS, $DVI PSFLAGS, $PSCOM $PSPREFI X, $PSSUFFI X.
Uses: $PSCOVBTR.

f03
Set construction variables for generic POSIX Fortran 03 compilers.

Sets: $F03, $F03COM $FO03FLAGS, $FO3PPCOM $SHF03, $SHFO03COM $SHFO03FLAGS, $SHFO3PPCOM
$_F03I NCFLAGS.

Uses: $FO3COMSTR, $FO3PPCOVSTR, $SHFO3COVBTR, $SHFO3PPCOVETR.

fo8
Set construction variables for generic POSIX Fortran 08 compilers.

Sets: $F08, $FO8COM $FO8FLAGS, $F08PPCOM $SHF08, $SHF08COM $SHF08FLAGS, $SHF08PPCOM
$_F08I NCFLAGS.

Uses: $FO8COMBTR, $FO8PPCOVSTR, $SHFO8COVBTR, $SHFO8PPCOMSTR.

fr7
Set construction variables for generic POSIX Fortran 77 compilers.

Sets: $F77, $F77COM $F77FI LESUFFI XES, $F77FLAGS, $F77PPCOM $F77PPFI LESUFFI XES,
$FORTRAN, $FORTRANCOM $FORTRANFLAGS, $SHF77, $SHF77COM $SHF77FLAGS, $SHF77PPCOM
$SHFORTRAN, $SHFORTRANCOM $SHFORTRANFLAGS, $SHFORTRANPPCOM $_F771 NCFLAGS.

Iy
=== SCONS 21

Uses. $F77COMSTR, $F77PPCOVSTR, $FORTRANCOMSTR, $FORTRANPPCOMBTR, $SHF77COMSTR,
$SHF77PPCOVBTR, $SHFORTRANCOVSTR, $SHFORTRANPPCOMSTR.

f90
Set construction variables for generic POSIX Fortran 90 compilers.

Sets: $F90, $F90COM $FI0FLAGS, $F90PPCOM $SHF90, $SHFI90COM $SHFI0FLAGS, $SHFO0PPCOM
$_F90!l NCFLAGS.

Uses: $F90COVSTR, $F90PPCOVSTR, $SHF90COVSTR, $SHF90PPCOVSTR.

fo5
Set construction variables for generic POSIX Fortran 95 compilers.

Sets: $F95, $F95COM $FI5FLAGS, $F95PPCOM $SHF95, $SHF95COM $SHFI5FLAGS, $SHF95PPCOM
$_F951 NCFLAGS.

Uses: $F95COMBTR, $F95PPCOVSTR, $SHF95COVBTR, $SHF95PPCOMSTR.

fortran
Set construction variables for generic POSIX Fortran compilers.

Sets: $FORTRAN, $FORTRANCOM $FORTRANFLAGS, $SHFORTRAN, $SHFORTRANCOM $SHFORTRAN-
FLAGS, $SHFORTRANPPCOM

Uses: $FORTRANCOVSTR, $FORTRANPPCOVSTR, $SHFORTRANCOVSTR, $SHFORTRANPPCOVSTR.

g++
Set construction variables for the gXX C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXXFLAGS, $SHOBJ SUFFI X.

gr7
Set construction variables for the g77 Fortran compiler. Callsthef 77 Tool module to set variables.

gas
Sets construction variables for the gas assembler. Callsthe as module.

Sets: $AS.

gce
Set construction variables for the gcc C compiler.

Sets: $CC, $CCVERSI ON, $SHCCFLAGS.

gdc
Sets construction variables for the D language compiler GDC.

Sets: $DC, $DCOM $DDEBUG, $DDEBUGPREFI X, $DDEBUGSUFFI X, $DFI LESUFFI X, $DFLAGPRE-
FI X, $DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B, $DLI BCOM $DLI BFLAG
PREFI X, $DLI BFLAGSUFFI X, $DLI NK, $DLI NKCOM $DLI NKFLAGPREFI X, $DLI NKFLAGS, $DLI NK-
FLAGSUFFI X, $DPATH, $DVERPREFI X, $DVERSI ONS, $DVERSUFFI X, SRPATHPREF| X, $RPATHSUF-
FI X, $SHDC, $SHDCOM $SHDLI NK, $SHDLI NKCOM $SHDLI NKFLAGS, $_DDEBUGFLAGS, $_DFLAGS,
$_DI NCFLAGS, $_DL| BFLAGS, $_DVERFLAGS, $_RPATH.

gettext
Thisis actually atoolset, which supports internationalization and localization of sofware being constructed with
SCons. The toolset loads following tools:

Iy
=== SCONS 22

e Xxgettext -toextract internationalized messages from source code to POT file(s),
* nBQi hit - may beoptionally used to initialize POfiles,

e nsgner ge - to update POfiles, that already contain translated messages,

» nmegf m -to compiletextual POfileto binary installable MOfile.

When you enable get t ext , it internally loads all abovementioned tools, so you're encouraged to see their indi-
vidual documentation.

Each of the above tools provides its own builder(s) which may be used to perform particular activities related
to software internationalization. Y ou may be however interested in top-level builder Tr ansl at e described few
paragraphs later.

Touseget t ext toolsadd' gett ext' tool to your environment:

env = Environment(tools = ['default', 'gettext'])

gfortran
Sets construction variables for the GNU F95/F2003 GNU compiler.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFI0FLAGS, $SHF95,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

gnulink
Set construction variables for GNU linker/loader.

Sets: $RPATHPREFI X, $RPATHSUFFI X, $SHLI NKFLAGS.

gs
This Tool setsthe required construction variables for working with the Ghostscript command. It also registers an
appropriate Action with the PDF Builder (PDF), such that the conversion from PS/EPS to PDF happens automat-
ically for the TeX/LaTeX toolchain. Finaly, it adds an explicit Ghostscript Builder (Gs) to the environment.

Sets: $GS, $GSCOM $GSFLAGS.
Uses: $GSCOVSTR.

hpc++
Set construction variables for the compilers aCC on HP/UX systems.

hpcc
Set construction variables for the aCC on HP/UX systems. Calls the ¢ XX tool for additional variables.

Sets: $CXX, SCXXVERSI ON, $SHCXXFLAGS.

hplink
Sets construction variables for the linker on HP/UX systems.

Sets: $LI NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.
icc
Sets construction variables for the icc compiler on OS/2 systems.

Sets: $CC, $CCCOM $CFI LESUFFI X, $CPPDEFPREFI X, $CPPDEFSUFRFI X, $CXXCOM $CXXFI LESUF-
FI X, $| NCPREFI X, $| NCSUFFI X.

Iy
=== SCONS 23

Uses: $CCFLAGS, $CFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

icl
Sets construction variables for the Intel C/C++ compiler. Calsthei nt el ¢ Tool module to set its variables.

ifl
Sets construction variables for the Intel Fortran compiler.
Sets: $FORTRAN, $FORTRANCOM $FORTRANPPCOM $SHFORTRANCOM $SHFORTRANPPCOM
Uses: $CPPFLAGS, $FORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANI NCFLAGS.

ifort
Sets construction variables for newer versions of the Intel Fortran compiler for Linux.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFIOFLAGS, $SHFI5,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

ilink
Sets construction variables for theilink linker on OS/2 systems.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS.

ilink32
Sets construction variables for the Borland ilink32 linker.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS.

install
Sets construction variables for file and directory installation.

Sets: $1 NSTALL, $I NSTALLSTR.

intelc
Sets construction variables for the Intel C/C++ compiler (Linux and Windows, version 7 and later). Callsthegcc
or nsvc (on Linux and Windows, respectively) to set underlying variables.

Sets: $AR, $CC, $CXX, $I NTEL_C_COWPI LER_VERSI ON, $LI NK.

jar
Sets construction variables for the jar utility.

Sets: $JAR, $JARCOM $JARFLAGS, $JARSUFFI X.
Uses: $JARCOVBTR.

javac
Sets construction variables for the javac compiler.

Sets: $JAVABOOTCLASSPATH, $JAVAC, $JAVACCOM $JAVACFLAGS, $JAVACLASSPATH, $JAVA-
CLASSSUFFI X, $J AVASOURCEPATH, $JAVASUFFI X.

Uses: $JAVACCOVSTR.

javah
Sets construction variables for the javah tool.

Iy
=== SCONS 24

Sets: $JAVACLASSSUFFI X, $JAVAH, $J AVAHCOM $J AVAHFLAGS.
Uses: $JAVACLASSPATH, $JAVAHCOVSTR.

latex
Sets construction variables for the latex utility.

Sets: SLATEX, SLATEXCOM $LATEXFLAGS.
Uses: SLATEXCOMBTR.

Idc
Sets construction variables for the D language compiler LDC2.

Sets: $DC, $DCOM $DDEBUG, $DDEBUGPREF! X, $DDEBUGSUFFI X, $DFI LESUFFI X, $DFLAGPREFI X,
$DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B, $DLI BCOM $DLI BDI RPREFI X,
$DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X, $DLI BLI NKPREFI X, $DLI BLI NKSUF-
FI X, $DLI NK, $DLI NKCOM $DLI NKFLAGPREFI X, $DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH,
$DVERPREFI X, $DVERSI ONS, $DVERSUFFI X, $RPATHPREFI X, $RPATHSUFFI X, $SHDC, $SHD-
COM $SHDLI NK, $SHDLI NKCOM $SHDLI NKFLAGS, $_DDEBUGFLAGS, $_DFLAGS, $_DI NCFLAGS,
$_DLI BDI RFLAGS, $_DLI BFLAGS, $_DL| BFLAGS, $_DVERFLAGS, $_RPATH.

Sets construction variables for the lex lexical analyser.
Sets: SLEX, $LEXCOM $LEXFLAGS.
Uses: $LEXCOMBTR.

link
Sets construction variables for generic POSIX linkers.

Sets: $LDMODULE, $LDMODULECOM $LDMODULEFLAGS, $LDMODULEPREFI X, $LDMODULESUFFI X,
$LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X, $LI NK, $LI NKCOM
$LI NKFLAGS, $SHLI BSUFFI X, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

Uses: $LDMODULECOVSTR, $LI NKCOVSTR, $SHLI NKCOMSTR.

linkloc
Sets construction variables for the LinkLoc linker for the Phar Lap ETS embedded operating system.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

Uses: $LI NKCOVSTR, $SHLI NKCOVSTR.

m4
Sets construction variables for the m4 macro processor.

Sets: $M4, $MACOM $MAFLAGS.
Uses: SMACOVBTR.

masm
Sets construction variables for the Microsoft assembler.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.

Iy
=== SCONS 25

Uses: $ASCOVBTR, $ASPPCOMSTR, $CPPFLAGS, $_ CPPDEFFLAGS, $_CPPI NCFLAGS.

midl

Sets construction variables for the Microsoft IDL compiler.
Sets: $M DL, $M DLCOM $M DLFLAGS.

Uses: $M DLCOMSTR.

mingw

Sets construction variables for MinGW (Minimal Gnu on Windows).

Sets: $AS, $CC, $CXX, $LDMODULECOM $LI BPREFI X, $LI BSUFFI X, $0BJSUFFI X, $RC, $RCCOM
$RCFLAGS, $RCI NCFLAGS, $RCI NCPREFI X, $RCl NCSUFFI X, $SHCCFLAGS, $SHCXXFLAGS, $SH-
LI NKCOM $SHLI NKFLAGS, $SHOBJ SUFFI X, $W NDOANSDEFPREFI X, $W NDOASDEFSUFRFI X.

Uses: $RCCOVBTR, $SHLI NKCOVSTR.

msgfmt

This scons toal is a part of scons get t ext toolset. It provides scons interface to msgfmt(1) command, which
generates binary message catalog (MO) from atextual translation description (PO).

Sets: SMOSUFFI X, $MSG-MT, $MSG-MICOM $MSGEMTCOVSTR, $MSG-MTFLAGS, $POSUFFI X.

Uses: $LI NGUAS_FI LE.

msginit

This scons tool is a part of scons get t ext toolset. It provides scons interface to msginit(1) program, which
creates new POfile, initializing the meta information with values from user's environment (or options).

Setss SMSANIT, $MSA NI TCOM $MSGE NI TCOVSTR, $MSG NI TFLAGS, $POAUTO NIT,
$POCREATE_ALI AS, $POSUFFI X, $POTSUFFI X, $_MSG NI TLOCALE.

Uses: $LI NGUAS_FI LE, $POAUTO NI T, $POTDOVAI N.

msgmer ge

msli

msli

Thissconstool isapart of sconsget t ext toolset. It provides scons interface to msgmer ge(1) command, which
merges two Uniform style . po files together.

Sets: $MSGVERCE, $MSGVERGECOM $MSGVERCGECOVSTR, $MSGVERCGEFLAGS, $PCSUFRFI X, $POT SUF-
FlI X, $SPOUPDATE_ALI AS.

Uses: $LI NGUAS_FI LE, $POAUTO NI T, $POTDOVAI N.

b
Sets construction variables for the Microsoft mdlib library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $L1 BPREFI X, $LI BSUFFI X.
Uses: $ARCOMSTR.

nk
Sets construction variables for the Microsoft linker.

Sets: $LDMODULE, $LDMODULECOM $LDMODULEFLAGS, $LDMODULEPREFI X, $LDMODULESUFFI X,
$LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X, $LI NK, $LI NKCOM
$LI NKFLAGS, $REGSVR, $REGSVRCOM $REGSVRFLAGS, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS,
$W N32DEFPREFI X, $W N32DEFSUFFI X, $W N32EXPPREFI X, $W N32EXPSUFFI X, $W NDOWSDEF-

~

'—‘—' SCONS 26

PREFI X, $W NDOASDEFSUFFI X, $W NDOASEXPPREFI X, $W NDOASEXPSUFFI X, $W NDOWSPROG-
MANI FESTPREFI X, $W NDOASPROGVANI FESTSURFI X, $W NDOASSHLI BMANI FESTPREFI X, $W N-
DOWSSHLI BMANI FESTSUFFI X, $W NDOWS_| NSERT_DEF.

Uses: $LDMODULECOVSTR, $LI NKCOVBTR, $REGSVRCOMSTR, $SHLI NKCOVSTR.

mssdk

Sets variables for Microsoft Platform SDK and/or Windows SDK. Note that unlike most other Tool modules,
mssdk does not set construction variables, but sets the environment variables in the environment SCons uses to
execute the Microsoft toolchain: 94 NCLUDEY, %1 B% %4_1 BPATH%and YPATHY

Uses: $MSSDK_DI R, $MSSDK_VERSI ON, $MBVS_VERSI ON.

msvc

Sets construction variables for the Microsoft Visual C/C++ compiler.

Sets: $BUI LDERS, $CC, $CCCOM $CCFLAGS, $CCPCHFLAGS, $CCPDBFLAGS, $CFI LESUFFI X,
$CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X, $CXXFLAGS,
$1 NCPREFI X, $1 NCSUFFI X, $OBJPREFI X, $0BJ SUFFI X, $PCHCOM $PCHPDBFLAGS, $RC, $RCCOM
$RCFLAGS, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM $SHCXXFLAGS,
$SHOBJIPREFI X, $SHOBJ SUFFI X.

Uses: $CCCOMBTR, $CXXCOMSTR, $PCH, $PCHSTOP, $PDB, $SHCCCOVETR, $SHCXXCOVSTR.

msvs

Sets construction variables for Microsoft Visual Studio.

Sets: $MSVSBUI LDCOM $MBVSCLEANCOM $MBVSENCCODI NG, $MSVSPRQJECTCOM $MSVSREBUI LD-
COM $MBVSSCONS, $MSVSSCONSCOM $MBVSSCONSCRI PT, $MSVSSCONSFLAGS, $MSVSSOLUTI ON-
Ccom

mwcc

mwl

Sets construction variables for the Metrowerks CodeWarrior compiler.

Sets: $CC, $CCCOM $CFI LESUFRFI X, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM
$CXXFI LESUFFI X, $I NCPREFI X, $I NCSUFFI X, $MACW VERSI ON, $MACW VERSI ONS, $SHCC,
$SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM $SHCXXFLAGS.

Uses: $CCCOVBTR, $CXXCOMBTR, $SHCCCOMBTR, $SHCXXCOVBTR.

d
Sets construction variables for the Metrowerks CodeWarrior linker.

Sets: $AR, $ARCOM $LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X,
$SLINK, $LI NKCOM $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

nasm

Sets construction variables for the nasm Netwide Assembler.
Sets: $AS, SASCOM $ASFLAGS, SASPPCOM $ASPPFLAGS.
Uses: $ASCOVMSTR, $ASPPCOVSTR.

packaging

A framework for building binary and source packages.

Packaging

Sets construction variables for the Package Builder.

~

'—‘—' SCONS 27

pdf
Sets construction variables for the Portable Document Format builder.

Sets: $PDFPREF| X, $PDFSUFFI X.

pdflatex
Sets construction variables for the pdflatex utility.

Sets: SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS.
Uses: $PDFLATEXCOMSTR.

pdftex
Sets construction variables for the pdftex utility.

Sets: SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS, $PDFTEX, $PDFTEXCOM

$PDFTEXFLAGS.
Uses: $PDFLATEXCOVSTR, $PDFTEXCOMSTR.

Perforce
Sets construction variables for interacting with the Perforce source code management system.

Sets: $P4, $P4COM $PAFLAGS.

Uses: $P4COVSTR.

qt
Sets construction variables for building Qt applications.

Sets: $QTDI R, $QT_AUTOSCAN, $QT_BI NPATH, $QT_CPPPATH, $QT_LI B, $QT_LI BPATH, $QT_MOC,
$QT_MOCCXXPREFI X, $QT_MOCCXXSUFFI X, $QT_MOCFROMCXXCOM $QT_MOCFROMCXXFLAGS,
$QT_MOCFROVHCOM $QT_MOCFROVHFLAGS, $QT_MOCHPREFI X, $QT_MOCHSUFFI X,
$QT_UIC, $QT_U CCOM $QT_Ul CDECLFLAGS, $QT_U CDECLPREFI X, $QT_UI CDECLSUFFI X,

$QT_U C MPLFLAGS, $QT_Ul Cl MPLPREFI X, $QT_Ul Cl MPLSUFFI X, $QT_Ul SUFFI X.

RCS
Sets construction variables for the interaction with the Revision Control System.

Sets: $RCS, $RCS_CO, $RCS_COCOM $RCS_COFLAGS.
Uses: $RCS_COCOMVBTR.

rmic
Sets construction variables for the rmic utility.

Sets: $JAVACLASSSUFFI X, $RM C, $RM CCOM $RM CFLAGS.
Uses: $RM CCOVBTR.

rpcgen
Sets construction variables for building with RPCGEN.

Sets. $RPCCEN, $RPCGENCLI ENTFLAGS, $RPCCGENFLAGS, $RPCGENHEADERFLAGS,
GENSERVI CEFLAGS, $RPCGENXDRFLAGS.

SCCS
Sets construction variables for interacting with the Source Code Control System.

$RPC-

Iy
=== SCONS

28

Sets: $SCCS, $SCCSCOM $SCCSFLAGS, $SCCSGETFLAGS.
Uses: $SCCSCOMSTR.

sgiar
Sets construction variables for the SGI library archiver.

Sets: $AR, $ARCOVETR, $ARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $SHLI NK, $SHLI NKFLAGS.
Uses: SARCOMSTR, $SHLI NKCOVSTR.

sgic++
Sets construction variables for the SGI C++ compiler.

Sets: $CXX, $CXXFLAGS, $SHCXX, $SHOBJI SUFFI X.

sgicc
Sets construction variables for the SGI C compiler.

Sets: $CXX, $SHOBI SUFFI X.

sgilink
Sets construction variables for the SGI linker.

Sets: $LI NK, SRPATHPREF| X, $RPATHSUFFI X, $SHLI NKFLAGS.

sunar
Sets construction variables for the Sun library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.
Uses: SARCOVETR, $SHLI NKCOVSTR.

sunc++
Sets construction variables for the Sun C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXX, $SHCXXFLAGS, $SHOBJ PREFI X, $SHOBJ SUFFI X.

suncc
Sets construction variables for the Sun C compiler.

Sets: $CXX, $SHCCFLAGS, $SHOBJI PREFI X, $SHOBJ SUFFI X.

sunf77
Set construction variables for the Sun f77 Fortran compiler.

Sets: $F77, $FORTRAN, $SHF77, $SHF77FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf90
Set construction variables for the Sun f90 Fortran compiler.

Sets: $F90, $FORTRAN, $SHF90, $SHFIOFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf95s
Set construction variables for the Sun f95 Fortran compiler.

Sets: $F95, $FORTRAN, $SHF95, $SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunlink
Sets construction variables for the Sun linker.

Iy
=== SCONS 29

Sets: SRPATHPREFI X, $RPATHSUFFI X, $SHLI NKFLAGS.

swig

tar

tex

Sets construction variables for the SWIG interface generator.

Sets. $SW G, $SW GCFI LESUFFI X, $SW GCOM $SW GCXXFI LESUFFI X, $SW GDI RECTORSUF-
FIX, $SW GFLAGS, $SW G NCPREFI X, $SW G NCSUFFI X, $SW GPATH, $SW GVERSI O\,
$_SW G NCFLAGS.

Uses: $SW GCOMSTR.

Sets construction variables for the tar archiver.
Sets: $TAR, $TARCOM $TARFLAGS, $TARSUFFI X.

Uses: $STARCOVSTR.

Sets construction variables for the TeX formatter and typesetter.

Sets: $BI BTEX, $Bl BTEXCOM $BI BTEXFLAGS, $LATEX, $LATEXCOM $LATEXFLAGS, $MAKEI NDEX,
$MAKEI NDEXCOM $MAKEI NDEXFLAGS, $TEX, $TEXCOM $TEXFLAGS.

Uses: $Bl BTEXCOVSTR, $LATEXCOVBTR, $MAKEI NDEXCOMVSTR, $TEXCOVSTR.

textfile

tlib

xget

Set construction variables for the Text f i | e and Subst f i | e builders.

Sets: $LI NESEPARATOR, $SUBSTFI LEPREFI X, $SUBSTFI LESUFFI X, $TEXTFI LEPREFI X,
$TEXTFI LESUFFI X.

Uses: $SUBST_DI CT.

Sets construction variables for the Borlan tib library archiver.
Sets: $AR, $ARCOM $ARFLAGS, $LI BPREFI X, $LI1 BSUFFI X.
Uses: $ARCOVSTR.

text

This scons tool is a part of scons get t ext toolset. It provides scons interface to xgettext(1) program, which
extracts internati onalized messages from source code. The tool provides POTUpdat e builder to make PO Tem-
platefiles.

Sets: $POTSUFFI X, $POTUPDATE_ALI AS, $XGETTEXTCOM $XCETTEXTCOMSTR, $XGETTEXTFLAGS,
$XCETTEXTFROM $XGETTEXTFROVPREFI X, $XGETTEXTFROVBUFRFI X, $XGETTEXTPATH, $XGET-
TEXTPATHPREFI X, $XGETTEXTPATHSUFFI X, $_XCGETTEXTDOMAI N, $_XCGETTEXTFROMFLAGS,
$_XGETTEXTPATHFLAGS.

Uses: $POTDOVAI N.

yacc

Sets construction variables for the yacc parse generator.

Sets: $YACC, $YACCCOM $YACCFLAGS, $YACCHFI LESUFFI X, $YACCHXXFI LESUFFI X, $YAC-
CVCGFI LESUFFI X.

~

'—‘—' SCONS 30

Uses: $YACCCOMSTR.

zip
Sets construction variables for the zip archiver.

Sets: $ZI P, $Z1 PCOM $ZI PCOVPRESSI ON, $Z1 PFLAGS, $ZI PSUFFI X.
Uses: $ZI PCOVSTR.

Additionally, there is a "tool" named default which configures the environment with a default set of tools for the
current platform.

On posix and cygwin platforms the GNU tools (e.g. gcc) are preferred by SCons, on Windows the Microsoft tools
(e.g. msvc) followed by MinGW are preferred by SCons, and in OS/2 the IBM tools (e.g. icc) are preferred by SCons.

Builder Methods

Build rules are specified by calling a construction environment's builder methods. The arguments to the builder meth-
ods are target (alist of targets to be built, usually file names) and source (alist of sources to be built, usualy file
names).

Because long lists of file names can lead to alot of quoting, scons suppliesa Split() global function and a same-named
environment method that split a single string into a list, separated on strings of white-space characters. (These are
similar to the split() member function of Python strings but work even if the input isn't astring.)

Likeall Python arguments, the target and source argumentsto a builder method can be specified either with or without
the "target" and "source" keywords. When the keywords are omitted, the target is first, followed by the source. The
following are equivalent examples of calling the Program builder method:

env. Program(' bar', ["bar.c', 'foo.c'])

env. Program(' bar', Split('bar.c foo.c'))

env. Progran(' bar', env.Split('bar.c foo.c'))

env. Progran(source ["bar.c', 'foo.c'], target = 'bar')
env. Progran(t ar get

"bar', Split('bar.c foo.c'))
env. Progran(t ar get "bar', env.Split('bar.c foo.c'))

env. Progran(' bar', source = '"bar.c foo.c'.split())

Target and source file names that are not absol ute path names (that is, do not begin with / on POSIX systems or \fR on
Windows systems, with or without an optional driveletter) areinterpreted relativeto the directory containing
the SConscript filebeing read. Aninitia # (hash mark) on apath name meansthat therest of thefilenameisinterpreted
relative to the directory containing the top-level SConstruct file, even if the # is followed by a directory separator
character (dlash or backslash).

Examples:
The conments describing the targets that will be built

assune these calls are in a SConscript file in the
a subdirectory nanmed "subdir".

Builds the program "subdir/foo" from "subdir/foo.c":
env. Program(' foo', 'foo.c')

Builds the program"/tnp/bar"” from "subdir/bar.c":
env. Program(' /tnp/bar', 'bar.c')

Iy
=== SCONS 31

An initial '# or '#/' are equivalent; the foll ow ng

calls build the prograns "foo" and "bar” (in the

top-1evel SConstruct directory) from "subdir/foo.c" and
"subdir/bar.c", respectively:

env. Program(' #foo', 'foo.c')

env. Program(' #/ bar', 'bar.c')

Builds the program "ot her/foo" (relative to the top-Ievel
SConstruct directory) from "subdir/foo.c":
env. Progran(' #ot her/foo', 'foo.c')

When the target shares the same base name as the source and only the suffix varies, and if the builder method has a
suffix defined for the target file type, then the target argument may be omitted completely, and scons will deduce the
target file name from the source file name. The following examples all build the executable program bar (on POSIX
systems) or bar .exe (on Windows systems) from the bar.c source file:

env. Program(target = 'bar', source = 'bar.c')
env. Program(' bar', source = 'bar.c")
env. Program source = 'bar.c')

env. Program(' bar.c')

As a convenience, a srcdir keyword argument may be specified when calling a Builder. When specified, all source
file strings that are not absolute paths will be interpreted relative to the specified srcdir. The following example will
build the build/prog (or build/prog.exe on Windows) program from the files src/f1.c and src/f2.c:

env. Progran(' build/prog', ['f1l.c', '"f2.c'], srcdir="src')

It is possible to override or add construction variables when calling a builder method by passing additional keyword
arguments. These overridden or added variables will only bein effect when building the target, so they will not affect
other parts of the build. For example, if you want to add additional libraries for just one program:

env. Program(' hello', "hello.c', LIBS=['gl"', "glut'])

or generate a shared library with a non-standard suffix:

env. Shar edLi brary('word', 'word.cpp',
SHLI BSUFFI X=' . ocx'
LI BSUFFI XES=[" . ocx'])

(Note that both the $SHLIBSUFFIX and $L1BSUFFIXES variables must be set if you want SCons to search automat-
ically for dependencies on the non-standard library names; see the descriptions of these variables, below, for more
information.)

It isalso possible to use the parse flags keyword argument in an override:

env = Progran({' hello', "hello.c', parse flags = '-linclude -DEBUG -1 mn)
This example adds 'include' to CPPPATH, 'EBUG' to CPPDEFINES, and 'm' to LIBS.

Although the builder methods defined by scons are, in fact, methods of a construction environment object, they may
also be called without an explicit environment:

Iy
=== SCONS 32

Program(' hell o', '"hello.c")
Shar edLi brary(' word', 'word.cpp')

In this case, the methods are called internally using a default construction environment that consists of the tools and
values that scons has determined are appropriate for the local system.

Builder methods that can be called without an explicit environment may be called from custom Python modules that
you import into an SConscript file by adding the following to the Python module:

from SCons. Scri pt inport *

All builder methods return alist-like object containing Nodes that represent the target or targets that will be built. A
Node is an internal SCons object which represents build targets or sources.

The returned Node-list object can be passed to other builder methods as source(s) or passed to any SCons function
or method where a filename would normally be accepted. For example, if it were necessary to add a specific - Dflag
when compiling one specific object file:

bar _obj list = env. StaticCbject('bar.c', CPPDEFI NES=' - DBAR)
env. Progranm(source = ['foo.c', bar_obj list, "main.c'])

Using a Node in this way makes for a more portable build by avoiding having to specify a platform-specific object
suffix when calling the Program() builder method.

Note that Builder calls will automatically "flatten" the source and target file lists, so it's al right to have the bar_obj
list return by the StaticObject() call in the middle of the sourcefilelist. If you need to manipulate alist of listsreturned
by Builders directly using Python, you can either build the list by hand:

foo = oject('foo.c')
bar = nject(' bar.c')
objects = ['begin.o'] + foo + ["mddle.o'] + bar + ['end.o']
for object in objects:
print str(object)

Or you can use the Flatten() function supplied by sconsto create alist containing just the Nodes, which may be more
convenient:

foo = oject('foo.c')
bar = onject(' bar.c')
objects = Flatten([' begin.o', foo, 'mddle.o", bar, 'end.o'])
for object in objects:
print str(object)

Note also that because Builder callsreturn alist-like object, not an actual Python list, you should not use the Python +=
operator to append Builder results to a Python list. Because the list and the object are different types, Python will not
update the original list in place, but will instead create a new Node-list object containing the concatenation of the list
elements and the Builder results. Thiswill cause problemsfor any other Python variablesin your SCons configuration
that till hold on to a reference to the original list. Instead, use the Python .extend() method to make sure the list is
updated in-place. Example:

object files =[]

Iy
=== SCONS 33

Do NOT use += as foll ows:
object files += hject('bar.c')

It will not update the object files list in place.

HHOH O H R

I nstead, use the .extend() nethod:
object _files.extend(Object(' bar.c'))

The path name for a Node's file may be used by passing the Node to the Python-builtin st r () function:

bar _obj list = env. StaticCbject('bar.c', CPPDEFI NES=' - DBAR)
print "The path to bar_obj is:", str(bar_obj list[0])

Note again that because the Builder call returns alist, we have to access the first element in the list (bar_obj_list[0])
to get at the Node that actually represents the object file.

Builder calls support a chdir keyword argument that specifies that the Builder's action(s) should be executed after
changing directory. If the chdir argument isastring or a directory Node, sconswill change to the specified directory.
If the chdir is not astring or Node and is non-zero, then scons will change to the target file's directory.

scons will change to the "sub" subdirectory
before executing the "cp" command.

env. Command(' sub/dir/foo.out', 'sub/dir/foo.in",
"cp dir/foo.in dir/foo.out",
chdir="sub")

Because chdir is not a string, scons will change to the
target's directory ("sub/dir") before executing the
"cp" command.
env. Command(' sub/dir/foo.out', 'sub/dir/foo.in",
"cp foo.in foo.out",
chdi r =1)

Note that sconswill not automatically modify its expansion of construction variableslike STARGET and $SOURCE
when using the chdir keyword argument--that is, the expanded file names will still be relative to the top-level SCon-
struct directory, and consequently incorrect relative to the chdir directory. If you use the chdir keyword argument, you
will typically need to supply adifferent command line using expansions like ${ TARGET .file} and ${SOURCE file}
to use just the filename portion of the targets and source.

scons provides the following builder methods:

Crile(),

env. CFi |l e()
Builds a C source file given alex (. |) or yacc (. y) input file. The suffix specified by the $CFI LESUFFI X
construction variable (. ¢ by default) is automatically added to the target if it is not already present. Example:

builds foo.c

env.CFile(target = 'foo.c', source = 'foo.l")
builds bar.c
env.CFile(target = '"bar', source = 'bar.y')

Iy
=== SCONS 34

Command() ,

env. Command()
The Conmand "Builder" is actually implemented as a function that looks like a Builder, but actually takes an
additional argument of the action from which the Builder should be made. See the Conmaind function description
for the calling syntax and details.

CXXFi l e() ,

env. CXXFi | e()
Builds a C++ sourcefilegivenalex (. | 1) or yacc (. yy) input file. The suffix specified by the $CXXFI LESUF-
FI X construction variable (. cc by default) is automatically added to the target if it is not already present. Ex-
ample:

builds foo.cc
env. CXXFi |l e(target = 'foo.cc', source = 'foo.ll")
builds bar.cc

env. CXXFi | e(t ar get

"bar', source = 'bar.yy')

DocbookEpub() ,
env. DocbookEpub()
A pseudo-Builder, providing a Docbook toolchain for EPUB outpuit.

env = Environment (t ool s=[' docbook'])
env. DocbookEpub(' manual . epub’, ' manual . xm ")

or simply

env = Environment (t ool s=[' docbhook'])
env. DocbookEpub(' nmanual ')

DocbookHt m () ,
env. DocbookHt m ()
A pseudo-Builder, providing a Docbook toolchain for HTML output.

env = Environment (t ool s=[' docbhook'])
env. DocbookHt M (' manual . ht ', ' manual . xm ")

or simply

env = Environment (t ool s=[' docbook'])
env. DocbookHt m (' nmanual ')

DocbookHt m Chunked() ,

env. DocbookHt m Chunked()
A pseudo-Builder, providing a Docbook toolchain for chunked HTML output. It supports the base. di r para
meter. Thechunkf ast . xsl file (requires"EXSLT") is used as the default stylesheet. Basic syntax:

env = Environment (t ool s=[' docbook'])
env. DocbookHt m Chunked(' manual ')

wheremanual . xm istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environment (t ool s=[' docbook'])
env. DocbookHt m Chunked(' mymanual . ht Ml ', 'manual ', xsl='"htn chunk. xsl")

Iy
=== SCONS 35

Some basic support for the base. di r isprovided. You can add the base_di r keyword to your Builder call,
and the given prefix gets prepended to all the created filenames:

env = Environnent (t ool s=["' dochook'])
env. DocbookHt m Chunked(' manual ', xsl ="htm chunk. xsl', base dir="output/"')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookHt m hel p() ,
env. DocbookHt m hel p()
A pseudo-Builder, providing a Docbook toolchain for HTMLHELP output. Its basic syntax is:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m hel p(' manual ')

wheremanual . xnl istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m hel p(' mymanual . ht i ', ' manual ', xsl='"htn hel p. xsl")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environnent (tool s=[' dochook'])
env. DocbookHt m hel p(' manual ', xsl="htm hel p. xsl"', base_dir="output/"')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookMan() ,
env. DocbookMan()
A pseudo-Builder, providing a Docbook toolchain for Man page output. Its basic syntax is:

env = Environnent (t ool s=[' dochook'])
env. DocbookMan(' nmanual ')

where manual . xm istheinput file. Note, that you can specify atarget name, but the actual output names are
automatically set from ther ef name entriesin your XML source.

DocbookPdf () ,
env. DocbookPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF output.

env = Environment (t ool s=[' docbhook'])
env. DocbookPdf (' manual . pdf ', ' manual . xm ")

or simply

env = Environment (t ool s=[' docbhook'])
env. DocbookPdf (' manual ')

DocbookSl i desHt m () ,
env. DocbookSl i desHt m ()
A pseudo-Builder, providing a Docbook toolchain for HTML slides outpuit.

env = Environnent (t ool s=[' docbhook'])

Iy
=== SCONS 36

env. DocbookSl i desHt m (' manual ')

If youusethetit| efoil.htnl parameter inyour own stylesheetsyou haveto give the new target name. This
ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (t ool s=["' dochook'])
env. DocbookSl i desHt m (' mymanual . ht i ', ' manual ', xsl ='"slideshtm .xsl")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Envi ronnent (t ool s=[' docbook'])
env. DocbookSl i desHt ml (" manual ', xsl ="slideshtm .xsl', base_dir="output/")

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookSl i desPdf () ,
env. DocbookSl i desPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF dlides output.

env = Environnent (t ool s=[' dochook'])
env. DocbookSl i desPdf (' manual . pdf', 'manual . xm ')

or simply

env = Environment (t ool s=[' docbhook'])
env. DocbookSl i desPdf (' manual ')

DocbookXI ncl ude() ,
env. DocbookXI ncl ude()
A pseudo-Builder, for resolving XIncludesin a separate processing step.

env = Environnent (t ool s=[' dochook'])
env. DocbookXl ncl ude(' manual _xi ncl uded. xm ', ' manual . xm ")

DocbookXslt () ,
env. DocbookXsl t ()
A pseudo-Builder, applying agiven XSL transformation to the input file.

env = Environmnent (t ool s=[' docbhook'])
env. DocbookXsl t (" manual _transformed. xm ', 'manual .xm ', xsl="transformxslt')

Note, that this builder requiresthe xsl parameter to be set.

bvi() ,

env. DVI ()
Buildsa. dvi filefroma.tex,.ltx or.|atex input file. If the source file suffix is. t ex, scons will
examine the contents of the file; if the string \ document cl ass or \ docunent st yl e isfound, the file is
assumed to be aLaTeX file and the target is built by invoking the SLATEXCOM command line; otherwise, the
$TEXCOMcommand lineisused. If thefileisaLaTeX file, theDVI builder method will also examinethe contents
of the . aux file and invoke the $BI BTEX command line if the string bi bdat a is found, start SMAKEI NDEX
to generate anindex if a. i nd fileisfound and will examine the contents.. | og file and re-run the SLATEXCOM
command if thelog file saysit is necessary.

The suffix . dvi (hard-coded within TeX itself) is automatically added to the target if it is not already present.
Examples:

Iy
=== SCONS 37

builds from aaa.tex

env.DVI (target = 'aaa.dvi', source = 'aaa.tex')
bui | ds bbb. dvi
env. DVI (target = 'bbb', source = 'bbb.ltx")
builds fromccc. | atex
env. DVI (target = 'ccc.dvi', source = 'ccc.latex')
Gs() ,
env. Gs()

A Builder for explicitly calling the gs executable. Depending on the underlying OS, the different names gs,
gsos2 and gswi n32c aretried.

env = Environnent (tool s=['gs'])

env. Gs(' cover.jpg', ' scons-scons. pdf',
GSFLAGS=" - dNOPAUSE - dBATCH - sDEVI CE=j peg - dFi rst Page=1 -dLast Page=1 -q')
)

Install (),

env.Install ()
Installs one or more source files or directoriesin the specified target, which must be a directory. The names of the
specified source files or directories remain the same within the destination directory. The sources may be given
asastring or as anode returned by a builder.

env.Install ('/usr/local/bin', source = ['foo', "bar'])

Instal | As() ,

env. Install As()
Installs one or more source files or directories to specific names, allowing changing afile or directory name as
part of theinstallation. It isan error if the target and source arguments list different numbers of filesor directories.

env. I nstal |l As(tar get "/usr/local/bin/foo",

source = 'foo_debug')
env.lnstall As(target = ['../lib/libfoo.a", '../lib/libbar.a'],
source = ['libFOO. a', '"libBAR a'])

I nst al | Ver si onedLi b() ,

env. I nstal | Versi onedLi b()
Installs a versioned shared library. The $SHLI BVERSI ON construction variable should be defined in the envi-
ronment to confirm the version number in thelibrary name. If $SHLI BVERSI ONis not defined awarning will be

issued and the name of thelibrary will be parsed to derivethe version. The symlinks appropriateto the architecture
will be generated.

env. I nst al | Ver si onedLi b(t ar get "/usr/local/bin/foo',

source = 'libxyz.1.5.2.50")
env. I nst al | Ver si onedLi b(target = '/usr/| ocal/bin/foo'
source = 'libxyz.1.5.2.s0'

SHLI BVERSI ON=' 1. 5. 2")

Jar () ,
env. Jar ()
Builds a Java archive (. j ar) file from the specified list of sources. Any directories in the source list will be

searched for . cl ass files). Any . j ava filesin the source list will be compiledto . cl ass filesby calling the
Java Builder.

Iy
=== SCONS 38

If the $JARCHDI R value is set, the jar command will change to the specified directory using the - C option. If
$JARCHDI Ris not set explicitly, SCons will use the top of any subdirectory tree in which Java. cl ass were
built by the Java Builder.

If the contents any of the source files begin with the string Mani f est - Ver si on, thefileis assumed to be a
manifest and is passed to the jar command with the moption set.

env. Jar(target = 'foo.jar', source = 'classes')
env. Jar(target = 'bar.jar',
source = ['barl.java', 'bar2.java'])

Java() ,

env. Java()
Builds one or more Java class files. The sources may be any combination of explicit . j ava files, or directory
treeswhich will be scanned for . j ava files.

SConswill parse each source. j ava fileto find the classes (including inner classes) defined within that file, and
from that figure out the target . cl ass files that will be created. The class files will be placed underneath the
specified target directory.

SConswill also search each Javafilefor the Java package name, which it assumes can be found on aline beginning
with the string package in the first column; the resulting . cl ass fileswill be placed in a directory reflecting
the specified package name. For example, the file Foo. j ava defining asingle public Foo class and containing
apackage name of sub. di r will generate a corresponding sub/ di r / Foo. cl ass classfile.

Examples:
'cl asses', source

'cl asses', source
'cl asses', source

env. Java(t ar get
env. Java(t ar get
env. Java(t ar get

‘src')
["srcl', 'src2'])
["Filel.java', 'File2.java'])

Javasource files can use the native encoding for the underlying OS. Since SCons compilesin simple ASCII mode
by default, the compiler will generate warnings about unmappabl e characters, which may lead to errors asthefile
is processed further. In this case, the user must specify the LANG environment variable to tell the compiler what
encoding is used. For portibility, it's best if the encoding is hard-coded so that the compile will work if it is done
on a system with a different encoding.

env = Environment ()
env['ENV']['LANG] = 'en_GB. UTF-8'

JavaH() ,

env. JavaH()
Builds C header and source files for implementing Java native methods. The target can be either a directory in
which the header files will be written, or a header file name which will contain all of the definitions. The source
can be the names of . cl ass files, the names of . j ava files to be compiled into . cl ass files by calling the
Java builder method, or the objects returned from the Java builder method.

If the construction variable $J AVACLASSDI Risset, either in the environment or in the call to the JavaH builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

Examples:

Iy
=== SCONS 39

builds java _native.h
cl asses = env.Java(target = 'classdir', source = "src')
env. JavaH(target = 'java nhative.h', source = cl asses)

buil ds i ncl ude/ package_foo. h and incl ude/ package_bar. h
env. JavaH(target = 'include',
source = [' package/foo.class', 'package/bar.class'])

buil ds export/foo.h and export/bar.h

env. JavaH(target = 'export',
source = ['classes/foo.class', 'classes/bar.class'],
JAVACLASSDI R = ' cl asses')

Li brary() ,
env. Li brary()
A synonym for the St at i cLi br ary builder method.

Loadabl eModul e() ,

env. Loadabl eMbdul e()
Onmost systems, thisisthesameasShar edLi br ar y. OnMac OS X (Darwin) platforms, this createsaloadable
module bundle.

MA() .

env. MA()
Builds an output file from an M4 input file. This uses a default $MAFLAGS value of - E, which considers al
warnings to be fatal and stops on the first warning when using the GNU version of m4. Example:

env. Mi(target = 'foo.c', source = 'foo.c.md')

Moc() ,

env. Moc()
Builds an output file from amoc input file. Moc input files are either header files or cxx files. Thisbuilder isonly
available after using the tool 'qt'. See the $QTDI R variable for more information. Example:

env. Moc(' foo. h') # generates noc_foo. cc
env. Moc(' foo.cpp') # generates foo. noc

MOFi | es() ,
env. MOFi | es()
This builder belongsto msgf nt tool. The builder compiles POfilesto MOfiles.
Example 1. Create pl . no and en. no by compiling pl . po and en. po:
...
env. MOFiles(['pl', "en'])
Example 2. Compile files for languages defined in LI NGUAS file:

...
env. MOFi | es(LI NGUAS_FI LE = 1)

Iy
=== SCONS 40

Example 3. Create pl . no and en. no by compiling pl . po and en. po plus files for languages defined in
LI NGUAS file:

...
env. MOFiles(['pl', "en'], LINGUAS FILE = 1)

Example 4. Compile files for languages defined in LI NGUAS file (another version):

...
env['LINGUAS FILE'] =1
env. MOFi | es()

MBVSPr oj ect () ,
env. MBVSPr oj ect ()
Builds a Microsoft Visua Studio project file, and by default builds a solution file as well.

This builds a Visual Studio project file, based on the version of Visual Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSI ON in the Environment constructor). For Visua
Studio 6, it will generatea. dsp file. For Visua Studio 7 (NET) and later versions, it will generatea. vcpr oj

file.

By defaullt, this also generates a solution file for the specified project, a. dswfilefor Visual Studio6ora. sl n
file for Visual Studio 7 (.NET). This behavior may be disabled by specifying aut o_bui | d_sol uti on=0
when you call MSVSPr oj ect , in which case you presumably want to build the solution file(s) by calling the
MBVSSol ut i on Builder (see below).

The MBVSPr oj ect builder takes severa lists of filenames to be placed into the project file. These are currently
limitedtosrcs,incs,| ocal i ncs, resour ces, and ni sc. These are pretty self-explanatory, but it should
be noted that these lists are added to the $SOURCES construction variable as strings, NOT as SCons File Nodes.
This is because they represent file names to be added to the project file, not the source files used to build the
project file.

The above filename lists are all optional, although at least one must be specified for the resulting project file to
be non-empty.

In addition to the above lists of values, the following values may be specified:

target
The name of the target . dsp or . vcproj file. The correct suffix for the version of Visual Studio must
be used, but the $SMSVSPRQJ ECTSUFFI X construction variable will be defined to the correct value (see
example below).

variant
The name of this particular variant. For Visual Studio 7 projects, this can also be a list of variant names.
These aretypically thingslike "Debug" or "Release”, but really can be anything you want. For Visual Studio
7 projects, they may also specify a target platform separated from the variant name by a| (vertical pipe)
character: Debug| Xbox. The default target platform is Win32. Multiple calls to MSVSPr oj ect with dif-
ferent variants are allowed; all variants will be added to the project file with their appropriate build targets
and sources.

cmdargs
Additional command line arguments for the different variants. The number of cndar gs entries must match
the number of var i ant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants.

Iy
=== SCONS 41

buildtar get
An optional string, node, or list of strings or nodes (one per build variant), to tell the Visual Studio debugger
what output target to usein what build variant. The number of bui | dt ar get entries must match the number
of vari ant entries.

runfile
The name of the file that Visual Studio 7 and later will run and debug. This appears as the value of the
Qut put field in the resulting Visua Studio project file. If this is not specified, the default is the same as
the specified bui | dt ar get value.

Note that because SCons always executes its build commands from the directory in which the SConst r uct file
islocated, if you generate aproject filein adifferent directory than the SConst r uct directory, userswill not be
able to double-click on the file name in compilation error messages displayed in the Visual Studio console output
window. This can be remedied by adding the Visual C/C++/ FC compiler option to the $CCFLAGS variable so
that the compiler will print the full path name of any files that cause compilation errors.

Example usage:

barsrcs = ['bar.cpp'],

barincs = ['bar.h'],

barl ocal incs = [' St dAfx. h']
barresources = ['bar.rc','resource. h']
barm sc = [' bar_readne. txt']

dll = env. SharedLi brary(target = '"bar.dll",
source = barsrcs)
env. MSVSProj ect (target = 'Bar' + env[' MSVSPRQIECTSUFFI X'],

srcs = barsrcs,

i ncs = barincs,

| ocal i ncs = barl ocal i ncs,
resources = barresources,
m sc = barm sc,

buil dtarget = dl I,
variant = 'Rel ease')

Starting with version 2.4 of SConsit's also possible to specify the optional argument DebugSet t i ngs, which
creates files for debugging under Visual Studio:

DebugSettings
A dictionary of debug settings that get written to the . vcpr oj . user or the. vexpr oj . user file, de-
pending on theversioninstalled. Asitisdonefor cmdargs (see above), you can specify aDebugSet t i ngs
dictionary per variant. If you give only one, it will be propagated to all variants.

Currently, only Visual Studio v9.0 and Visual Studio version v11 are implemented, for other versions no fileis
generated. To generate the user file, you just need to add aDebugSet t i ngs dictionary to the environment with
the right parameters for your MSV S version. If the dictionary is empty, or does not contain any good value, no
file will be generated.

Following is a more contrived example, involving the setup of a project for variants and DebugSettings:

Assumi ng you store your defaults in a file
vars = Vari abl es(' vari abl es. py')
msvcver = vars.args.get('vc', '9')

Check command args to force one M crosoft Visual Studio version

Iy
=== SCONS 42

if nmsvcver == '9' or nsvcver == '11':

env = Environment (MSVC_VERSI ON=nsvcver +' . 0', MSVC BATCH=Fal se)
el se:

env = Environnent ()

AddOption('--userfile', action="store_ true', dest="userfile', default=False,
hel p="Create Visual Studio Project user file")

#
1. Configure your Debug Setting dictionary with options you want in the |ist
of allowed options, for instance if you want to create a user file to | aunch

a specific application for testing your dll with Mcrosoft Visual Studio 2008 (v9):

#

V9DebugSetti ngs = {
" Command' : ' c:\\ nyapp\\using\\thisdll.exe',
"WorkingDirectory': "c:\\nyapp\\using\\",
' CommandAr gunents': ' -p password',

"Attach':'false',

Debugger Type' : ' 3",

'"Renote’ ;' 1",

' Renot eMachi ne' : None,

' Renot eConmand’ : None,

HtpUrl®': None,

PDBPat h' : None,

SQLDebuggi ng' : None,

Envi ronnent': '',

Envi ronnent Merge' : " true',

Debugger Fl avor' : None,

VPl RunConmand' : None,

MPI RunAr gunment s' : None,

MPI RunWor ki ngDi rectory' : None,

Appl i cati onCommand’ : None,

Appl i cati onArgunments': None,

' Shi nConmand' : None,

MPI Accept Mbde' : None,

MPlI Accept Filter': None,

SR H H HH H HHH H HHHHHH R R

2. Because there are a lot of different options depending on the M crosoft
Vi sual Studio version, if you use nore than one version you have to
define a dictionary per version, for instance if you want to create a user
file to launch a specific application for testing your dll with M crosoft
Vi sual Studio 2012 (v11):

H HOHHH HH

V10DebugSetti ngs = {
' Local Debugger Command' : ' c:\\ myapp\\using\\thisdll.exe",
' Local Debugger Wor ki ngDirectory': 'c:\\nyapp\\using\\",
' Local Debugger CommandAr gunents': ' -p password',
' Local Debugger Envi ronnment ' : None,
' Debugger Fl avor': ' W ndowsLocal Debugger' ,
' Local Debugger Att ach' : None,
' Local Debugger Debugger Type' : None,
' Local Debugger Mer geEnvi ronnment ' : None,

H H H H

Iy
== SCONS 43

Local Debugger SQLDebuggi ng' : None,
Renot eDebugger Command’ : None,

Renot eDebugger CommandAr gunent s’ : None,
Renot eDebugger Wor ki ngDi rectory' : None,
Renot eDebugger Ser ver Nane' : None,

Renot eDebugger Connecti on' : None,

Renot eDebugger Debugger Type' : None,
Renot eDebugger Att ach' : None,

Renot eDebugger SQLDebuggi ng' : None,
Depl oynment Di rectory' : None

" Addi tional Files': None,

' Renot eDebugger Depl oyDebugCppRunti me' : None,
' WebBr owser Debugger Ht t pUr ' : None,

" WebBr owser Debugger Debugger Type' : None,
" WebSer vi ceDebugger Ht t pUr| ' : None,

" WebSer vi ceDebugger Debugger Type' : None,
" WebSer vi ceDebugger SQLDebuggi ng' : None,

SR H H O H H HH O H HHHHHHH

3. Select the dictionary you want dependi ng on the version of visua
Files you want to generate

H H HH

f not env.CGet Option('userfile'):
dbgSetti ngs = None

elif env.get(' MSVC VERSION , None) == '9.0":
dbgSetti ngs = V9DebugSetti ngs

elif env.get(' MSVC VERSION , None) == '11.0":
dbgSetti ngs = V10DebugSetti ngs

el se:

dbgSetti ngs = None

#

4. Add the dictionary to the DebugSettings keyword.
#

barsrcs = ['bar.cpp', 'dllmin.cpp’, 'stdafx.cpp']
barincs = ['targetver.h']

barl ocal incs = [' St dAf x. h']

barresources = ['bar.rc','resource. h']

barm sc = [' ReadMe. t xt ']

dl I = env. SharedLi brary(target = 'bar.dll",
source = barsrcs)
env. MBVSProj ect (target = 'Bar' + env[' MSVSPRQIECTSUFFI X'],

srcs = barsrcs,

incs = barincs,

| ocal i ncs = barl ocal i ncs,

resources = barresources,

m sc = barm sc

buildtarget = [dII[0]] * 2,

variant = (' Debug| Wn32', 'Rel ease|Wn32'),
cndargs = 'vc=%' % nsvcver,

DebugSettings = (dbgSettings, {}))

St udi o

b4

SCONS

MBVSSol ution() ,
env. MBVSSol ut i on()
Builds a Microsoft Visual Studio solution file.

ThisbuildsaVisual Studio solution file, based on the version of Visual Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSI ON in the construction environment). For Visua
Studio 6, it will generatea. dswfile. For Visual Studio 7 (.NET), it will generatea. sl n file.

The following values must be specified:

target
The name of the target .dsw or .sin file. The correct suffix for the version of Visual Studio must be used, but
the value $MSVSSCOLUTI ONSUFFI X will be defined to the correct value (see example below).

variant
The name of this particular variant, or alist of variant names (the latter is only supported for MSV'S 7 solu-
tions). These are typically things like "Debug" or "Release”, but really can be anything you want. For MSV'S
7 they may also specify target platform, like this " Debug|Xbox". Default platform is Win32.

projects
A list of project file names, or Project nodes returned by calls to the MSVSPr oj ect Builder, to be placed
into the solution file. It should be noted that these file names are NOT added to the $SOURCES environment
variable in form of files, but rather as strings. This is because they represent file names to be added to the
solution file, not the source files used to build the solution file.

Example Usage:
env. M5VSSol uti on(target = 'Bar' + env[' MSVSSOLUTI ONSUFFI X'], projects = ['bar'
+ env[' MBVSPRQIECTSUFFI X']], variant = 'Rel ease')

oj ect () ,

env. Qbj ect ()
A synonym for the St at i cObj ect builder method.

Package() ,
env. Package()
Builds a Binary Package of the given sourcefiles.

env. Package(source = Findlnstall edFiles())

Builds software distribution packages. Packages consist of filesto install and packaging information. The former
may be specified with the sour ce parameter and may be left out, in which casethe Fi ndl nst al | edFi | es
function will collect all files that have an I nst al | or | nst al | As Builder attached. If thet ar get is not
specified it will be deduced from additional information given to this Builder.

The packaging information is specified with the help of construction variables documented below. Thisinforma:
tioniscalled atag to stress that some of them can also be attached to files with the Tag function. The mandatory
ones will complain if they were not specified. They vary depending on chosen target packager.

The target packager may be selected with the "PACKAGETYPE" command line option or with the $PACK-
AGETYPE construction variable. Currently the following packagers available:

* ms - Microsoft Installer * rpm - Redhat Package Manger * ipkg - Itsy Package Management System * tarbz2
- compressed tar * targz - compressed tar * zip - zip file * src_tarbz2 - compressed tar source * src_targz -
compressed tar source* src_zip - zip file source

Iy
=== SCONS 45

An updated list is aways available under the "package type" option when running "scons --help" on a project
that has packaging activated.

env = Environnent (tool s=['default', 'packaging'])
env.lnstall ('/bin/', 'ny_programn)
env. Package(NAMVE = 'foo',
VERSI ON ='1.23",
PACKAGEVERSI ON = 0,
PACKAGETYPE = 'rpnm,
LI CENSE = 'gpl",
SUMVARY = 'bal al al al al ',
DESCRI PTI ON = '"this should be really really long',
X_RPM_GROUP = 'Application/fu',
SOURCE_URL = 'http://foo.org/foo-1.2.3.tar.gz'
)
PCH() ,
env. PCH()

Builds a Microsoft Visual C++ precompiled header. Calling this builder method returns alist of two targets. the
PCH asthefirst element, and the object file asthe second element. Normally the object fileisignored. Thisbuilder
method is only provided when Microsoft Visual C++ is being used as the compiler. The PCH builder method is
generally used in conjuction with the PCH construction variableto force object filesto use the precompiled header:

env[' PCH] = env. PCH(' StdAfx.cpp')[0]

PDF() |

env. PDF()
Buildsa. pdf filefroma. dvi input file (or, by extension, a. tex, . | t x, or. | at ex input file). The suffix
specified by the $PDFSUFFI X construction variable (. pdf by default) is added automatically to the target if it
isnot already present. Example:

builds from aaa.tex

env. PDF(target = 'aaa.pdf', source = 'aaa.tex')
bui |l ds bbb. pdf from bbb. dvi
env. PDF(target = 'bbb', source = 'bbb.dvi')

PO nNnit(),

env. PO nit ()

This builder belongs to nsgi ni t tool. The builder initializes missing PO file(s) if $POAUTO NI T is set. If
$POAUTA NI T isnot set (default), PA ni t printsinstruction for user (that is supposed to be atranslator), telling
how the POfile should beinitialized. In normal projectsyou should not use POl ni t and use POUpdat e instead.
PQOUpdat e chooses intelligently between msgmerge(1) and msginit(1). PO ni t aways uses msginit(1) and
should be regarded as builder for special purposes or for temporary use (e.g. for quick, one time initialization of
abunch of POfiles) or for tests.

Target nodes defined through POl ni t arenot built by default (they'rel gnor edfrom’ . ' node) but are added to
special Al i as (' po-creat e' by default). The alias name may be changed through the SPOCREATE_ALI AS
construction variable. All POfiles defined through POl ni t may be easily initialized by scons po-cr eate.

Example 1. Initializeen. po and pl . po from messages. pot :

Iy
=== SCONS 46

...
env.POnit(['en", "pl']) # nmessages.pot --> [en.po, pl.po]

Example 2. Initializeen. po and pl . po fromf 0o0. pot :

...
env.POnit(['en', "pl"], ['foo']) # foo.pot --> [en.po, pl.po]

Example 3. Initializeen. po and pl . po fromf 0o. pot but using $POTDOMAI N construction variable:

...
env.POnit(['en', "pl'], POTDOVAI N='foo') # foo.pot --> [en.po, pl.po]

Example 4. Initialize POfiles for languages defined in L1 NGUAS file. The files will be initialized from template
nmessages. pot:

...
env. PO ni t (LI NGUAS_FI LE = 1) # needs 'LINGUAS file

Example5. Initializeen. po and pl . pl POfilesplusfilesfor languages defined in LI NGUAS file. Thefileswill
beinitialized from template messages. pot :

...
env.PAnit(['en", 'pl'], LINGUAS FILE = 1)

Example 6. Y ou may preconfigure your environment first, and then initialize POfiles:

...

env[' POAUTONIT'] =1
env['LINGUAS FILE'] =1
env[' POTDOMAIN'] = 'foo'
env. PO nit()

which has same efect as;

...
env. PO nit(POAUTON T = 1, LINGUAS FILE = 1, POTDOVAIN = 'fo0')

Post Script() ,

env. Post Scri pt ()
Buildsa. ps filefrom a. dvi input file (or, by extension, a. t ex, . | t x, or . | at ex input file). The suffix
specified by the $PSSUFFI X construction variable (. ps by default) is added automatically to the target if it is
not already present. Example:

builds from aaa.tex

env. Post Script(target = 'aaa.ps', source = 'aaa.tex')
buil ds bbb. ps from bbb. dvi
env. Post Script(target = 'bbb', source = 'bbb.dvi")

&

'—‘-‘ SCONS 47

POTUpdat e() ,

env. POTUpdat e()
The builder belongsto xget t ext tool. The builder updates target POT file if exists or creates oneif it doesn't.
The node is not built by default (i.e. itis| gnor edfrom' . '), but only on demand (i.e. when given POT fileis
required or when special aias isinvoked). This builder adds its targe node (messages. pot , say) to a specia
adlias (pot - updat e by default, see $POTUPDATE_ALI AS) so you can update/create them easily with scons
pot-update. The file is not written until there is no real change in internationalized messages (or in comments
that enter POT file).

Note

You may see xgettext(1) being invoked by the xget t ext tool even if there is no rea changein in-
ternationalized messages (so the POT file is not being updated). This happens every time a source file
has changed. In such case we invoke xgettext(1) and compare its output with the content of POT file to
decide whether the file should be updated or not.

Example 1. Let's create po/ directory and place following SConst r uct script there:

SConstruct in 'po/' subdir

env = Environnent(tools = ['default', 'xgettext'])
env. POTUpdate(['foo'], ['../a.cpp', '../b.cpp'])
env. POTUpdate(['bar'], ['../c.cpp', '../d.cpp'])

Then invoke scons few times:

user @ost:$ scons # Does not create foo.pot nor bar. pot
user @ost: $ scons foo. pot # Updates or creates foo. pot

user @ost:$ scons pot-update # Updates or creates foo.pot and bar. pot
user @ost:$ scons -c # Does not cl ean foo.pot nor bar. pot.

the results shall be as the comments above say.

Example 2. The POTUpdat e builder may be used with no target specified, in which case default target
nessages. pot will be used. The default target may also be overriden by setting $POTDOMAI N construction
variable or providing it as an override to POTUpdat e builder:

SConstruct scri pt

env = Environment(tools = ['default', 'xgettext'])

env[' POTDOMAIN'] = "f oo"

env. POTUpdat e(source = ["a.cpp", "b.cpp"]) # Creates foo.pot

env. POTUpdat e(POTDOVAI N = "bar", source = ["c.cpp", "d.cpp"]) # and bar. pot

Example 3. The sources may be specified within separate file, for example POTFI LES. i n:

POTFILES.in in 'po/' subdirectory
..la.cpp

../ b.cpp

end of file

The name of the file (POTFI LES. i n) containing the list of sourcesis provided via $XGETTEXTFROM

SConstruct file in 'po/' subdirectory

Iy
=== SCONS 48

env = Environment(tools = ["default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n')

Example 4. Y ou may use $XGETTEXTPATH to define source search path. Assume, for example, that you have
filesa. cpp,b. cpp,po/ SConst ruct ,po/ POTFI LES. i n. Thenyour POT-related files could | ook asbel ow:

POTFILES.in in 'po/' subdirectory

a. cpp

b. cpp
end of file

SConstruct file in 'po/' subdirectory
env = Environment(tools = ["default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XCGETTEXTPATH='.. /')

Example 5. Multiple search directories may be defined within a list, i.e. XGETTEXTPATH = ['dirl',
"dir2', ...].Theorderinthelist determinesthe search order of sourcefiles. The path to thefirst file found
is used.

Let'screate 0/ 1/ po/ SConst r uct script:

SConstruct file in '0/1/po/' subdirectory
env = Environment(tools = ["default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XCGETTEXTPATH=['../', '../../"'])

and 0/ 1/ po/ POTFI LES. i n:

POTFILES.in in '0/1/po/' subdirectory

a.cpp
end of file

Writetwo * . cpp files, thefirst oneis0/ a. cpp:

/* 0/ a.cpp */
gettext("Hello from../../a.cpp")

and the second is0/ 1/ a. cpp:

[* 0/ 1/ a.cpp */
gettext("Hello from../a.cpp")

thenrunscons. You'll obtain 0/ 1/ po/ messages. pot withthemessage" Hel 1l o from../a. cpp".When
you reverse order in $XGETTEXTFOM i.e. when you write SConscript as

SConstruct file in '0/1/po/' subdirectory
env = Environment(tools = ["default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XCGETTEXTPATH=['../../', '../"'])

thenthenessages. pot will containnsgid "Hello from../../a.cpp" lineandnotnsgi d "Hel |l o
from../a.cpp".

Iy
=== SCONS 49

PQUpdat e() ,

env. POUpdat e()
The builder belongs to nsgner ge tool. The builder updates POfiles with msgmer ge(1), or initializes missing
POfiles as described in documentation of nsgi ni t tool and PO ni t builder (see also $POAUTA NI T). Note,
that POUpdat e does not add itstargetsto po- cr eat e aliasas PO ni t does.

Target nodes defined through POUpdat e are not built by default (they're | gnor ed from' . ' node). Instead,
they are added automatically to specia Al i as (' po- updat e' by default). The alias name may be changed
through the SPOUPDATE_AL | AS construction variable. Y ou can easilly update POfilesin your project by scons
po-update.

Example 1. Updateen. po and pl . po fromnmessages. pot template (see also $POTDOVAI N), assuming that
the later one exists or thereisrule to build it (see POTUpdat e):

...
env. POUpdate(['en','pl']) # nessages.pot --> [en.po, pl.po]

Example 2. Updateen. po and pl . po fromf 0o. pot template:

...
env. POQUpdate(['en', 'pl'], ['foo']) # foo.pot --> [en.po, pl.pl]

Example 3. Updateen. po and pl . po fromf 00. pot (another version):

...
env. POQUpdate(['en', 'pl'], POTDOVAIN='foo') # foo.pot -- > [en.po, pl.pl]

Example 4. Update files for languages defined in LI NGUAS file. The files are updated from nessages. pot
template:

...
env. PQUpdat e(LI NGUAS_FI LE = 1) # needs 'LINGUAS file

Example 5. Same as above, but update from f 00. pot template:

...
env. POUpdat e(LI NGQUAS FILE = 1, source = ['fo0'])

Example 6. Update en. po and pl . po plusfiles for languages defined in LI NGUAS file. The files are updated
fromnessages. pot template:

produce 'en.po', 'pl.po" + files defined in 'LINGUAS :
env. PQUpdate(['en', '"pl"], LINGUAS FILE = 1)

Example 7. Use SPOAUTA NI T to automatically initialize POfileif it doesn't exist:

B
env. POUpdat e(LI NGUAS FILE = 1, POAUTOINIT = 1)

Example 8. Update POfiles for languages defined in L1 NGUAS file. The files are updated from f 00. pot tem-
plate. All necessary settings are pre-configured via environment.

Iy
=== SCONS 50

...

env[' POAUTON T] =1
env['LINGUAS FILE'] =1
env[' POTDOVAIN] = 'foo'
env. POUpdat e()

Program() ,
env. Program()

Builds an executable given one or more object files or C, C++, D, or Fortran source files. If any C, C++, D or
Fortran source files are specified, then they will be automatically compiled to object files using the Cbj ect
builder method; see that builder method's description for a list of legal source file suffixes and how they are
interpreted. The target executable file prefix (specified by the $PROGPREFI X construction variable; nothing
by default) and suffix (specified by the $PROGSUFFI X construction variable; by default, . exe on Windows
systems, nothing on POSIX systems) are automatically added to the target if not already present. Example:

env. Program(target = 'foo', source = ['fo00.0', "bar.c', 'baz.f'])

RES() ,

env. RES()
Builds a Microsoft Visual C++ resource file. This builder method is only provided when Microsoft Visual C++
or MinGW is being used as the compiler. The. r es (or . o for MinGW) suffix is added to the target name if no
other suffix is given. The sourcefile is scanned for implicit dependencies as though it were a C file. Example:

env. RES(' resource.rc')

RM () ,

env. RM ()
Builds stub and skeleton class files for remote objects from Java. cl ass files. The target is adirectory relative
to which the stub and skeleton class files will be written. The source can be the names of . cl ass files, or the
objects return from the Java builder method.

If the construction variable $J AVACLASSDI Ris set, either in the environment or in the call to the RM C builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

cl asses = env.Java(target = 'classdir', source = 'src')
env. RM C(target = 'outdirl', source = classes)
env. RM C(target = 'outdir2',
source = [' package/foo.class', 'package/bar.class'])
env. RM C(target = 'outdir3',
source = ['classes/foo.class', 'classes/bar.class'],

JAVACLASSDI R = ' cl asses')

RPCGend i ent () ,

env. RPCGend i ent ()
Generatesan RPC client stub (_cl nt . c¢) filefrom a specified RPC (. x) source file. Because rpcgen only builds
output filesin the local directory, the command will be executed in the sourcefile's directory by default.

Builds src/rpcif_clnt.c
env. RPCGenCl i ent (" src/rpcif.x")

Iy
=== SCONS 51

RPCGenHeader () ,

env. RPCGenHeader ()
Generates an RPC header (. h) file from aspecified RPC (. x) sourcefile. Because rpcgen only builds output files
in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif.h
env. RPCGenHeader (' src/rpcif.x")

RPCCGenSer vi ce() ,

env. RPCGenSer vi ce()
Generates an RPC server-skeleton (_svc. c¢) file from a specified RPC (. x) source file. Because rpcgen only
builds output filesin the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_svc.c
env. RPCGenCl i ent (" src/rpcif.x")

RPCGenXDR() ,

env. RPCGenXDR()
Generatesan RPC XDR routine (_xdr . c) filefrom aspecified RPC (. x) sourcefile. Because rpcgen only builds
output filesin the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_xdr.c
env. RPCGenCl i ent (' src/rpcif.x")

Shar edLi brary() ,

env. Shar edLi brary()
Buildsashared library (. so onaPOSIX system, . dl | on Windows) given one or more object filesor C, C++, D
or Fortran source files. If any source files are given, then they will be automatically compiled to object files. The
static library prefix and suffix (if any) are automatically added to thetarget. Thetarget library file prefix (specified
by the $SHL | BPREFI X construction variable; by default, | i b on POSIX systems, nothing on Windows systems)
and suffix (specified by the $SHLI BSUFFI X construction variable; by default, . dI | onWindows systems, . so
on POSIX systems) are automatically added to the target if not already present. Example:

env. Shar edLi brary(target = 'bar', source = ['bar.c', 'fo0.0'])

On Windows systems, the Shar edLi br ary builder method will always build an import (. | i b) library in
addition to the shared (. dl |) library, adding a. | i b library with the same basename if there is not already a
. I'i b fileexplicitly listed in the targets.

On Cygwin systems, the Shar edLi br ary builder method will always build an import (. dl | . a) library in
addition to the shared (. dl |) library, adding a. dl | . a library with the same basename if there is not already
a.dl | . afileexplicitly listed in the targets.

Any object fileslisted inthesour ce must have been built for ashared library (that is, using the Shar edhj ect
builder method). scons will raise an error if thereis any mismatch.

On some platforms, there is a distinction between a shared library (loaded automatically by the system to resolve
external references) and a loadable module (explicitly loaded by user action). For maximum portability, use the
Loadabl eModul e builder for the latter.

When the $SHLI BVERSI ON construction variableis defined aversioned shared library is created. This modifies
the $SHLI NKFLAGS as required, adds the version number to the library name, and creates the symlinks that are

Iy
=== SCONS 52

needed. $SHLI BVERSI ON needs to be of the form X.Y.Z, where X and Y are numbers, and Z is a number but
can also contain letters to designate al pha, beta, or release candidate patch levels.

env. Shar edLi brary(target = 'bar’', source = ['"bar.c', 'foo.0'], SHLIBVERSION="1.5.2")

Thisbuilder may create multiplelinksto the library. On aPOSIX system, for the shared library libbar.s0.2.3.1, the
links created would be libbar.so and libbar.s0.2; on aDarwin (OSX) system thelibrary would belibbar.2.3.1.dylib
and the link would be libbar.dylib.

On Windows systems, specifying r egi st er =1 will cause the . dl | to be registered after it is built using
REGSVR32. The command that isrun (“regsvr32" by default) is determined by $REGSVR construction variable,
and the flags passed are determined by $SREGSVRFLAGS. By default, SREGSVRFLAGS includesthe/ s option,
to prevent dialogs from popping up and requiring user attention when it is run. If you change $REGSVRFLAGS,
be sureto include the/ s option. For example,

env. Shar edLi brary(target = 'bar',
source = ['bar.cxx', 'foo.obj'],
regi st er=1)

will register bar . dl | asa COM object when it is done linking it.

Shar edCbj ect () ,

env. Shar edoj ect ()
Builds an object file for inclusion in a shared library. Source files must have one of the same set of extensions
specified above for the St at i cObj ect builder method. On some platforms building a shared object requires
additional compiler option (e.g. - f PI C for gcc) in addition to those needed to build a normal (static) object,
but on some platforms there is no difference between a shared object and a normal (static) one. When thereisa
difference, SCons will only allow shared objects to be linked into a shared library, and will use a different suffix
for shared objects. On platforms where there is no difference, SCons will alow both normal (static) and shared
objects to be linked into a shared library, and will use the same suffix for shared and normal (static) objects.
The target object file prefix (specified by the $SHOBJPREFI X construction variable; by default, the same as
$OBJIPREFI X) and suffix (specified by the $SHOBJ SUFFI X construction variable) are automatically added to
the target if not already present. Examples:

env. Shar edObj ect (t ar get
env. Shar edObj ect (t ar get
env. Shar edObj ect (t ar get

'ddd', source = 'ddd.c')
'eee.0', source = 'eee.cpp')
"fff.obj', source = 'fff.for")

Note that the source fileswill be scanned according to the suffix mappingsinthe Sour ceFi | eScanner object.
See the section "Scanner Objects," below, for more information.

StaticLibrary() ,

env. StaticLi brary()
Builds a static library given one or more object files or C, C++, D or Fortran source files. If any source files are
given, then they will be automatically compiled to object files. The static library prefix and suffix (if any) are au-
tomatically added to thetarget. Thetarget library file prefix (specified by the $LI BPREFI X construction variable;
by default, | i b on POSIX systems, nothing on Windows systems) and suffix (specified by the $LI BSUFFI X
construction variable; by default, . | i b on Windows systems, . a on POSIX systems) are automatically added
to the target if not already present. Example:

env. StaticLibrary(target = 'bar', source = ['"bar.c', 'fo00.0'])

Iy
=== SCONS 53

Any object fileslisted in the sour ce must have been built for astatic library (that is, usingthe St at i cChj ect
builder method). scons will raise an error if there is any mismatch.

StaticCObject(),

env. Stati coj ect ()
Builds a static object file from one or more C, C++, D, or Fortran source files. Source files must have one of
the following extensions:

.asm assenbl y | anguage file
. ASM assenbly | anguage file

.C Cfile
.C Wndows: Cfile
POSI X: C++ file
.CcC C++ file
. cpp C++ file
. CXX C++ file
. CXX C++ file
. C++ C++ file
. C++ C++ file
.d Dfile
. f Fortran file
F W ndows: Fortran file
PCSI X: Fortran file + C pre-processor
.for Fortran file
. FOR Fortran file
.fpp Fortran file + C pre-processor
. FPP Fortran file + C pre-processor
m Qhject Cfile
.m Qoj ect C++ file
S assenbl y | anguage file
S W ndows: assenbly | anguage file
ARM CodeSourcery Sourcery Lite
. SX assenbly | anguage file + C pre-processor
PCSI X: assenbly | anguage file + C pre-processor
. Spp assenbly | anguage file + C pre-processor
. SPP assenbly | anguage file + C pre-processor

The target object file prefix (specified by the $OBJPREF| X construction variable; nothing by default) and suffix
(specified by the $0OBISUFFI X construction variable; . obj on Windows systems, . 0 on POSIX systems) are
automatically added to the target if not already present. Examples:

env. Stati cObject (target = 'aaa', source = 'aaa.c')
env. Stati cOoj ect (target = 'bbb.o', source = 'bbb.c++')
env. Stati cOoject(target = 'ccc.obj', source = 'ccc.f')

Note that the source files will be scanned according to the suffix mappings in Sour ceFi | eScanner object.
See the section " Scanner Objects," below, for more information.

Substfile(),

env. Substfile()
The Subst fi | e builder creates a single text file from another file or set of files by concatenating them with
$L1 NESEPARATOR and replacing text using the $SUBST_DI CT construction variable. Nested lists of source
filesareflattened. Seeaso Textfi |l e.

Iy
=== SCONS 54

If asingle sourcefileis present with an . i n suffix, the suffix is stripped and the remainder is used as the default
target name.

The prefix and suffix specified by the SSUBSTFI LEPREFI X and $SUBSTFI LESUFFI X construction variables
(the null string by default in both cases) are automatically added to the target if they are not already present.

If a construction variable named $SUBST_DI CT is present, it may be either a Python dictionary or a sequence
of (key,value) tuples. If it isadictionary it is converted into alist of tuplesin an arbitrary order, so if onekey is
aprefix of another key or if one substitution could be further expanded by another subsitition, it is unpredictable
whether the expansion will occur.

Any occurrences of akey in the source are replaced by the corresponding value, which may be a Python callable
function or a string. If the value is a callable, it is called with no arguments to get a string. Strings are subst-
expanded and the result replaces the key.

env = Environment(tools = ['default', "textfile'])

env['prefix'] = "'/usr/bin'
script _dict = {' @refix@: '/bin', @xec_prefix@ '3$prefix'}
env. Substfile('script.in', SUBST DI CT = script_dict)

conf_dict = {' WERSION% : '1.2.3", '9%BASE%: 'M/Prog'}
env. Substfile('config.h.in", conf_dict, SUBST DI CT = conf_dict)

UNPREDI CTABLE - one key is a prefix of another
bad_foo = {'$foo': '$foo', '$foobar': '$foobar'}
env. Substfile('foo.in', SUBST DI CT = bad_f o00)

PREDI CTABLE - keys are applied | ongest first
good_foo = [(' $foobar', '$foobar'), ('$foo', '$foo')]
env. Substfile('foo.in', SUBST DI CT = good_f 00)

UNPREDI CTABLE - one substitution could be futher expanded
bad bar = {' @ar@: ' @oap@, ' @oap@: 'lye'}
env. Substfile('bar.in', SUBST DI CT = bad_bar)

PREDI CTABLE - substitutions are expanded in order
good_bar = ((' @ar@, ' @oap@), (' @oap@, 'lye'))
env. Substfile('bar.in', SUBST DI CT = good_bar)

the SUBST DI CT may be in conmon (and not an override)
substutions = {}
subst = Environment(tools = ['"textfile'], SUBST DI CT = substitutions)
substitutions[' @oo@] = 'foo
subst['SUBST DICT' |[' @ar@] = 'bar'
subst. Substfile(' pgnil.c', [Value('#include "@oo@h"'),
Val ue(' #i ncl ude " @ar@h"'),
"conmon. i n",
"pgml. in"
1)
subst. Substfile(' pgn2.c', [Value('#include "@oo@h"'),
Val ue(' #i ncl ude " @ar@h"'),

"conmon.in",
"pgnR.in"
Iy
=== SCONS 55

Tar
env

Tex
env

1)

0.

. Tar ()

Buildsatar archive of the specified filesand/or directories. Unlike most builder methods, the Tar builder method
may be called multipletimesfor agiven target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardliess of whether or not
scons knows about them from other Builder or function calls.

env. Tar('src.tar', 'src')

Create the stuff.tar file.

env. Tar('stuff', ['subdirl', 'subdir2'])

Also add "another" to the stuff.tar file.
env. Tar (' stuff', 'another')

Set TARFLAGS to create a gzip-filtered archive.
env = Environment (TARFLAGS = '-c -2')
env. Tar('foo.tar.gz', 'foo')

Also set the suffix to .tgz.

env = Environment (TARFLAGS = '-c -2',
TARSUFFI X = ' . tgz')

env. Tar (' foo')

tfile(),

.Textfile()

TheText fi | e builder generates asingle text file. The source strings constitute the lines; nested lists of sources
areflattened. $LI NESEPARATOR is used to separate the strings.

If present, the $SUBST_DI CT construction variable is used to modify the strings before they are written; see the
Subst fi | e description for details.

The prefix and suffix specified by the STEXTFI LEPREFI X and $TEXTFI LESUFFI X construction variables
(the null string and . t xt by default, respectively) are automatically added to the target if they are not already
present. Examples:

builds/wites foo.txt
env. Textfile(target = 'foo.txt', source = ['Goethe', 42, "Schiller'])

builds/wites bar.txt

env. Textfile(target = 'bar',
source = ['lalala', "tanteratei'],
LI NESEPARATOR=" | **)

nested lists are flattened automatically
env. Textfile(target = 'blob',
source ['lalala', ['CGoethe', 42 'Schiller'], 'tanteratei'])

files may be used as input by waping themin File()
env. Textfil e(target ‘concat', # concatenate files with a nmarker between
source [File('concatl'), File('concat2')],

~

'—‘-‘ SCONS 56

LI NESEPARATOR = ' ====================\ ')

Resul ts are:
foo. t xt
e .. 8<----
Coet he
42
Schil | er
....8<---- (no linefeed at the end)

bar .t xt:
ce .. 8<%
| al al a] *t ant er at ei
....8<---- (no linefeed at the end)

bl ob. t xt
e .. 8<----
| al al a
Coet he
42
Schil | er
t ant er at ei
....8<---- (no linefeed at the end)

Transl ate() ,
env. Transl at e()

This pseudo-builder belongs to get t ext toolset. The builder extracts internationalized messages from source
files, updates POT template (if necessary) and then updates PO trangdlations (if necessary). If SPOAUTO NI T
is set, missing POfiles will be automatically created (i.e. without translator person intervention). The variables
$LI NGUAS_FI LE and $POTDOVAI N are taken into acount too. All other construction variables used by PO-
TUpdat e, and POUpdat e work here too.

Example 1. The simplest way isto specify input files and output languagesinline in a SCons script when invoking
Transl ate

SConscript in 'po/' directory

env = Environment(tools = ["default", "gettext"])
env[' POAUTONT] =1
env. Translate(['en',"'pl"], ['../a.cpp',"'../b.cpp'])

Example 2. If you wish, you may also stick to conventional style known from autotools, i.e. using POTFI LES. i n
and L1 NGUAS files

LI NGUAS
en pl
#end

POTFI LES. in

a.cpp

b. cpp
end

~

'—‘-‘ SCONS 57

SConscri pt

env = Environment(tools = ["default", "gettext"])

env[' POAUTON T] =1

env[' XGETTEXTPATH] =['../"]

env. Transl at e(LI NGQUAS_FI LE = 1, XGETTEXTFROM = ' POTFI LES.in")

The last approach is perhaps the recommended one. It allows easily split internationalization/localization onto
separate SCons scripts, where a script in source tree is responsible for trandlations (from sources to POfiles) and
script(s) under variant directories are responsible for compilation of POto MOfiles to and for installation of MO
files. The "gluing factor" synchronizing these two scripts is then the content of LI NGUAS file. Note, that the
updated POT and PO files are usually going to be committed back to the repository, so they must be updated
within the source directory (and not in variant directories). Additionaly, the filelisting of po/ directory contains
LI NGUAS file, so the source tree looks familiar to trandators, and they may work with the project in their usual
way.

Example 3. Let's prepare a devel opment tree as below

proj ect/
+ SConst r uct
+ bui | d/
+ src/
+ po/
+ SConscri pt
+ SConscript.i18n
+ POTFI LES. in
+ LI NGUAS

with bui | d being variant directory. Write the top-level SConst r uct script asfollows

SConst ruct

env = Environment(tools = ["default", "gettext"])
VariantDir("build , 'src', duplicate = 0)

env[' POAUTONT] =1

SConscri pt (' src/ po/ SConscript.i18n', exports = 'env')
SConscri pt (' bui | d/ po/ SConscript', exports = "env')

thesr c/ po/ SConscri pt.i 18nas

src/ po/ SConscript.i 18n
| mport (' env')
env. Transl at e(LI NGQUAS_FI LE=1, XGETTEXTFROME' POTFI LES.in', XGETTEXTPATH=['../'])

and thesr ¢/ po/ SConscr i pt

src/ po/ SConscri pt
| mport (' env')
env. MOFi | es(LI NGUAS_FI LE = 1)

Such setup produces POT and POfiles under source treein sr ¢/ po/ and binary MOfiles under variant treein
bui | d/ po/ . Thisway the POT and POfiles are separated from other output files, which must not be committed
back to source repositories (e.g. MOfiles).

Iy
=== SCONS 58

Note

In above example, the POfiles are not updated, nor created automatically when you issue scons'.' com-
mand. The files must be updated (created) by hand via scons po-update and then MOfiles can be com-
piled by running scons".".

TypeLi brary() ,

env. Typeli brary()
BuildsaWindowstypelibrary (. t | b) filefromaninput IDL file(. i dl). Inaddition, it will build the associated
inteface stub and proxy source files, naming them according to the base name of the . i dl file. For example,

env. TypelLi brary(source="foo.idl")
Will createf 0o. t1 b,foo. h,foo_i.c,foo_p.candfoo_data. c files.

Uc() ,

env. Ui c()
Builds a header file, an implementation file and amoc file from an ui file. and returns the corresponding nodes in
the above order. This builder is only available after using the tool 'gt'. Note: you can specify . ui filesdirectly as
source files to the Pr ogr am Li br ary and Shar edLi br ar y builders without using this builder. Using this
builder lets you override the standard naming conventions (be careful: prefixes are aways prepended to names
of built files; if you don't want prefixes, you may set themto ™). Seethe $QTDI R variable for more information.
Example:

env.U c('foo.ui") # ->['"foo.h', "uic_foo.cc', 'nmoc_foo.cc']
env. U c(target = Split('include/foo.h gen/uicfoo.cc gen/nocfoo.cc'),
source = 'foo.ui') # -> ["include/foo.h', 'gen/uicfoo.cc', 'gen/nocfoo.cc']
Zip() ,
env. Zi p()

Buildsazip archive of the specified files and/or directories. Unlike most builder methods, the Zi p builder method
may be called multipletimesfor agiven target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env. Zip('src.zip', 'src')

Create the stuff.zip file.

env. Zi p('stuff', ['"subdirl', 'subdir2'])

Also add "another" to the stuff.tar file.
env. Zi p(' stuff', 'another')

All targets of builder methods automatically depend on their sources. An explicit dependency can be specified using
the Depends method of a construction environment (see below).

In addition, scons automatically scans source files for various programming languages, so the dependencies do not
need to be specified explicitly. By default, SCons can C source files, C++ source files, Fortran source files with .F
(POSIX systemsonly), .fpp, or .FPP file extensions, and assembly language fileswith .S (POSIX systems only), .spp,
or .SPP files extensions for C preprocessor dependencies. SCons al so has default support for scanning D source files,
You can also write your own Scanners to add support for additional source file types. These can be added to the
default Scanner object used by the Object(), StaticObject(), and SharedObject() Builders by adding them to the
Sour ceFileScanner object. See the section "Scanner Objects' below, for more information about defining your own
Scanner objects and using the Sour ceFileScanner object.

Iy
=== SCONS 59

Methods and Functions to Do Things

In addition to Builder methods, scons provides a number of other construction environment methods and global func-
tions to manipulate the build configuration.

Usually, a construction environment method and global function with the same name both exist so that you don't have
to remember whether to a specific bit of functionality must be called with or without a construction environment. In
the following list, if you call something asaglobal function it looks like:

Functi on(ar gunent s)

and if you call something through a construction environment it looks like:

env. Functi on(ar gunent s)
If you can call the functionality in both ways, then both forms are listed.

Global functions may be called from custom Python modules that you import into an SConscript file by adding the
following to the Python module:

from SCons. Scri pt inport *

Except where otherwise noted, the same-named construction environment method and global function provide the
exact samefunctionality. Theonly differenceisthat, where appropriate, calling the functionality through aconstruction
environment will substitute construction variablesinto any supplied strings. For example:

env = Environment (FOO = ' foo0')
Def aul t (* $FOO)
env. Def aul t (' $FOO)

In the above example, the first call to the global Default() function will actually add atarget named $FOO to the list
of default targets, while the second call to the env.Default() construction environment method will expand the value
and add a target named foo to the list of default targets. For more on construction variable expansion, see the next
section on construction variables.

Construction environment methods and global functions supported by sconsinclude:

Action(action, [cnd/str/fun, [var, ...]] [option=value, ...]),

env. Action(action, [cmd/str/fun, [var, ...]] [option=value, ...])
Creates an Action object for the specified act i on. See the section "Action Objects,” below, for a complete
explanation of the arguments and behavior.

Note that theenv. Act i on() form of theinvocation will expand construction variables in any argument strings,
including theact i on argument, at thetimeit is called using the construction variables in the env construction
environment through whichenv. Act i on() wascalled. The Act i on() form delays al variable expansion until
the Action object is actually used.

AddMet hod(obj ect, function, [nane]) ,

env. AddMet hod(function, [nane])
When called with the AddMet hod() form, adds the specified f unct i on to the specified obj ect asthe spec-
ified method nanme. When called with the env. AddMet hod() form, adds the specified f unct i on to the con-

Iy
=== SCONS 60

Add

struction environment env as the specified method nane. In both cases, if nane is omitted or None, the name
of the specified f unct i on itself isused for the method name.

Examples:

Note that the first argunent to the function to
be attached as a net hod nust be the object through
which the nethod will be called; the Python
convention is to call it 'self'.
def ny_nethod(sel f, arg):
print "ny_nethod() got", arg

Use the gl obal AddMet hod() function to add a net hod
to the Environnment class. This

AddMet hod(Envi r onnent, my_net hod)

env = Environnent ()

env. ny_net hod('arg')

Add the function as a nethod, using the function
nane for the nmethod call.

env = Environnent ()

env. AddMet hod(ny_net hod, ' ot her nethod nanme')

env. ot her _nmet hod_nane(' anot her arg')

Opti on(ar gunent s)

This function adds a new command-line option to be recognized. The specified ar gunent s are the same as
supported by the standard Python opt par se. add_opt i on() method (with afew additional capabilities noted
below); see the documentation for opt par se for athorough discussion of its option-processing capabities.

In addition to the arguments and values supported by the opt par se. add_opt i on() method, the SCons Ad-
dOpt i on function alows you to set the nar gs keyword valueto' ?' (astring with just the question mark) to
indicate that the specified long option(s) take(s) an optional argument. When nargs = ' ?' ispassed to the
AddOpt i on function, the const keyword argument may be used to supply the "default" value that should be
used when the option is specified on the command line without an explicit argument.

If nodef aul t = keyword argument is supplied when calling AddOpt i on, the option will have a default value
of None.

Once a new command-line option has been added with AddOpt i on, the option value may be accessed using
Get Opti onorenv. Get Opti on(). Thevalue may also be set, using Set Qpt i on or env. Set Opt i on(), if
conditionsinaSConscri pt require overriding any default value. Note, however, that a value specified on the
command line will always override avalue set by any SConscript file.

Any specified hel p= stringsfor the new option(s) will be displayed by the- Hor - h options (the latter only if no
other help text is specified in the SConscript files). The help text for the local options specified by AddOpt i on
will appear below the SCons options themselves, under a separate Local Opt i ons heading. The options will
appear in the help text in the order in which the AddOpt i on calls occur.

Example:
AddOption(' --prefix",

dest='prefix"',
nargs=1, type='string',

~

'—‘-‘ SCONS 61

action='store',
nmetavar='DI R ,
hel p="installation prefix')
env = Environment (PREFI X = Get Option(' prefix'))

AddPost Action(target, action),
env. AddPost Acti on(target, action)

Arranges for the specified act i on to be performed after the specified t ar get has been built. The specified
action(s) may be an Action object, or anything that can be converted into an Action object (see below).

When multiple targets are supplied, the action may be called multiple times, once after each action that generates
one or more targetsin thelist.

AddPr eActi on(target, action),
env. AddPreActi on(target, action)

Ali

Arrangesfor the specified act i on to be performed before the specified t ar get isbuilt. The specified action(s)
may be an Action object, or anything that can be converted into an Action object (see below).

When multiple targets are specified, the action(s) may be called multiple times, once before each action that
generates one or more targetsin thelist.

Notethat if any of thetargetsare built in multiple steps, the action will beinvoked just beforethe"final" action that

specifically generates the specified target(s). For example, when building an executable program from a specified
source . ¢ fileviaan intermediate object file:

foo = Program('foo.c')
AddPr eActi on(foo, 'pre_action')

The specified pr e_act i on would be executed before scons calls the link command that actually generates
the executable program binary f 00, not before compiling thef 0o. ¢ file into an object file.

as(alias, [targets, [action]]),

env. Alias(alias, [targets, [action]])

Al l

Creates one or more phony targets that expand to one or more other targets. An optional act i on (command) or
list of actions can be specified that will be executed whenever the any of the alias targets are out-of-date. Returns
the Node object representing the alias, which exists outside of any file system. This Node object, or the alias name,
may be used as a dependency of any other target, including another dias. Al i as can be called multiple timesfor
the same alias to add additional targetsto the alias, or additional actionsto thelist for thisdias.

Examples:

Alias('install")

Alias('install', '"/usr/bin")

Alias(['install', "install-lib"], '"/usr/local/lib")
env.Alias('install', ['/usr/local/bin', "/usr/local/lib'])
env.Alias('install', ['/usr/local/man'])

env. Alias('update', ['filel', 'file2'], "update_ database $SOURCES")

owSubst Excepti ons([exception, ...])
Specifiesthe exceptionsthat will be allowed when expanding construction variables. By default, any construction
variable expansions that generate aNaneEr r or or | ndexEr r or exception will expandtoa' ' (anull string)

~

'—‘-‘ SCONS 62

and not cause scons to fail. All exceptions not in the specified list will generate an error message and terminate
processing.

If Al'l owSubst Excepti ons is called multiple times, each call completely overwrites the previous list of
allowed exceptions.

Example:

Requires that all construction variable nanes exist.

(You may wish to do this if you want to enforce strictly

that all construction variables nust be defined before use.)
Al | owSubst Except i ons()

Also allow a string containing a zero-divi si on expansi on
like "${1 / 0}' to evalute to '".
Al | owSubst Except i ons(| ndexError, NameError, ZeroDi visi onError)

Al waysBui |l d(target, ...),

env. Al waysBui | d(target, ...)
Marks each givent ar get so that it is always assumed to be out of date, and will always be rebuilt if needed.
Note, however, that Al waysBui | d does not add its target(s) to the default target list, so the targets will only be
built if they are specified on the command line, or are a dependent of atarget specified on the command line--but
they will always be built if so specified. Multiple targets can be passed in to asingle call to Al waysBui | d.

env. Append(key=val, [...])
Appends the specified keyword arguments to the end of construction variables in the environment. If the Envi-
ronment does not have the specified construction variable, it is simply added to the environment. If the values of
the construction variable and the keyword argument are the same type, then the two values will be simply added
together. Otherwise, the construction variable and the value of the keyword argument are both coerced to lists,
and the lists are added together. (See also the Prepend method, below.)

Example:

env. Append(CCFLAGS = ' -g', FOO = ['foo0.yyy'])

env. AppendENVPat h(nane, newpath, [envnane, sep, delete_existing])
Thisappends new path elementsto the given path in the specified externa environment (ENV by default). Thiswill
only add any particular path once (leaving the last one it encounters and ignoring the rest, to preserve path order),
and to help assurethis, will normalize all paths (using 0s. pat h. nor npat h and os. pat h. nor ntase). This
can also handle the case where the given old path variable is a list instead of a string, in which case a list will
be returned instead of a string.

If del et e_exi sti ngisO, then adding a path that already existswill not move it to the end; it will stay where
itisinthelist.

Example:

print 'before:',env['ENV][' | NCLUDE]

i ncl ude_path = '/foo/bar:/foo'

env. AppendENVPat h(' | NCLUDE' , i ncl ude_pat h)
print "after:',env[' ENV'][' | NCLUDE]

Iy
=== SCONS 63

yi el ds:
bef ore: /foo:/biz
after: /biz:/fool/bar:/foo

env. AppendUni que(key=val, [...], delete_existing=0)
Appends the specified keyword arguments to the end of construction variablesin the environment. If the Environ-
ment does not have the specified construction variable, it is simply added to the environment. If the construction
variable being appended to is alist, then any value(s) that already exist in the construction variable will not be
added again to the list. However, if delete_existing is 1, existing matching values are removed first, so existing
valuesin the arg list move to the end of thelist.

Example:

env. AppendUni que(CCFLAGS = '-g', FOO = ['fo0.yyy'])

env. Bi t Keeper ()
A factory function that returns a Builder object to be used to fetch source files using BitKeeper. The returned
Builder isintended to be passed to the Sour ceCode function.

Thisfunction is deprecated. For details, see the entry for the Sour ceCode function.

Example:

env. Sour ceCode('."', env.BitKeeper())

BuildDir(build dir, src_dir, [duplicate]),

env.BuildDir(build_dir, src_dir, [duplicate])
Deprecated synonyms for Var i ant Di r and env. Vari ant Di r (). Thebui | d_di r argument becomes the
variant _di r argumentof Vari ant Di r orenv. Vari ant Di r ().

Bui | der (action, [arguments]) ,

env. Bui | der (action, [argunents])
Creates a Builder object for the specified act i on. See the section "Builder Objects," below, for a complete
explanation of the arguments and behavior.

Notethat theenv. Bui | der () form of theinvocationwill expand construction variablesin any argumentsstrings,
including theact i on argument, at thetime it is called using the construction variables in the env construction
environment through whichenv. Bui | der () wascalled. TheBui | der formdelaysall variable expansion until
after the Builder object is actualy called.

CacheDir (cache_dir) ,

env. CacheDir (cache_dir)
Specifies that scons will maintain a cache of derived filesin cache_di r . The derived filesin the cache will
be shared among all the builds using the same CacheDi r cal. Specifying a cache_di r of None disables
derived file caching.

Calling env. CacheDi r () will only affect targets built through the specified construction environment. Calling
CacheDi r setsaglobal default that will be used by all targets built through construction environments that do
not have an env. CacheDi r () specified.

When aCacheDi r () isbeing used and scons finds a derived file that needs to be rebuilt, it will first look in
the cache to see if aderived file has already been built from identical input files and an identical build action (as
incorporated into the MD5 build signature). If so, scons will retrieve the file from the cache. If the derived file
is not present in the cache, scons will rebuild it and then place a copy of the built file in the cache (identified

Iy
=== SCONS 64

by its MD5 build signature), so that it may be retrieved by other builds that need to build the same derived file
fromidentical inputs.

Use of aspecified CacheDi r may be disabled for any invocation by using the - - cache- di sabl e option.

If the - - cache- f or ce option isused, scons will place a copy of all derived files in the cache, even if they
already existed and were not built by thisinvocation. Thisis useful to populate a cache the first time CacheDi r
isadded to abuild, or after using the - - cache- di sabl e option.

When using CacheDi r, scons will report, "Retrieved “file' from cache," unlessthe- - cache- showoptionis
being used. When the - - cache- showoptionisused, scons will print the action that would have been used to
build the file, without any indication that the file was actually retrieved from the cache. Thisis useful to generate
build logs that are equivalent regardless of whether a given derived file has been built in-place or retrieved from
the cache.

The NoCache method can be used to disable caching of specific files. This can be useful if inputs and/or outputs
of sometool are impossible to predict or prohibitively large.

Clean(targets, files_or_dirs),

env. Cl ean(targets, files_or_dirs)
This specifiesalist of files or directories which should be removed whenever the targets are specified with the -
¢ command line option. The specified targets may be alist or an individual target. Multiple callsto Cl ean are
legal, and create new targets or add files and directories to the clean list for the specified targets.

Multiple files or directories should be specified either as separate arguments to the Cl ean method, or as alist.
Cl ean will also accept the return value of any of the construction environment Builder methods. Examples:

Therelated NoCl ean function overrides calling C ean for the same target, and any targets passed to both func-
tionswill not be removed by the - ¢ option.

Examples:

Clean('foo', ['bar', 'baz'])

Clean('dist', env.Program('hello', "hello.c"))
Clean(['foo', '"bar'], 'sonething else to clean')

In this example, installing the project creates a subdirectory for the documentation. This statement causes the
subdirectory to be removed if the project is deinstalled.

Cl ean(docdir, os.path.join(docdir, projectnane))

env. C one([key=val, ...])
Returns a separate copy of a construction environment. If there are any keyword arguments specified, they are
added to the returned copy, overwriting any existing values for the keywords.

Example:

env2
env3

env. Cl one()
env. Cl one(CCFLAGS = '-@g')

Additionally, alist of tools and atoolpath may be specified, asin the Environment constructor:

def MyTool (env): env['FOO] = 'bar’

Iy
=== SCONS 65

envd = env.C one(tools = ['msvc', MyTool])

Thepar se_f | ags keyword argument is also recognized:

create an environnment for conpiling programs that use wxW dgets

wx_env = env. C one(parse_flags = 'lw-config --cflags --cxxflags')
Commuand(target, source, action, [key=val, ...]),
env. Command(target, source, action, [key=val, ...])

Executes a specific action (or list of actions) to build atarget file or files. Thisis more convenient than defining
a separate Builder object for a single specia-case build.

As aspecial case, the sour ce_scanner keyword argument can be used to specify a Scanner object that will
be used to scan the sources. (The global Di r Scanner object can be used if any of the sourceswill be directories
that must be scanned on-disk for changes to files that aren't already specified in other Builder of function calls.)

Any other keyword arguments specified override any same-named existing construction variables.

An action can be an external command, specified as a string, or a callable Python object; see "Action Objects,"
below, for more complete information. Also note that a string specifying an external command may be preceded
by an @(at-sign) to suppress printing the command in question, or by a- (hyphen) to ignore the exit status of
the external command.

Examples:
env. Command(' foo.out', 'foo.in',

"$FCO BUI LD < $SOURCES > $TARGET")
env. Command(' bar.out', "bar.in',

["rm-f $TARGET",
"$BAR BU LD < $SOURCES > $TARGET"],
ENV = {" PATH : '/usr/local/bin/'})

def rename(env, target, source):
i mport os
os.renane(’'.tnmp', str(target[0]))

env. Command(' baz.out', "baz.in',
["$BAZ_BUI LD < $SOURCES > .tnp",
rename])

Note that the Command function will usually assume, by default, that the specified targets and/or sources are
Files, if no other part of the configuration identifieswhat type of entry it is. If necessary, you can explicitly specify
that targets or source nodes should be treated as directoriese by using the Di r or env. Di r () functions.

Examples:

env. Command(' ddd.list', Dir('ddd"), 'Is -1 $SOURCE > $TARGET')

env[' DISTDIR] = 'destination/directory'
env. Command(env. Dir (' $DI STDIR)), None, make_distdir)

(Also note that SCons will usually automatically create any directory necessary to hold a target file, so you nor-
mally don't need to create directories by hand.)

Iy
=== SCONS 66

Configure(env, [customtests, conf_dir, log_file, config_h]),

env. Configure([customtests, conf_dir, log file, config_h])
Creates a Configure object for integrated functionality similar to GNU autoconf. See the section "Configure Con-
texts," below, for a complete explanation of the arguments and behavior.

env. Copy([key=val, ...])
A now-deprecated synonym for env. Cl one().

env. CVS(reposi tory, nodul e)
A factory function that returns a Builder object to be used to fetch source files from the specified CVSr epos-
i t ory. Thereturned Builder isintended to be passed to the Sour ceCode function.

Thisfunction is deprecated. For details, see the entry for the Sour ceCode function.

The optional specified modul e will be added to the beginning of all repository path names; this can be used, in
essence, to strip initial directory names from the repository path names, so that you only have to replicate part of
the repository directory hierarchy in your local build directory.

Examples:

WIIl fetch foo/bar/src.c
from/usr/| ocal / CVYSROOT/ f oo/ bar/ src. c.
env. Sour ceCode('."', env.CVS('/usr/I| ocal /CVSROOT"))

WIIl fetch bar/src.c
from/usr/| ocal / CVYSROOT/ f oo/ bar/ src. c.
env. Sour ceCode('."', env.CVS('/usr/local/CVSROOT', 'foo0'))

WIIl fetch src.c
from/usr/| ocal / CVYSROOT/ f oo/ bar/ src. c.
env. Sour ceCode('."', env.CVS('/usr/local /CVSROOT', 'fool/bar'))

Deci der (function) ,

env. Deci der (functi on)
Specifies that all up-to-date decisions for targets built through this construction environment will be handled by
the specified f unct i on. Thef unct i on can be one of the following strings that specify the type of decision
function to be performed:

ti mest anp- newer
Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's timestamp is newer than
thetarget file's timestamp. Thisisthe behavior of the classic Make utility, and nake can be used a synonym
forti mest anp- newer.

ti mest anp- mat ch
Specifies that a target shall be considered out of date and rebuilt if the dependency's timestamp is different
than the timestamp recorded the last time the target was built. This provides behavior very similar to the
classic Make utility (in particular, files are not opened up so that their contents can be checksummed) except
that thetarget will also berebuilt if adependency file hasbeen restored to aversion with an earlier timestamp,
such as can happen when restoring files from backup archives.

Specifies that a target shall be considered out of date and rebuilt if the dependency's content has changed
sine the last time the target was built, as determined be performing an MD5 checksum on the dependency's
contents and comparing it to the checksum recorded the last time the target was built. cont ent can be used
as asynonym for MD5.

Iy
=== SCONS 67

Def
env

MD5-t i mest anp

Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's content has changed sine
the last time the target was built, except that dependencies with a timestamp that matches the last time the
target was rebuilt will be assumed to be up-to-date and not rebuilt. This provides behavior very similar to the
VD5 behavior of always checksumming file contents, with an optimization of not checking the contents of
files whose timestamps haven't changed. The drawback is that SCons will not detect if afile's content has
changed but its timestamp is the same, as might happen in an automated script that runs a build, updates a
file, and runsthe build again, all within asingle second.

Examples:

Use exact tinmestanp matches by default.
Deci der (' ti mest anp-mat ch')

Use MD5 content signatures for any targets built
with the attached construction environnent.
env. Deci der (' content')

In addition to the above already-available functions, the f unct i on argument may be an actual Python function
that takes the following three arguments;

dependency
The Node (file) which should causethet ar get to berebuilt if it has"changed" since thelast tmet ar get
was built.

tar get
The Node (file) being built. In the normal case, this is what should get rebuilt if the dependency has
"changed.”

prev_ni
Stored information about the state of the dependency the last time the t ar get was built. This can be
consulted to match various file characteristics such as the timestamp, size, or content signature.

Thef unct i on shouldreturnaTr ue (non-zero) valueif thedependency has"changed" sincethelast timethe
t ar get was built (indicating that the target should be rebuilt), and Fal se (zero) otherwise (indicating that the
target should not be rebuilt). Note that the decision can be made using whatever criteria are appopriate. Ignoring
some or all of the function arguments is perfectly normal.

Example:

def ny_deci der (dependency, target, prev_ni):
return not os.path.exists(str(target))

env. Deci der (ny_deci der)

ault(targets) ,

. Defaul t(targets)

Thisspecifiesalist of default targets, which will bebuilt by scons if no explicit targets are given on the command
line. Multiple callsto Def aul t arelegal, and add to the list of default targets.

Multiple targets should be specified as separate arguments to the Def aul t method, or asalist. Def aul t will
also accept the Node returned by any of a construction environment's builder methods.

Examples:

~

'—‘—' SCONS 68

Default('foo', 'bar', 'baz')

env. Default(['a", "b', "c'])

hell o = env. Progran(' hell o', "hello.c")
env. Def aul t (hel | o)

An argument to Def aul t of None will clear all default targets. Later callsto Def aul t will add to the (now
empty) default-target list like normal.

The current list of targets added using the Def aul t function or method isavailableinthe DEFAULT _TARGETS
list; see below.

Def aul t Envi ronnent ([ar gs])
Creates and returns a default construction environment object. This construction environment is used internally
by SConsin order to execute many of the global functionsin thislist, and to fetch source files transparently from
source code management systems.

Depends(target, dependency) ,

env. Depends(target, dependency)
Specifies an explicit dependency; the t ar get will be rebuilt whenever the dependency has changed. Both
the specified t ar get and dependency can be a string (usually the path name of afile or directory) or Node
objects, or alist of strings or Node objects (such as returned by a Builder call). This should only be necessary for
cases where the dependency is not caught by a Scanner for thefile.

Example:

env. Depends(' foo', 'other-input-file-for-foo')

nylib = env.Library('mylib.c")
installed |ib = env.Install("lib", mylib)
bar = env. Program(' bar.c')

Arrange for the library to be copied into the installation
directory before trying to build the "bar" program

(Note that this is for exanple only. A "real” library

dependency woul d normal |y be configured through the $LIBS
and $LI BPATH vari abl es, not using an env. Depends() call.)

env. Depends(bar, installed_lib)

env. Dictionary([vars])
Returns a dictionary object containing copies of all of the construction variables in the environment. If there are
any variable names specified, only the specified construction variables are returned in the dictionary.

Example:

dict = env.Dictionary()
cc _dict = env.Dictionary('CC, 'CCFLAGS , 'CCCOM)

Dir(name, [directory]),

env.Dir(name, [directory])
This returns a Directory Node, an object that represents the specified directory nane. nane can be arelative or
absolute path. di r ect ory isan optional directory that will be used as the parent directory. If nodi r ect ory
is specified, the current script's directory is used as the parent.

Iy
=== SCONS 69

If nane isalist, SConsreturns alist of Dir nodes. Construction variables are expanded in nane.
Directory Nodes can be used anywhere you would supply a string as a directory name to a Builder method or
function. Directory Nodes have attributes and methods that are useful in many situations; see "File and Directory
Nodes," below.

env. Dump([key])
Returns a pretty printable representation of the environment. key, if not None, should be a string containing the
name of the variable of interest.
This SConstruct:
env=Envi r onnent ()

print env. Dunp(' CCCOM)

will print:

"$CC -c -0 $TARGET $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPI NCFLAGS $SOURCES'
While this SConstruct:

env=Envi r onnent ()

print env. Dunmp()

will print:

{ "AR: 'ar',

' ARCOM : ' $AR $ARFLAGS $TARGET $SOURCES\ n$RANLI B $RANLI BFLAGS $TARGET',
"ARFLAGS : ['r'],

"AS . 'as',
" ASCOM : ' $AS $ASFLAGS -0 $TARGET $SOURCES',

" ASFLAGS' : [],

Ensur ePyt honVer si on(naj or, mnor) ,

env. Ensur ePyt honVer si on(rmaj or, ni nor)
Ensure that the Python version is at least maj or .mi nor . This function will print out an error message and exit
SCons with anon-zero exit code if the actual Python version is not late enough.

Example:

Ensur ePyt honVer si on(2, 2)

Ensur eSConsVer si on(maj or, minor, [revision]),

env. Ensur eSConsVer si on(naj or, minor, [revision])
Ensure that the SCons version is at least maj or . i nor, or maj or. m nor. revi si on. if revi si on is
specified. This function will print out an error message and exit SCons with a non-zero exit code if the actual
SCons version is not late enough.

Examples:

Iy
=== SCONS 70

Env
env

Exe
env

Exi
env

Exp
env

Ensur eSConsVer si on(0, 14)

Ensur eSConsVer si on(0, 96, 90)

i ronment ([key=val ue, ...]),
. Envi ronnent ([key=val ue, ...])
Return anew construction environment initialized with the specified key=val ue pairs.

cute(action, [strfunction, varlist]),

. Execute(action, [strfunction, varlist])

Executes an Action object. The specified act i on may be an Action object (see the section "Action Objects,"
below, for a complete explanation of the arguments and behavior), or it may be a command-line string, list of
commands, or executable Python function, each of which will be converted into an Action object and then exe-
cuted. The exit value of the command or return value of the Python function will be returned.

Note that scons will print an error message if the executed act i on fails--that is, exits with or returns a non-
zerovalue. scons will not, however, automatically terminate the build if the specifiedact i on fails. If you want
the build to stop in response to afailed Execut e call, you must explicitly check for a non-zero return value:

Execut e(Copy('file.out', "file.in"))

if Execute("nkdir sub/dir/ectory"):
The nkdir failed, don't try to build.
Exit (1)

t([value]) ,

.Exit([val ue])

This tells scons to exit immediately with the specified val ue. A default exit value of 0 (zero) is used if no
valueis specified.

ort(vars) ,

. Export (vars)

Thistellsscons to export alist of variables from the current SConscript file to all other SConscript files. The
exported variables are kept in aglobal collection, so subsequent callsto Expor t will over-write previous exports
that have the same name. Multiple variable names can be passed to Export as separate arguments or as a list.
Keyword arguments can be used to provide names and their values. A dictionary can be used to map variablesto
adifferent name when exported. Both local variables and global variables can be exported.

Examples:

env = Environment ()

Make env available for all SConscript files to Inport().
Export ("env")

package = 'my_nane'

Make env and package avail able for all SConscript files:.

Export ("env", "package")

Make env and package avail able for all SConscript files:
Export (["env", "package"])

Make env avail abl e using the nanme debug:

~

'—‘-‘ SCONS 71

Export (debug = env)

Make env avail abl e using the name debug:
Export ({"debug": env})

Note that the SConscr i pt function supportsan expor t s argument that makes it easier to to export avariable
or set of variablesto asingle SConscript file. See the description of the SConscr i pt function, below.

File(nane, [directory]) ,

env. Fil e(name, [directory])
This returns a File Node, an object that represents the specified file nane. nane can be a relative or absolute
path. di r ect ory isan optional directory that will be used as the parent directory.

If name isalist, SConsreturns alist of File nodes. Construction variables are expanded in narne.

File Nodes can be used anywhere you would supply a string as a file name to a Builder method or function. File
Nodes have attributes and methods that are useful in many situations; see "File and Directory Nodes," below.

FindFile(file, dirs),

env. FindFile(file, dirs)
Search for fi | e in the path specified by di rs. di rs may be alist of directory names or a single directory
name. In addition to searching for files that exist in the filesystem, this function also searches for derived files
that have not yet been built.

Example:

foo = env.FindFile('foo', ['dirl", '"dir2'])
Fi ndl nstal | edFi | es() ,
env. Fi ndl nstal | edFi | es()
Returnsthe list of targetsset up by thel nst al | or | nst al | As builders.

This function serves as a convenient method to select the contents of a binary package.

Example:

Install ('"/bin', ['executable a', 'executable b'"])
wll return the file node |i st

['/bin/executable a', '/bin/executable b]

Fi ndl nst al | edFi | es()

Install ("/lib'", ["some_library'])

will return the file node li st

['/bin/executable a', '/bin/executable b', '/lib/some_library']

Fi ndl nst al | edFi | es()

Fi ndPat hDi r s(vari abl e)
Returns afunction (actually a callable Python object) intended to be used asthepat h_f unct i on of a Scanner
object. The returned object will look up the specified var i abl e in a construction environment and treat the
construction variable's value as a list of directory paths that should be searched (like $CPPPATH, $L1 BPATH,
€tc.).

Iy
=== SCONS 72

Note that use of Fi ndPat hDi r s isgenerally preferable to writing your own pat h_f unct i on for thefollow-
ing reasons: 1) Thereturned list will contain all appropriate directoriesfound in sourcetrees(whenVar i ant Di r

isused) or in code repositories (when Reposi t or y or the- Y option are used). 2) sconswill identify expansions
of vari abl e that evaluate to the same list of directories as, in fact, the same list, and avoid re-scanning the
directories for files, when possible.

Example:

def ny_scan(node, env, path, arg):
Code to scan file contents goes here...
return include files

scanner = Scanner (name = 'myscanner',
function = ny_scan,
pat h_function = Fi ndPat hDi r s(" MYPATH))

Fi ndSour ceFi | es(node=""."") ,
env. Fi ndSour ceFi | es(node=""."")
Returns the list of nodes which serve as the source of the built files. It does so by inspecting the dependency tree

starting at the optional argument node which defaults to the ™."'-node. It will then return all leaves of node.
These are all children which have no further children.

Thisfunction is a convenient method to select the contents of a Source Package.

Example:

Program('src/main_a.c')
Program('src/main_b.c')
Program('main_c.c')

returns ["main_c.c', 'src/main_a.c', 'SConstruct', 'src/main_b.c']
Fi ndSour ceFi | es()

returns ['src/main_b.c', "src/main_a.c' |
Fi ndSourceFil es('src')

Asyou can see build support files (SConstruct in the above example) will also be returned by this function.

Fl att en(sequence) ,

env. Fl att en(sequence)
Takes a sequence (that is, a Python list or tuple) that may contain nested sequences and returns a flattened list
containing all of the individual elementsin any sequence. This can be helpful for collecting the lists returned by
callsto Builde