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Preface

Thank you for taking the time to read about SCons. SCons is a next-generation software construction
tool, or make tool--that is, a software utility for building software (or other files) and keeping built
software up-to-date whenever the underlying input files change.

The most distinctive thing about SCons is that its configuration files are actually scripts, written in the
Python programming language. This is in contrast to most alternative build tools, which typically invent
a new language to configure the build. SCons still has a learning curve, of course, because you have to
know what functions to call to set up your build properly, but the underlying syntax used should be
familiar to anyone who has ever looked at a Python script.

Paradoxically, using Python as the configuration file format makes SCons easier for non-programmers to
learn than the cryptic languages of other build tools, which are usually invented by programmers for other
programmers. This is in no small part due to the consistency and readability that are built in to Python. It
just so happens that making a real, live scripting language the basis for the configuration files makes it a
snap for more accomplished programmers to do more complicated things with builds, as necessary.

1. SCons Principles

There are a few overriding principles we try to live up to in designing and implementing SCons:

Correctness

First and foremost, by default, SCons guarantees a correct build even if it means sacrificing
performance a little. We strive to guarantee the build is correct regardless of how the software being
built is structured, how it may have been written, or how unusual the tools are that build it.

Performance

Given that the build is correct, we try to make SCons build software as quickly as possible. In
particular, wherever we may have needed to slow down the default SCons behavior to guarantee a
correct build, we also try to make it easy to speed up SCons through optimization options that let
you trade off guaranteed correctness in all end cases for a speedier build in the usual cases.

Convenience

SCons tries to do as much for you out of the box as reasonable, including detecting the right tools
on your system and using them correctly to build the software.

In a nutshell, we try hard to make SCons just "do the right thing" and build software correctly, with a
minimum of hassles.
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2. A Caveat About This Guide’s Completeness

One word of warning as you read through this Guide: Like too much Open Source software out there, the
SCons documentation isn’t always kept up-to-date with the available features. In other words, there’s a
lot that SCons can do that isn’t yet covered in this User’s Guide. (Come to think of it, that also describes
a lot of proprietary software, doesn’t it?)

Although this User’s Guide isn’t as complete as we’d like it to be, our development process does
emphasize making sure that the SCons man page is kept up-to-date with new features. So if you’re trying
to figure out how to do something that SCons supports but can’t find enough (or any) information here, it
would be worth your while to look at the man page to see if the information is covered there. And if you
do, maybe you’d even consider contributing a section to the User’s Guide so the next person looking for
that information won’t have to go through the same thing...?

3. Acknowledgements

SCons would not exist without a lot of help from a lot of people, many of whom may not even be aware
that they helped or served as inspiration. So in no particular order, and at the risk of leaving out someone:

First and foremost, SCons owes a tremendous debt to Bob Sidebotham, the original author of the classic
Perl-based Cons tool which Bob first released to the world back around 1996. Bob’s work on Cons
classic provided the underlying architecture and model of specifying a build configuration using a real
scripting language. My real-world experience working on Cons informed many of the design decisions in
SCons, including the improved parallel build support, making Builder objects easily definable by users,
and separating the build engine from the wrapping interface.

Greg Wilson was instrumental in getting SCons started as a real project when he initiated the Software
Carpentry design competition in February 2000. Without that nudge, marrying the advantages of the
Cons classic architecture with the readability of Python might have just stayed no more than a nice idea.

The entire SCons team have been absolutely wonderful to work with, and SCons would be nowhere near
as useful a tool without the energy, enthusiasm and time people have contributed over the past few years.
The "core team" of Chad Austin, Anthony Roach, Charles Crain, Steve Leblanc, Gary Oberbrunner,
Greg Spencer and Christoph Wiedemann have been great about reviewing my (and other) changes and
catching problems before they get in the code base. Of particular technical note: Anthony’s outstanding
and innovative work on the tasking engine has given SCons a vastly superior parallel build model;
Charles has been the master of the crucial Node infrastructure; Christoph’s work on the Configure
infrastructure has added crucial Autoconf-like functionality; and Greg has provided excellent support for
Microsoft Visual Studio.

Special thanks to David Snopek for contributing his underlying "Autoscons" code that formed the basis
of Christoph’s work with the Configure functionality. David was extremely generous in making this code
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available to SCons, given that he initially released it under the GPL and SCons is released under a
less-restrictive MIT-style license.

Thanks to Peter Miller for his splendid change management system, Aegis, which has provided the
SCons project with a robust development methodology from day one, and which showed me how you
could integrate incremental regression tests into a practical development cycle (years before eXtreme
Programming arrived on the scene).

And last, thanks to Guido van Rossum for his elegant scripting language, which is the basis not only for
the SCons implementation, but for the interface itself.

4. Contact

The best way to contact people involved with SCons, including the author, is through the SCons mailing
lists.

If you want to ask general questions about how to use SCons send email to users@scons.tigris.org.

If you want to contact the SCons development community directly, send email to
dev@scons.tigris.org.

If you want to receive announcements about SCons, join the low-volume
announce@scons.tigris.org mailing list.
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Chapter 1. Building and Installing SCons

This chapter will take you through the basic steps of installing SCons on your system, and building
SCons if you don’t have a pre-built package available (or simply prefer the flexibility of building it
yourself). Before that, however, this chapter will also describe the basic steps involved in installing
Python on your system, in case that is necessary. Fortunately, both SCons and Python are very easy to
install on almost any system, and Python already comes installed on many systems.

1.1. Installing Python

Because SCons is written in Python, you must obviously have Python installed on your system to use
SCons Before you try to install Python, you should check to see if Python is already available on your
system by typing python at your system’s command-line prompt. You should see something like the
following on a UNIX or Linux system that has Python installed:

$ python

Python 2.2.2 (#1, Feb 24 2003, 19:13:11)
[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> ^D

And on a Windows system with Python installed:

C:\>python
Python 2.2.2 (#34, Apr 9 2002, 19:34:33) [MSC 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

The >>> is the input prompt for the Python interpreter. The ^D and ^Z represent the CTRL-D and
CTRL-Z characters that you will need to type to get out of the interpreter before proceeding to installing
SCons.

If Python is not installed on your system, you will see an error message stating something like
"command not found" (on UNIX or Linux) or "’python’ is not recognized as an internal or external
command, operable progam or batch file" (on Windows). In that case, you need to install Python before
you can install SCons.

The standard location for information about downloading and installing Python is
http://www.python.org/download/. See that page for information about how to download and install
Python on your system.
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1.2. Installing SCons From Pre-Built Packages

SCons comes pre-packaged for installation on a number of systems, including Linux and Windows
systems. You do not need to read this entire section, you should only need to read the section appropriate
to the type of system you’re running on.

1.2.1. Installing SCons on Red Hat (and Other RPM-based)
Linux Systems

SCons comes in RPM (Red Hat Package Manager) format, pre-built and ready to install on Red Hat
Linux, Fedora Core, or any other Linux distribution that uses RPM. Your distribution may already have
an SCons RPM built specifically for it; many do, including SuSe, Mandrake and Fedora. You can check
for the availability of an SCons RPM on your distribution’s download servers, or by consulting an RPM
search site like http://www.rpmfind.net/ or http://rpm.pbone.net/.

If your Linux distribution does not already have a specific SCons RPM file, you can download and install
from the generic RPM provided by the SCons project. This will install the SCons script(s) in /usr/bin,
and the SCons library modules in /usr/lib/scons.

To install from the command line, simply download the appropriate .rpm file, and then run:

# rpm -Uvh scons-0.96-1.noarch.rpm

Or, you can use a graphical RPM package manager like gnorpm. See your package manager
application’s documention for specific instructions about how to use it to install a downloaded RPM.

1.2.2. Installing SCons on Debian Linux Systems

Debian Linux systems use a different package management format that also makes it very easy to install
SCons.

If your system is connected to the Internet, you can install the latest official Debian package by running:

# apt-get install scons

2
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1.2.3. Installing SCons on Windows Systems

SCons provides a Windows installer that makes installation extremely easy. Download the
scons-0.95.win32.exe file from the SCons download page at http://www.scons.org/download.html.
Then all you need to do is execute the file (usually by clicking on its icon in Windows Explorer). These
will take you through a small sequence of windows that will install SCons on your system.

1.3. Building and Installing SCons on Any System

If a pre-built SCons package is not available for your system, then you can still easily build and install
SCons using the native Python distutils package.

The first step is to download either the scons-0.98.1.tar.gz or scons-0.98.1.zip, which are
available from the SCons download page at http://www.scons.org/download.html.

Unpack the archive you downloaded, using a utility like tar on Linux or UNIX, or WinZip on Windows.
This will create a directory called scons-0.98.1, usually in your local directory. Then change your
working directory to that directory and install SCons by executing the following commands:

# cd scons-0.98.1

# python setup.py install

This will build SCons, install the scons script in the default system scripts directory (/usr/local/bin
or C:\Python2.2\Scripts), and will install the SCons build engine in an appropriate stand-alone
library directory (/usr/local/lib/scons or C:\Python2.2\scons). Because these are system
directories, you may need root (on Linux or UNIX) or Administrator (on Windows) privileges to install
SCons like this.

1.3.1. Building and Installing Multiple Versions of SCons
Side-by-Side

The SCons setup.py script has some extensions that support easy installation of multiple versions of
SCons in side-by-side locations. This makes it easier to download and experiment with different versions
of SCons before moving your official build process to a new version, for example.

To install SCons in a version-specific location, add the --version-lib option when you call
setup.py:

# python setup.py install --version-lib

3
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This will install the SCons build engine in the /usr/lib/scons-0.98.1 or
C:\Python2.2\scons-0.98.1 directory, for example.

If you use the --version-lib option the first time you install SCons, you do not need to specify it each
time you install a new version. The SCons setup.py script will detect the version-specific directory
name(s) and assume you want to install all versions in version-specific directories. You can override that
assumption in the future by explicitly specifying the --standalone-lib option.

1.3.2. Installing SCons in Other Locations

You can install SCons in locations other than the default by specifying the --prefix= option:

# python setup.py install --prefix=/opt/scons

This would install the scons script in /opt/scons/bin and the build engine in
/opt/scons/lib/scons,

Note that you can specify both the --prefix= and the --version-lib options at the same type, in
which case setup.py will install the build engine in a version-specific directory relative to the specified
prefix. Adding --version-lib to the above example would install the build engine in
/opt/scons/lib/scons-0.98.1.

1.3.3. Building and Installing SCons Without Administrative
Privileges

If you don’t have the right privileges to install SCons in a system location, simply use the --prefix=
option to install it in a location of your choosing. For example, to install SCons in appropriate locations
relative to the user’s $HOME directory, the scons script in $HOME/bin and the build engine in
$HOME/lib/scons, simply type:

$ python setup.py install --prefix=$HOME

You may, of course, specify any other location you prefer, and may use the --version-lib option if
you would like to install version-specific directories relative to the specified prefix.

4
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In this chapter, you will see several examples of very simple build configurations using SCons, which
will demonstrate how easy it is to use SCons to build programs from several different programming
languages on different types of systems.

2.1. Building Simple C / C++ Programs

Here’s the famous "Hello, World!" program in C:

int
main()
{

printf("Hello, world!\n");
}

And here’s how to build it using SCons. Enter the following into a file named SConstruct:

Program(’hello.c’)

This minimal configuration file gives SCons two pieces of information: what you want to build (an
executable program), and the input file from which you want it built (the hello.c file). Program is a
builder_method, a Python call that tells SCons that you want to build an executable program.

That’s it. Now run the scons command to build the program. On a POSIX-compliant system like Linux
or UNIX, you’ll see something like:

% scons

scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cc -o hello.o -c hello.c
cc -o hello hello.o
scons: done building targets.

On a Windows system with the Microsoft Visual C++ compiler, you’ll see something like:

C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /nologo /c hello.c /Fohello.obj

5
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link /nologo /OUT:hello.exe hello.obj
scons: done building targets.

First, notice that you only need to specify the name of the source file, and that SCons correctly deduces
the names of the object and executable files to be built from the base of the source file name.

Second, notice that the same input SConstruct file, without any changes, generates the correct output
file names on both systems: hello.o and hello on POSIX systems, hello.obj and hello.exe on
Windows systems. This is a simple example of how SCons makes it extremely easy to write portable
software builds.

(Note that we won’t provide duplicate side-by-side POSIX and Windows output for all of the examples
in this guide; just keep in mind that, unless otherwise specified, any of the examples should work equally
well on both types of systems.)

2.2. Building Object Files

The Program builder method is only one of many builder methods that SCons provides to build different
types of files. Another is the Object builder method, which tells SCons to build an object file from the
specified source file:

Object(’hello.c’)

Now when you run the scons command to build the program, it will build just the hello.o object file on
a POSIX system:

% scons

scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cc -o hello.o -c hello.c
scons: done building targets.

And just the hello.obj object file on a Windows system (with the Microsoft Visual C++ compiler):

C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /nologo /c hello.c /Fohello.obj
scons: done building targets.

6
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2.3. Simple Java Builds

SCons also makes building with Java extremely easy. Unlike the Program and Object builder methods,
however, the Java builder method requires that you specify the name of a destination directory in which
you want the class files placed, followed by the source directory in which the .java files live:

Java(’classes’, ’src’)

If the src directory contains a single hello.java file, then the output from running the scons command
would look something like this (on a POSIX system):

% scons

scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
javac -d classes -sourcepath src src/hello.java
scons: done building targets.

We’ll cover Java builds in more detail, including building Java archive (.jar) and other types of file, in
Chapter 25.

2.4. Cleaning Up After a Build

When using SCons, it is unnecessary to add special commands or target names to clean up after a build.
Instead, you simply use the -c or --clean option when you invoke SCons, and SCons removes the
appropriate built files. So if we build our example above and then invoke scons -c afterwards, the
output on POSIX looks like:

% scons

scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cc -o hello.o -c hello.c
cc -o hello hello.o
scons: done building targets.
% scons -c

scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Cleaning targets ...
Removed hello.o
Removed hello
scons: done cleaning targets.
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And the output on Windows looks like:

C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /nologo /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj
scons: done building targets.
C:\>scons -c

scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Cleaning targets ...
Removed hello.obj
Removed hello.exe
scons: done cleaning targets.

Notice that SCons changes its output to tell you that it is Cleaning targets ... and done

cleaning targets.

2.5. The SConstruct File

If you’re used to build systems like Make you’ve already figured out that the SConstruct file is the
SCons equivalent of a Makefile. That is, the SConstruct file is the input file that SCons reads to
control the build.

2.5.1. SConstruct Files Are Python Scripts

There is, however, an important difference between an SConstruct file and a Makefile: the
SConstruct file is actually a Python script. If you’re not already familiar with Python, don’t worry. This
User’s Guide will introduce you step-by-step to the relatively small amount of Python you’ll need to
know to be able to use SCons effectively. And Python is very easy to learn.

One aspect of using Python as the scripting language is that you can put comments in your SConstruct
file using Python’s commenting convention; that is, everything between a ’#’ and the end of the line will
be ignored:

# Arrange to build the "hello" program.
Program(’hello.c’) # "hello.c" is the source file.

You’ll see throughout the remainder of this Guide that being able to use the power of a real scripting
language can greatly simplify the solutions to complex requirements of real-world builds.
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2.5.2. SCons Functions Are Order-Independent

One important way in which the SConstruct file is not exactly like a normal Python script, and is more
like a Makefile, is that the order in which the SCons functions are called in the SConstruct file does
not affect the order in which SCons actually builds the programs and object files you want it to build.1 In
other words, when you call the Program builder (or any other builder method), you’re not telling SCons
to build the program at the instant the builder method is called. Instead, you’re telling SCons to build the
program that you want, for example, a program built from a file named hello.c, and it’s up to SCons to
build that program (and any other files) whenever it’s necessary. (We’ll learn more about how SCons
decides when building or rebuilding a file is necessary in Chapter 6, below.)

SCons reflects this distinction between calling a builder method like Program> and actually building the
program by printing the status messages that indicate when it’s "just reading" the SConstruct file, and
when it’s actually building the target files. This is to make it clear when SCons is executing the Python
statements that make up the SConstruct file, and when SCons is actually executing the commands or
other actions to build the necessary files.

Let’s clarify this with an example. Python has a print statement that prints a string of characters to the
screen. If we put print statements around our calls to the Program builder method:

print "Calling Program(’hello.c’)"
Program(’hello.c’)
print "Calling Program(’goodbye.c’)"
Program(’goodbye.c’)
print "Finished calling Program()"

Then when we execute SCons, we see the output from the print statements in between the messages
about reading the SConscript files, indicating that that is when the Python statements are being
executed:

% scons

scons: Reading SConscript files ...
Calling Program(’hello.c’)
Calling Program(’goodbye.c’)
Finished calling Program()
scons: done reading SConscript files.
scons: Building targets ...
cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o
cc -o hello.o -c hello.c
cc -o hello hello.o
scons: done building targets.

Notice also that SCons built the goodbye program first, even though the "reading SConscript" output
shows that we called Program(’hello.c’) first in the SConstruct file.
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2.6. Making the SCons Output Less Verbose

You’ve already seen how SCons prints some messages about what it’s doing, surrounding the actual
commands used to build the software:

C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /nologo /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj
scons: done building targets.

These messages emphasize the order in which SCons does its work: all of the configuration files
(generically referred to as SConscript files) are read and executed first, and only then are the target
files built. Among other benefits, these messages help to distinguish between errors that occur while the
configuration files are read, and errors that occur while targets are being built.

One drawback, of course, is that these messages clutter the output. Fortunately, they’re easily disabled by
using the -Q option when invoking SCons:

C:\>scons -Q

cl /nologo /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj

Because we want this User’s Guide to focus on what SCons is actually doing, we’re going to use the -Q
option to remove these messages from the output of all the remaining examples in this Guide.

Notes
1. In programming parlance, the SConstruct file is declarative, meaning you tell SCons what you

want done and let it figure out the order in which to do it, rather than strictly imperative, where you
specify explicitly the order in which to do things.
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In this chapter, you will see several examples of very simple build configurations using SCons, which
will demonstrate how easy it is to use SCons to build programs from several different programming
languages on different types of systems.

3.1. Specifying the Name of the Target (Output) File

You’ve seen that when you call the Program builder method, it builds the resulting program with the
same base name as the source file. That is, the following call to build an executable program from the
hello.c source file will build an executable program named hello on POSIX systems, and an
executable program named hello.exe on Windows systems:

Program(’hello.c’)

If you want to build a program with a different name than the base of the source file name, you simply
put the target file name to the left of the source file name:

Program(’new_hello’, ’hello.c’)

(SCons requires the target file name first, followed by the source file name, so that the order mimics that
of an assignment statement in most programming languages, including Python: "program = source

files".)

Now SCons will build an executable program named new_hello when run on a POSIX system:

% scons -Q

cc -o hello.o -c hello.c
cc -o new_hello hello.o

And SCons will build an executable program named new_hello.exe when run on a Windows system:

C:\>scons -Q

cl /nologo /c hello.c /Fohello.obj
link /nologo /OUT:new_hello.exe hello.obj
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3.2. Compiling Multiple Source Files

You’ve just seen how to configure SCons to compile a program from a single source file. It’s more
common, of course, that you’ll need to build a program from many input source files, not just one. To do
this, you need to put the source files in a Python list (enclosed in square brackets), like so:

Program([’prog.c’, ’file1.c’, ’file2.c’])

A build of the above example would look like:

% scons -Q

cc -o file1.o -c file1.c
cc -o file2.o -c file2.c
cc -o prog.o -c prog.c
cc -o prog prog.o file1.o file2.o

Notice that SCons deduces the output program name from the first source file specified in the list--that is,
because the first source file was prog.c, SCons will name the resulting program prog (or prog.exe on
a Windows system). If you want to specify a different program name, then (as we’ve seen in the previous
section) you slide the list of source files over to the right to make room for the output program file name.
(SCons puts the output file name to the left of the source file names so that the order mimics that of an
assignment statement: "program = source files".) This makes our example:

Program(’program’, [’prog.c’, ’file1.c’, ’file2.c’])

On Linux, a build of this example would look like:

% scons -Q

cc -o file1.o -c file1.c
cc -o file2.o -c file2.c
cc -o prog.o -c prog.c
cc -o program prog.o file1.o file2.o

Or on Windows:

C:\>scons -Q

cl /nologo /c file1.c /Fofile1.obj
cl /nologo /c file2.c /Fofile2.obj
cl /nologo /c prog.c /Foprog.obj
link /nologo /OUT:program.exe prog.obj file1.obj file2.obj
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3.3. Specifying Single Files Vs. Lists of Files

We’ve now shown you two ways to specify the source for a program, one with a list of files:

Program(’hello’, [’file1.c’, ’file2.c’])

And one with a single file:

Program(’hello’, ’hello.c’)

You could actually put a single file name in a list, too, which you might prefer just for the sake of
consistency:

Program(’hello’, [’hello.c’])

SCons functions will accept a single file name in either form. In fact, internally, SCons treats all input as
lists of files, but allows you to omit the square brackets to cut down a little on the typing when there’s
only a single file name.

Important: Although SCons functions are forgiving about whether or not you use a string vs. a list for
a single file name, Python itself is more strict about treating lists and strings differently. So where
SCons allows either a string or list:

# The following two calls both work correctly:
Program(’program1’, ’program1.c’)
Program(’program2’, [’program2.c’])

Trying to do "Python things" that mix strings and lists will cause errors or lead to incorrect results:

common_sources = [’file1.c’, ’file2.c’]

# THE FOLLOWING IS INCORRECT AND GENERATES A PYTHON ERROR
# BECAUSE IT TRIES TO ADD A STRING TO A LIST:
Program(’program1’, common_sources + ’program1.c’)

# The following works correctly, because it’s adding two
# lists together to make another list.
Program(’program2’, common_sources + [’program2.c’])
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3.4. Making Lists of Files Easier to Read

One drawback to the use of a Python list for source files is that each file name must be enclosed in quotes
(either single quotes or double quotes). This can get cumbersome and difficult to read when the list of file
names is long. Fortunately, SCons and Python provide a number of ways to make sure that the
SConstruct file stays easy to read.

To make long lists of file names easier to deal with, SCons provides a Split function that takes a quoted
list of file names, with the names separated by spaces or other white-space characters, and turns it into a
list of separate file names. Using the Split function turns the previous example into:

Program(’program’, Split(’main.c file1.c file2.c’))

(If you’re already familiar with Python, you’ll have realized that this is similar to the split() method in
the Python standard string module. Unlike the string.split() method, however, the Split
function does not require a string as input and will wrap up a single non-string object in a list, or return
its argument untouched if it’s already a list. This comes in handy as a way to make sure arbitrary values
can be passed to SCons functions without having to check the type of the variable by hand.)

Putting the call to the Split function inside the Program call can also be a little unwieldy. A more
readable alternative is to assign the output from the Split call to a variable name, and then use the
variable when calling the Program function:

list = Split(’main.c file1.c file2.c’)
Program(’program’, list)

Lastly, the Split function doesn’t care how much white space separates the file names in the quoted
string. This allows you to create lists of file names that span multiple lines, which often makes for easier
editing:

list = Split("""main.c
file1.c
file2.c""")

Program(’program’, list)

(Note in this example that we used the Python "triple-quote" syntax, which allows a string to contain
multiple lines. The three quotes can be either single or double quotes.)

3.5. Keyword Arguments

SCons also allows you to identify the output file and input source files using Python keyword arguments.
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The output file is known as the target, and the source file(s) are known (logically enough) as the source.
The Python syntax for this is:

list = Split(’main.c file1.c file2.c’)
Program(target = ’program’, source = list)

Because the keywords explicitly identify what each argument is, you can actually reverse the order if you
prefer:

list = Split(’main.c file1.c file2.c’)
Program(source = list, target = ’program’)

Whether or not you choose to use keyword arguments to identify the target and source files, and the order
in which you specify them when using keywords, are purely personal choices; SCons functions the same
regardless.

3.6. Compiling Multiple Programs

In order to compile multiple programs within the same SConstruct file, simply call the Program
method multiple times, once for each program you need to build:

Program(’foo.c’)
Program(’bar’, [’bar1.c’, ’bar2.c’])

SCons would then build the programs as follows:

% scons -Q

cc -o bar1.o -c bar1.c
cc -o bar2.o -c bar2.c
cc -o bar bar1.o bar2.o
cc -o foo.o -c foo.c
cc -o foo foo.o

Notice that SCons does not necessarily build the programs in the same order in which you specify them
in the SConstruct file. SCons does, however, recognize that the individual object files must be built
before the resulting program can be built. We’ll discuss this in greater detail in the "Dependencies"
section, below.
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3.7. Sharing Source Files Between Multiple Programs

It’s common to re-use code by sharing source files between multiple programs. One way to do this is to
create a library from the common source files, which can then be linked into resulting programs.
(Creating libraries is discussed in Chapter 4, below.)

A more straightforward, but perhaps less convenient, way to share source files between multiple
programs is simply to include the common files in the lists of source files for each program:

Program(Split(’foo.c common1.c common2.c’))
Program(’bar’, Split(’bar1.c bar2.c common1.c common2.c’))

SCons recognizes that the object files for the common1.c and common2.c source files each only need to
be built once, even though the resulting object files are each linked in to both of the resulting executable
programs:

% scons -Q

cc -o bar1.o -c bar1.c
cc -o bar2.o -c bar2.c
cc -o common1.o -c common1.c
cc -o common2.o -c common2.c
cc -o bar bar1.o bar2.o common1.o common2.o
cc -o foo.o -c foo.c
cc -o foo foo.o common1.o common2.o

If two or more programs share a lot of common source files, repeating the common files in the list for
each program can be a maintenance problem when you need to change the list of common files. You can
simplify this by creating a separate Python list to hold the common file names, and concatenating it with
other lists using the Python + operator:

common = [’common1.c’, ’common2.c’]
foo_files = [’foo.c’] + common
bar_files = [’bar1.c’, ’bar2.c’] + common
Program(’foo’, foo_files)
Program(’bar’, bar_files)

This is functionally equivalent to the previous example.
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It’s often useful to organize large software projects by collecting parts of the software into one or more
libraries. SCons makes it easy to create libraries and to use them in the programs.

4.1. Building Libraries

You build your own libraries by specifying Library instead of Program:

Library(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])

SCons uses the appropriate library prefix and suffix for your system. So on POSIX or Linux systems, the
above example would build as follows (although ranlib may not be called on all systems):

% scons -Q

cc -o f1.o -c f1.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o
ranlib libfoo.a

On a Windows system, a build of the above example would look like:

C:\>scons -Q

cl /nologo /c f1.c /Fof1.obj
cl /nologo /c f2.c /Fof2.obj
cl /nologo /c f3.c /Fof3.obj
lib /nologo /OUT:foo.lib f1.obj f2.obj f3.obj

The rules for the target name of the library are similar to those for programs: if you don’t explicitly
specify a target library name, SCons will deduce one from the name of the first source file specified, and
SCons will add an appropriate file prefix and suffix if you leave them off.

4.1.1. Building Libraries From Source Code or Object Files

The previous example shows building a library from a list of source files. You can, however, also give the
Library call object files, and it will correctly realize In fact, you can arbitrarily mix source code files
and object files in the source list:

Library(’foo’, [’f1.c’, ’f2.o’, ’f3.c’, ’f4.o’])
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And SCons realizes that only the source code files must be compiled into object files before creating the
final library:

% scons -Q

cc -o f1.o -c f1.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o f4.o
ranlib libfoo.a

Of course, in this example, the object files must already exist for the build to succeed. See Chapter 5,
below, for information about how you can build object files explicitly and include the built files in a
library.

4.1.2. Building Static Libraries Explicitly: the StaticLibrary

Builder

The Library function builds a traditional static library. If you want to be explicit about the type of
library being built, you can use the synonym StaticLibrary function instead of Library:

StaticLibrary(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])

There is no functional difference between the StaticLibrary and Library functions.

4.1.3. Building Shared (DLL) Libraries: the SharedLibrary

Builder

If you want to build a shared library (on POSIX systems) or a DLL file (on Windows systems), you use
the SharedLibrary function:

SharedLibrary(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])

The output on POSIX:

% scons -Q

cc -o f1.os -c f1.c
cc -o f2.os -c f2.c
cc -o f3.os -c f3.c
cc -o libfoo.so -shared f1.os f2.os f3.os

And the output on Windows:
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C:\>scons -Q

cl /nologo /c f1.c /Fof1.obj
cl /nologo /c f2.c /Fof2.obj
cl /nologo /c f3.c /Fof3.obj
link /nologo /dll /out:foo.dll /implib:foo.lib f1.obj f2.obj f3.obj
RegServerFunc(target, source, env)

Notice again that SCons takes care of building the output file correctly, adding the -shared option for a
POSIX compilation, and the /dll option on Windows.

4.2. Linking with Libraries

Usually, you build a library because you want to link it with one or more programs. You link libraries
with a program by specifying the libraries in the $LIBS construction variable, and by specifying the
directory in which the library will be found in the $LIBPATH construction variable:

Library(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])
Program(’prog.c’, LIBS=[’foo’, ’bar’], LIBPATH=’.’)

Notice, of course, that you don’t need to specify a library prefix (like lib) or suffix (like .a or .lib).
SCons uses the correct prefix or suffix for the current system.

On a POSIX or Linux system, a build of the above example would look like:

% scons -Q

cc -o f1.o -c f1.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o
ranlib libfoo.a
cc -o prog.o -c prog.c
cc -o prog prog.o -L. -lfoo -lbar

On a Windows system, a build of the above example would look like:

C:\>scons -Q

cl /nologo /c f1.c /Fof1.obj
cl /nologo /c f2.c /Fof2.obj
cl /nologo /c f3.c /Fof3.obj
lib /nologo /OUT:foo.lib f1.obj f2.obj f3.obj
cl /nologo /c prog.c /Foprog.obj
link /nologo /OUT:prog.exe /LIBPATH:. foo.lib bar.lib prog.obj
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As usual, notice that SCons has taken care of constructing the correct command lines to link with the
specified library on each system.

Note also that, if you only have a single library to link with, you can specify the library name in single
string, instead of a Python list, so that:

Program(’prog.c’, LIBS=’foo’, LIBPATH=’.’)

is equivalent to:

Program(’prog.c’, LIBS=[’foo’], LIBPATH=’.’)

This is similar to the way that SCons handles either a string or a list to specify a single source file.

4.3. Finding Libraries: the $LIBPATH Construction
Variable

By default, the linker will only look in certain system-defined directories for libraries. SCons knows how
to look for libraries in directories that you specify with the $LIBPATH construction variable. $LIBPATH
consists of a list of directory names, like so:

Program(’prog.c’, LIBS = ’m’,
LIBPATH = [’/usr/lib’, ’/usr/local/lib’])

Using a Python list is preferred because it’s portable across systems. Alternatively, you could put all of
the directory names in a single string, separated by the system-specific path separator character: a colon
on POSIX systems:

LIBPATH = ’/usr/lib:/usr/local/lib’

or a semi-colon on Windows systems:

LIBPATH = ’C:\\lib;D:\\lib’

(Note that Python requires that the backslash separators in a Windows path name be escaped within
strings.)
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When the linker is executed, SCons will create appropriate flags so that the linker will look for libraries
in the same directories as SCons. So on a POSIX or Linux system, a build of the above example would
look like:

% scons -Q

cc -o prog.o -c prog.c
cc -o prog prog.o -L/usr/lib -L/usr/local/lib -lm

On a Windows system, a build of the above example would look like:

C:\>scons -Q

cl /nologo /c prog.c /Foprog.obj
link /nologo /OUT:prog.exe /LIBPATH:\usr\lib /LIBPATH:\usr\local\lib m.lib prog.obj

Note again that SCons has taken care of the system-specific details of creating the right command-line
options.
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Internally, SCons represents all of the files and directories it knows about as Nodes. These internal
objects (not object files) can be used in a variety of ways to make your SConscript files portable and
easy to read.

5.1. Builder Methods Return Lists of Target Nodes

All builder methods return a list of Node objects that identify the target file or files that will be built.
These returned Nodes can be passed as source files to other builder methods,

For example, suppose that we want to build the two object files that make up a program with different
options. This would mean calling the Object builder once for each object file, specifying the desired
options:

Object(’hello.c’, CCFLAGS=’-DHELLO’)
Object(’goodbye.c’, CCFLAGS=’-DGOODBYE’)

One way to combine these object files into the resulting program would be to call the Program builder
with the names of the object files listed as sources:

Object(’hello.c’, CCFLAGS=’-DHELLO’)
Object(’goodbye.c’, CCFLAGS=’-DGOODBYE’)
Program([’hello.o’, ’goodbye.o’])

The problem with listing the names as strings is that our SConstruct file is no longer portable across
operating systems. It won’t, for example, work on Windows because the object files there would be
named hello.obj and goodbye.obj, not hello.o and goodbye.o.

A better solution is to assign the lists of targets returned by the calls to the Object builder to variables,
which we can then concatenate in our call to the Program builder:

hello_list = Object(’hello.c’, CCFLAGS=’-DHELLO’)
goodbye_list = Object(’goodbye.c’, CCFLAGS=’-DGOODBYE’)
Program(hello_list + goodbye_list)

This makes our SConstruct file portable again, the build output on Linux looking like:

% scons -Q

cc -o goodbye.o -c -DGOODBYE goodbye.c
cc -o hello.o -c -DHELLO hello.c
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cc -o hello hello.o goodbye.o

And on Windows:

C:\>scons -Q

cl -DGOODBYE /c goodbye.c /Fogoodbye.obj
cl -DHELLO /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj goodbye.obj

We’ll see examples of using the list of nodes returned by builder methods throughout the rest of this
guide.

5.2. Explicitly Creating File and Directory Nodes

It’s worth mentioning here that SCons maintains a clear distinction between Nodes that represent files
and Nodes that represent directories. SCons supports File and Dir functions that, repectively, return a
file or directory Node:

hello_c = File(’hello.c’)
Program(hello_c)

classes = Dir(’classes’)
Java(classes, ’src’)

Normally, you don’t need to call File or Dir directly, because calling a builder method automatically
treats strings as the names of files or directories, and translates them into the Node objects for you. The
File and Dir functions can come in handy in situations where you need to explicitly instruct SCons
about the type of Node being passed to a builder or other function, or unambiguously refer to a specific
file in a directory tree.

There are also times when you may need to refer to an entry in a file system without knowing in advance
whether it’s a file or a directory. For those situations, SCons also supports an Entry function, which
returns a Node that can represent either a file or a directory.

xyzzy = Entry(’xyzzy’)

The returned xyzzy Node will be turned into a file or directory Node the first time it is used by a builder
method or other function that requires one vs. the other.
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5.3. Printing Node File Names

One of the most common things you can do with a Node is use it to print the file name that the node
represents. For example, the following SConstruct file:

hello_c = File(’hello.c’)
Program(hello_c)

classes = Dir(’classes’)
Java(classes, ’src’)

object_list = Object(’hello.c’)
program_list = Program(object_list)
print "The object file is:", object_list[0]
print "The program file is:", program_list[0]

Would print the following file names on a POSIX system:

% scons -Q

The object file is: hello.o
The program file is: hello
cc -o hello.o -c hello.c
cc -o hello hello.o

And the following file names on a Windows system:

C:\>scons -Q

The object file is: hello.obj
The program file is: hello.exe
cl /nologo /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj

5.4. Using a Node’s File Name as a String

Printing a Node’s name as described in the previous section works because the string representation of a
Node is the name of the file. If you want to do something other than print the name of the file, you can
fetch it by using the builtin Python str function. For example, if you want to use the Python
os.path.exists to figure out whether a file exists while the SConstruct file is being read and
executed, you can fetch the string as follows:

import os.path
program_list = Program(’hello.c’)
program_name = str(program_list[0])
if not os.path.exists(program_name):
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print program_name, "does not exist!"

Which executes as follows on a POSIX system:

% scons -Q

hello does not exist!
cc -o hello.o -c hello.c
cc -o hello hello.o
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So far we’ve seen how SCons handles one-time builds. But one of the main functions of a build tool like
SCons is to rebuild only the necessary things when source files change--or, put another way, SCons
should not waste time rebuilding things that have already been built. You can see this at work simply by
re-invoking SCons after building our simple hello example:

% scons -Q

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q

scons: ‘.’ is up to date.

The second time it is executed, SCons realizes that the hello program is up-to-date with respect to the
current hello.c source file, and avoids rebuilding it. You can see this more clearly by naming the hello
program explicitly on the command line:

% scons -Q hello

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello

scons: ‘hello’ is up to date.

Note that SCons reports "...is up to date" only for target files named explicitly on the command
line, to avoid cluttering the output.

6.1. Deciding When an Input File Has Changed: the
Decider Function

Another aspect of avoiding unnecessary rebuilds is the fundamental build tool behavior of rebuilding
things when an input file changes, so that the built software is up to date. By default, SCons keeps track
of this through an MD5 signature, or checksum, of the contents of each file, although you can easily
configure SCons to use the modification times (or time stamps) instead. You can even specify your own
Python function for deciding if an input file has changed.

6.1.1. Using MD5 Signatures to Decide if a File Has Changed

By default, SCons keeps track of whether a file has changed based on an MD5 checksum of the file’s
contents, not the file’s modification time. This means that you may be surprised by the default SCons
behavior if you are used to the Make convention of forcing a rebuild by updating the file’s modification
time (using the touch command, for example):
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% scons -Q hello

cc -o hello.o -c hello.c
cc -o hello hello.o
% touch hello.c

% scons -Q hello

scons: ‘hello’ is up to date.

Even though the file’s modification time has changed, SCons realizes that the contents of the hello.c
file have not changed, and therefore that the hello program need not be rebuilt. This avoids unnecessary
rebuilds when, for example, someone rewrites the contents of a file without making a change. But if the
contents of the file really do change, then SCons detects the change and rebuilds the program as required:

% scons -Q hello

cc -o hello.o -c hello.c
cc -o hello hello.o
% edit hello.c

[CHANGE THE CONTENTS OF hello.c]
% scons -Q hello

cc -o hello.o -c hello.c
cc -o hello hello.o

Note that you can, if you wish, specify this default behavior (MD5 signatures) explicitly using the
Decider function as follows:

Program(’hello.c’)
Decider(’MD5’)

You can also use the string ’content’ as a synonym for ’MD5’ when calling the Decider function.

6.1.1.1. Ramifications of Using MD5 Signatures

Using MD5 Signatures to decide if an input file has changed has one surprising benefit: if a source file
has been changed in such a way that the contents of the rebuilt target file(s) will be exactly the same as
the last time the file was built, then any "downstream" target files that depend on the
rebuilt-but-not-changed target file actually need not be rebuilt.

So if, for example, a user were to only change a comment in a hello.c file, then the rebuilt hello.o
file would be exactly the same as the one previously built (assuming the compiler doesn’t put any
build-specific information in the object file). SCons would then realize that it would not need to rebuild
the hello program as follows:

% scons -Q hello

cc -o hello.o -c hello.c
cc -o hello hello.o
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% edit hello.c

[CHANGE A COMMENT IN hello.c]
% scons -Q hello

cc -o hello.o -c hello.c
scons: ‘hello’ is up to date.

In essence, SCons "short-circuits" any dependent builds when it realizes that a target file has been rebuilt
to exactly the same file as the last build. This does take some extra processing time to read the contents
of the target (hello.o) file, but often saves time when the rebuild that was avoided would have been
time-consuming and expensive.

6.1.2. Using Time Stamps to Decide If a File Has Changed

If you prefer, you can configure SCons to use the modification time of a file, not the file contents, when
deciding if a target needs to be rebuilt. SCons gives you two ways to use time stamps to decide if an
input file has changed since the last time a target has been built.

The most familiar way to use time stamps is the way Make does: that is, have SCons decide and target
must be rebuilt if if a source file’s modification time is newer than the target file. To do this, call the
Decider function as follows:

Program(’hello.c’)
Decider(’timestamp-newer’)

This makes SCons act like Make when a file’s modification time is updated (using the touch command,
for example):

% scons -Q hello

cc -o hello.o -c hello.c
cc -o hello hello.o
% touch hello.c

% scons -Q hello

cc -o hello.o -c hello.c
cc -o hello hello.o

And, in fact, because this behavior is the same as the behavior of Make, you can also use the string
’make’ as a synonym for ’timestamp-newer’ when calling the Decider function:

Program(’hello.c’)
Decider(’make’)
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One drawback to using times stamps exactly like Make is that if an input file’s modification time
suddenly becomes older than a target file, the target file will not be rebuilt. This can happen if an old
copy of a source file is restored from a backup archive, for example. The contents of the restored file will
likely be different than they were the last time a dependent target was built, but the target won’t be rebuilt
because the modification time of the source file is not newer than the target.

Because SCons actually stores information about the source files’ time stamps whenever a target is built,
it can handle this situation by checking for an exact match of the source file time stamp, instead of just
whether or not the source file is newer than the target file. To do this, specify the argument
’timestamp-match’ when calling the Decider function:

Program(’hello.c’)
Decider(’timestamp-match’)

When configured this way, SCons will rebuild a target whenever a source file’s modification time has
changed. So if we use the touch -t option to change the modification time of hello.c to an old date
(January 1, 1989), SCons will still rebuild the target file:

% scons -Q hello

cc -o hello.o -c hello.c
cc -o hello hello.o
% touch -t 198901010000 hello.c

% scons -Q hello

cc -o hello.o -c hello.c
scons: ‘hello’ is up to date.

In general, the only reason to prefer timestamp-newer instead of timestamp-match, would be if you
have some specific reason to require this Make-like behavior of not rebuilding a target when an
otherwise-modified source file is older.

6.1.3. Deciding If a File Has Changed Using Both MD
Signatures and Time Stamps

As a performance enhancement, SCons provides a way to use MD5 checksums of file contents but to
only read the contents whenever the file’s timestamp has changed. To do this, call the Decider function
with ’MD5-timestamp’ argument as follows:

Program(’hello.c’)
Decider(’MD5-timestamp’)

So configured, SCons will still behave like it does when using Decider(’MD5’):

% scons -Q hello
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cc -o hello.o -c hello.c
cc -o hello hello.o
% touch hello.c

% scons -Q hello

scons: ‘hello’ is up to date.
% edit hello.c

[CHANGE THE CONTENTS OF hello.c]
% scons -Q hello

scons: ‘hello’ is up to date.

However, the second call to SCons in the above output, when the build is up-to-date, will have been
performed by simply looking at the modification time of the hello.c file, not by opening it and
performing an MD5 checksum calcuation on its contents. This can significantly speed up many
up-to-date builds.

The only drawback to using Decider(’MD5-timestamp’) is that SCons will not rebuild a target file if
a source file was modified within one second of the last time SCons built the file. While most developers
are programming, this isn’t a problem in practice, since it’s unlikely that someone will have built and
then thought quickly enought to make a substantive change to a source file within one second. Certain
build scripts or continuous integration tools may, however, rely on the ability to applying changes to files
automatically and then rebuild as quickly as possible, in which case use of
Decider(’MD5-timestamp’) may not be appropriate.

6.1.4. Writing Your Own Custom Decider Function

The different string values that we’ve passed to the Decider function are essentially used by SCons to
pick one of several specific internal functions that implement various ways of deciding if a dependency
(usually a source file) has changed since a target file has been built. As it turns out, you can also supply
your own function to decide if a dependency has changed.

For example, suppose we have an input file that contains a lot of data, in some specific regular format,
that is used to rebuild a lot of different target files, but each target file really only depends on one
particular section of the input file. We’d like to have each target file depend on only its section of the
input file. However, since the input file may contain a lot of data, we only want to open the input file if its
timestamp has changed. This could done with a custom Decider function that might look something
like this:

Program(’hello.c’)
def decide_if_changed(dependency, target, prev_ni):

if self.get_timestamp() != prev_ni.timestamp:
dep = str(dependency)
tgt = str(target)
if specific_part_of_file_has_changed(dep, tgt):

return True
return False
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Decider(decide_if_changed)

Note that in the function definition, the dependency (input file) is the first argument, and then the
target. Both of these are passed to the functions as SCons Node objects, which we convert to strings
using the Python str(). The third argument, prev_ni, is an object that holds the signature or
timestamp information that was recorded about the dependency the last time the target was built.

Note that ignoring some of the arguments in your custom Decider function is a perfectly normal thing
to do, if they don’t impact the way you want to decide if the dependency file has changed.

6.1.5. Mixing Different Ways of Deciding If a File Has Changed

The previous examples have all demonstrated calling the global Decider function to configure all
dependency decisions that SCons makes. Sometimes, however, you want to be able to configure different
decision-making for different targets. When that’s necessary, you can use the env.Decider method to
affect only the configuration decisions for targets built with a specific construction environment.

For example, if we arbitrarily want to build one program using MD5 checkums and another use file
modification times from the same source we might configure it this way:

env1 = Environment(CPPPATH = [’.’])
env2 = env1.Clone()
env2.Decider(’timestamp-match’)
env1.Program(’prog-MD5’, ’program1.c’)
env2.Program(’prog-timestamp’, ’program2.c’)

If both of the programs include the same inc.h file, then updating the modification time of inc.h
(using the touch command) will cause only prog-timestamp to be rebuilt:

% scons -Q

cc -o program1.o -c -I. program1.c
cc -o prog-MD5 program1.o
cc -o program2.o -c -I. program2.c
cc -o prog-timestamp program2.o
% touch inc.h

% scons -Q

cc -o program2.o -c -I. program2.c
cc -o prog-timestamp program2.o
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6.2. Older Functions for Deciding When an Input File Has
Changed

SCons still supports two functions that used to be the primary methods for configuring the decision about
whether or not an input file has changed. Although they’re not officially deprecated yet, their use is
discouraged, mainly because they rely on a somewhat confusing distinction between how source files
and target files are handled. These functions are documented here mainly in case you encounter them in
existing SConscript files.

6.2.1. The SourceSignatures Function

The SourceSignatures function is fairly straightforward, and supports two different argument values
to configure whether source file changes should be decided using MD5 signatures:

Program(’hello.c’)
SourceSignatures(’MD5’)

Or using time stamps:

Program(’hello.c’)
SourceSignatures(’timestamp’)

These are roughly equivalent to specifying Decider(’MD5’) or Decider(’timestamp-match’),
respectively, although it only affects how SCons makes decisions about dependencies on source
files--that is, files that are not built from any other files.

6.2.2. The TargetSignatures Function

The TargetSignatures function specifies how SCons decides when a target file has changed when it
is used as a dependency of (input to) another target--that is, the TargetSignatures function
configures how the signatures of "intermediate" target files are used when deciding if a "downstream"
target file must be rebuilt. 1

The TargetSignatures function supports the same ’MD5’ and ’timestamp’ argument values that
are supported by the SourceSignatures, with the same meanings, but applied to target files. That is, in
the example:

Program(’hello.c’)
TargetSignatures(’MD5’)
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The MD5 checksum of the hello.o target file will be used to decide if it has changed since the last time
the "downstream" hello target file was built. And in the example:

Program(’hello.c’)
TargetSignatures(’timestamp’)

The modification time of the hello.o target file will be used to decide if it has changed since the last
time the "downstream" hello target file was built.

The TargetSignatures function supports two additional argument values: ’source’ and ’build’.
The ’source’ argument specifies that decisions involving whether target files have changed since a
previous build should use the same behavior for the decisions configured for source files (using the
SourceSignatures function). So in the example:

Program(’hello.c’)
TargetSignatures(’source’)
SourceSignatures(’timestamp’)

All files, both targets and sources, will use modification times when deciding if an input file has changed
since the last time a target was built.

Lastly, the ’build’ argument specifies that SCons should examine the build status of a target file and
always rebuild a "downstream" target if the target file was itself rebuilt, without re-examining the
contents or timestamp of the newly-built target file. If the target file was not rebuilt during this scons
invocation, then the target file will be examined the same way as configured by the SourceSignature
call to decide if it has changed.

This mimics the behavior of build signatures in earlier versions of SCons. A build signature

re-combined signatures of all the input files that went into making the target file, so that the target file
itself did not need to have its contents read to compute an MD5 signature. This can improve performance
for some configurations, but is generally not as effective as using Decider(’MD5-timestamp’).

6.3. Implicit Dependencies: The $CPPPATH Construction
Variable

Now suppose that our "Hello, World!" program actually has an #include line to include the hello.h
file in the compilation:

#include <hello.h>
int
main()
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{
printf("Hello, %s!\n", string);

}

And, for completeness, the hello.h file looks like this:

#define string "world"

In this case, we want SCons to recognize that, if the contents of the hello.h file change, the hello
program must be recompiled. To do this, we need to modify the SConstruct file like so:

Program(’hello.c’, CPPPATH = ’.’)

The $CPPPATH value tells SCons to look in the current directory (’.’) for any files included by C
source files (.c or .h files). With this assignment in the SConstruct file:

% scons -Q hello

cc -o hello.o -c -I. hello.c
cc -o hello hello.o
% scons -Q hello

scons: ‘hello’ is up to date.
% edit hello.h

[CHANGE THE CONTENTS OF hello.h]
% scons -Q hello

cc -o hello.o -c -I. hello.c
cc -o hello hello.o

First, notice that SCons added the -I. argument from the $CPPPATH variable so that the compilation
would find the hello.h file in the local directory.

Second, realize that SCons knows that the hello program must be rebuilt because it scans the contents of
the hello.c file for the #include lines that indicate another file is being included in the compilation.
SCons records these as implicit dependencies of the target file, Consequently, when the hello.h file
changes, SCons realizes that the hello.c file includes it, and rebuilds the resulting hello program that
depends on both the hello.c and hello.h files.

Like the $LIBPATH variable, the $CPPPATH variable may be a list of directories, or a string separated
by the system-specific path separation character (’:’ on POSIX/Linux, ’;’ on Windows). Either way,
SCons creates the right command-line options so that the following example:

Program(’hello.c’, CPPPATH = [’include’, ’/home/project/inc’])
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Will look like this on POSIX or Linux:

% scons -Q hello

cc -o hello.o -c -Iinclude -I/home/project/inc hello.c
cc -o hello hello.o

And like this on Windows:

C:\>scons -Q hello.exe

cl /nologo /Iinclude /I\home\project\inc /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj

6.4. Caching Implicit Dependencies

Scanning each file for #include lines does take some extra processing time. When you’re doing a full
build of a large system, the scanning time is usually a very small percentage of the overall time spent on
the build. You’re most likely to notice the scanning time, however, when you rebuild all or part of a large
system: SCons will likely take some extra time to "think about" what must be built before it issues the
first build command (or decides that everything is up to date and nothing must be rebuilt).

In practice, having SCons scan files saves time relative to the amount of potential time lost to tracking
down subtle problems introduced by incorrect dependencies. Nevertheless, the "waiting time" while
SCons scans files can annoy individual developers waiting for their builds to finish. Consequently, SCons
lets you cache the implicit dependencies that its scanners find, for use by later builds. You can do this by
specifying the --implicit-cache option on the command line:

% scons -Q --implicit-cache hello

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello

scons: ‘hello’ is up to date.

If you don’t want to specify --implicit-cache on the command line each time, you can make it the
default behavior for your build by setting the implicit_cache option in an SConscript file:

SetOption(’implicit_cache’, 1)

SCons does not cache implicit dependencies like this by default because the --implicit-cache causes
SCons to simply use the implicit dependencies stored during the last run, without any checking for
whether or not those dependencies are still correct. Specifically, this means --implicit-cache
instructs SCons to not rebuild "correctly" in the following cases:
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• When --implicit-cache is used, SCons will ignore any changes that may have been made to
search paths (like $CPPPATH or $LIBPATH,). This can lead to SCons not rebuilding a file if a change
to $CPPPATH would normally cause a different, same-named file from a different directory to be used.

• When --implicit-cache is used, SCons will not detect if a same-named file has been added to a
directory that is earlier in the search path than the directory in which the file was found last time.

6.4.1. The --implicit-deps-changed Option

When using cached implicit dependencies, sometimes you want to "start fresh" and have SCons re-scan
the files for which it previously cached the dependencies. For example, if you have recently installed a
new version of external code that you use for compilation, the external header files will have changed
and the previously-cached implicit dependencies will be out of date. You can update them by running
SCons with the --implicit-deps-changed option:

% scons -Q --implicit-deps-changed hello

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello

scons: ‘hello’ is up to date.

In this case, SCons will re-scan all of the implicit dependencies and cache updated copies of the
information.

6.4.2. The --implicit-deps-unchanged Option

By default when caching dependencies, SCons notices when a file has been modified and re-scans the
file for any updated implicit dependency information. Sometimes, however, you may want to force
SCons to use the cached implicit dependencies, even if the source files changed. This can speed up a
build for example, when you have changed your source files but know that you haven’t changed any
#include lines. In this case, you can use the --implicit-deps-unchanged option:

% scons -Q --implicit-deps-unchanged hello

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello

scons: ‘hello’ is up to date.

In this case, SCons will assume that the cached implicit dependencies are correct and will not bother to
re-scan changed files. For typical builds after small, incremental changes to source files, the savings may
not be very big, but sometimes every bit of improved performance counts.
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6.5. Explicit Dependencies: the Depends Function

Sometimes a file depends on another file that is not detected by an SCons scanner. For this situation,
SCons allows you to specific explicitly that one file depends on another file, and must be rebuilt
whenever that file changes. This is specified using the Depends method:

hello = Program(’hello.c’)
Depends(hello, ’other_file’)

% scons -Q hello

cc -c hello.c -o hello.o
cc -o hello hello.o
% scons -Q hello

scons: ‘hello’ is up to date.
% edit other_file

[CHANGE THE CONTENTS OF other_file]
% scons -Q hello

cc -c hello.c -o hello.o
cc -o hello hello.o

6.6. Ignoring Dependencies: the Ignore Function

Sometimes it makes sense to not rebuild a program, even if a dependency file changes. In this case, you
would tell SCons specifically to ignore a dependency as follows:

hello = Program(’hello.c’)
Ignore(hello, ’hello.h’)

% scons -Q hello

cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q hello

scons: ‘hello’ is up to date.
% edit hello.h

[CHANGE THE CONTENTS OF hello.h]
% scons -Q hello

scons: ‘hello’ is up to date.

Now, the above example is a little contrived, because it’s hard to imagine a real-world situation where
you wouldn’t want to rebuild hello if the hello.h file changed. A more realistic example might be if the
hello program is being built in a directory that is shared between multiple systems that have different
copies of the stdio.h include file. In that case, SCons would notice the differences between the
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different systems’ copies of stdio.h and would rebuild hello each time you change systems. You could
avoid these rebuilds as follows:

hello = Program(’hello.c’)
Ignore(hello, ’/usr/include/stdio.h’)

6.7. The AlwaysBuild Function

How SCons handles dependencies can also be affected by the AlwaysBuild method. When a file is
passed to the AlwaysBuild method, like so:

hello = Program(’hello.c’)
AlwaysBuild(hello)

Then the specified target file (hello in our example) will always be considered out-of-date and rebuilt
whenever that target file is evaluated while walking the dependency graph:

% scons -Q

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q

cc -o hello hello.o

The AlwaysBuild function has a somewhat misleading name, because it does not actually mean the
target file will be rebuilt every single time SCons is invoked. Instead, it means that the target will, in fact,
be rebuilt whenever the target file is encountered while evaluating the targets specified on the command
line (and their dependencies). So specifying some other target on the command line, a target that does
not itself depend on the AlwaysBuild target, will still be rebuilt only if it’s out-of-date with respect to
its dependencies:

% scons -Q

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello.o

scons: ‘hello.o’ is up to date.

Notes
1. This easily-overlooked distinction between how SCons decides if the target itself must be rebuilt and

how the target is then used to decide if a different target must be rebuilt is one of the confusing things
that has led to the TargetSignatures and SourceSignatures functions being replaced by the
simpler Decider function.
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It is rare that all of the software in a large, complicated system needs to be built the same way. For
example, different source files may need different options enabled on the command line, or different
executable programs need to be linked with different libraries. SCons accommodates these different
build requirements by allowing you to create and configure multiple construction environments

that control how the software is built. Technically, a construction environment is an object that has
a number of associated construction variables, each with a name and a value. (A construction
environment also has an attached set of Builder methods, about which we’ll learn more later.)

A construction environment is created by the Environment method:

env = Environment()

By default, SCons initializes every new construction environment with a set of construction
variables based on the tools that it finds on your system, plus the default set of builder methods
necessary for using those tools. The construction variables are initialized with values describing the C
compiler, the Fortran compiler, the linker, etc., as well as the command lines to invoke them.

When you initialize a construction environment you can set the values of the environment’s
construction variables to control how a program is built. For example:

env = Environment(CC = ’gcc’,
CCFLAGS = ’-O2’)

env.Program(’foo.c’)

The construction environment in this example is still initialized with the same default construction
variable values, except that the user has explicitly specified use of the GNU C compiler gcc, and further
specifies that the -O2 (optimization level two) flag should be used when compiling the object file. In
other words, the explicit initializations of $CC and $CCFLAGS override the default values in the
newly-created construction environment. So a run from this example would look like:

% scons -Q

gcc -o foo.o -c -O2 foo.c
gcc -o foo foo.o

7.1. Multiple Construction Environments

The real advantage of construction environments is that you can create as many different construction
environments as you need, each tailored to a different way to build some piece of software or other file.
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If, for example, we need to build one program with the -O2 flag and another with the -g (debug) flag, we
would do this like so:

opt = Environment(CCFLAGS = ’-O2’)
dbg = Environment(CCFLAGS = ’-g’)

opt.Program(’foo’, ’foo.c’)

dbg.Program(’bar’, ’bar.c’)

% scons -Q

cc -o bar.o -c -g bar.c
cc -o bar bar.o
cc -o foo.o -c -O2 foo.c
cc -o foo foo.o

We can even use multiple construction environments to build multiple versions of a single program. If
you do this by simply trying to use the Program builder with both environments, though, like this:

opt = Environment(CCFLAGS = ’-O2’)
dbg = Environment(CCFLAGS = ’-g’)

opt.Program(’foo’, ’foo.c’)

dbg.Program(’foo’, ’foo.c’)

Then SCons generates the following error:

% scons -Q

scons: *** Two environments with different actions were specified for the same target: foo.o
File "/home/my/project/SConstruct", line 6, in <module>

This is because the two Program calls have each implicitly told SCons to generate an object file named
foo.o, one with a $CCFLAGS value of -O2 and one with a $CCFLAGS value of -g. SCons can’t just
decide that one of them should take precedence over the other, so it generates the error. To avoid this
problem, we must explicitly specify that each environment compile foo.c to a separately-named object
file using the Object builder, like so:

opt = Environment(CCFLAGS = ’-O2’)
dbg = Environment(CCFLAGS = ’-g’)

o = opt.Object(’foo-opt’, ’foo.c’)
opt.Program(o)

d = dbg.Object(’foo-dbg’, ’foo.c’)
dbg.Program(d)
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Notice that each call to the Object builder returns a value, an internal SCons object that represents the
object file that will be built. We then use that object as input to the Program builder. This avoids having
to specify explicitly the object file name in multiple places, and makes for a compact, readable
SConstruct file. Our SCons output then looks like:

% scons -Q

cc -o foo-dbg.o -c -g foo.c
cc -o foo-dbg foo-dbg.o
cc -o foo-opt.o -c -O2 foo.c
cc -o foo-opt foo-opt.o

7.2. Copying Construction Environments

Sometimes you want more than one construction environment to share the same values for one or more
variables. Rather than always having to repeat all of the common variables when you create each
construction environment, you can use the Clone method to create a copy of a construction environment.

Like the Environment call that creates a construction environment, the Clone method takes
construction variable assignments, which will override the values in the copied construction
environment. For example, suppose we want to use gcc to create three versions of a program, one
optimized, one debug, and one with neither. We could do this by creating a "base" construction
environment that sets $CC to gcc, and then creating two copies, one which sets $CCFLAGS for
optimization and the other which sets $CCFLAGS for debugging:

env = Environment(CC = ’gcc’)
opt = env.Clone(CCFLAGS = ’-O2’)
dbg = env.Clone(CCFLAGS = ’-g’)

env.Program(’foo’, ’foo.c’)

o = opt.Object(’foo-opt’, ’foo.c’)
opt.Program(o)

d = dbg.Object(’foo-dbg’, ’foo.c’)
dbg.Program(d)

Then our output would look like:

% scons -Q

gcc -o foo.o -c foo.c
gcc -o foo foo.o
gcc -o foo-dbg.o -c -g foo.c
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gcc -o foo-dbg foo-dbg.o
gcc -o foo-opt.o -c -O2 foo.c
gcc -o foo-opt foo-opt.o

7.3. Fetching Values From a Construction Environment

You can fetch individual construction variables using the normal syntax for accessing individual named
items in a Python dictionary:

env = Environment()
print "CC is:", env[’CC’]

This example SConstruct file doesn’t build anything, but because it’s actually a Python script, it will
print the value of $CC for us:

% scons -Q

CC is: cc
scons: ‘.’ is up to date.

A construction environment, however, is actually an object with associated methods, etc. If you want to
have direct access to only the dictionary of construction variables, you can fetch this using the
Dictionary method:

env = Environment(FOO = ’foo’, BAR = ’bar’)
dict = env.Dictionary()
for key in [’OBJSUFFIX’, ’LIBSUFFIX’, ’PROGSUFFIX’]:

print "key = %s, value = %s" % (key, dict[key])

This SConstruct file will print the specified dictionary items for us on POSIX systems as follows:

% scons -Q

key = OBJSUFFIX, value = .o
key = LIBSUFFIX, value = .a
key = PROGSUFFIX, value =
scons: ‘.’ is up to date.

And on Windows:

C:\>scons -Q

key = OBJSUFFIX, value = .obj
key = LIBSUFFIX, value = .lib
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key = PROGSUFFIX, value = .exe
scons: ‘.’ is up to date.

If you want to loop through and print the values of all of the construction variables in a construction
environment, the Python code to do that in sorted order might look something like:

env = Environment()
dict = env.Dictionary()
keys = dict.keys()
keys.sort()
for key in keys:

print "construction variable = ’%s’, value = ’%s’" % (key, dict[key])

7.4. Expanding Values From a Construction

Environment

Another way to get information from a construction environment. is to use the subst method on a string
containing $-expansions of construction variable names. As a simple example, the example from the
previous section that used env[’CC’] to fetch the value of $CC could also be written as:

env = Environment()
print "CC is:", env.subst(’$CC’)

The real advantage of using subst to expand strings is that construction variables in the result get
re-expanded until there are no expansions left in the string. So a simple fetch of a value like $CCCOM:

env = Environment(CCFLAGS = ’-DFOO’)
print "CCCOM is:", env[’CCCOM’]

Will print the unexpanded value of $CCCOM, showing us the construction variables that still need to be
expanded:

% scons -Q

CCCOM is: $CC $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS -c -o $TARGET $SOURCES
scons: ‘.’ is up to date.

Calling the subst method on $CCOM, however:

env = Environment(CCFLAGS = ’-DFOO’)
print "CCCOM is:", env.subst(’$CCCOM’)
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Will recursively expand all of the $-prefixed construction variables, showing us the final output:

% scons -Q

CCCOM is: gcc -DFOO -c -o
scons: ‘.’ is up to date.

(Note that because we’re not expanding this in the context of building something there are no target or
source files for $TARGET and $SOURCES to expand.)

7.5. Modifying a Construction Environment

SCons provides various methods that support modifying existing values in a construction environment.

7.5.1. Replacing Values in a Construction Environment

You can replace existing construction variable values using the Replace method:

env = Environment(CCFLAGS = ’-DDEFINE1’)
env.Replace(CCFLAGS = ’-DDEFINE2’)
env.Program(’foo.c’)

The replacing value (-DDEFINE2 in the above example) completely replaces the value in the
construction environment:

% scons -Q

cc -o foo.o -c -DDEFINE2 foo.c
cc -o foo foo.o

You can safely call Replace for construction variables that don’t exist in the construction environment:

env = Environment()
env.Replace(NEW_VARIABLE = ’xyzzy’)
print "NEW_VARIABLE =", env[’NEW_VARIABLE’]

In this case, the construction variable simply gets added to the construction environment:

% scons -Q

NEW_VARIABLE = xyzzy
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scons: ‘.’ is up to date.

Because the variables aren’t expanded until the construction environment is actually used to build the
targets, and because SCons function and method calls are order-independent, the last replacement "wins"
and is used to build all targets, regardless of the order in which the calls to Replace() are interspersed
with calls to builder methods:

env = Environment(CCFLAGS = ’-DDEFINE1’)
print "CCFLAGS =", env[’CCFLAGS’]
env.Program(’foo.c’)

env.Replace(CCFLAGS = ’-DDEFINE2’)
print "CCFLAGS =", env[’CCFLAGS’]
env.Program(’bar.c’)

The timing of when the replacement actually occurs relative to when the targets get built becomes
apparent if we run scons without the -Q option:

% scons

scons: Reading SConscript files ...
CCFLAGS = -DDEFINE1
CCFLAGS = -DDEFINE2
scons: done reading SConscript files.
scons: Building targets ...
cc -o bar.o -c -DDEFINE2 bar.c
cc -o bar bar.o
cc -o foo.o -c -DDEFINE2 foo.c
cc -o foo foo.o
scons: done building targets.

Because the replacement occurs while the SConscript files are being read, the $CCFLAGS variable
has already been set to -DDEFINE2 by the time the foo.o target is built, even though the call to the
Replace method does not occur until later in the SConscript file.

7.5.2. Appending to the End of Values in a Construction

Environment

You can append a value to an existing construction variable using the Append method:

env = Environment(CCFLAGS = ’-DMY_VALUE’)
env.Append(CCFLAGS = ’ -DLAST’)
env.Program(’foo.c’)
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SCons then supplies both the -DMY_VALUE and -DLAST flags when compiling the object file:

% scons -Q

cc -o foo.o -c -DMY_VALUE -DLAST foo.c
cc -o foo foo.o

If the construction variable doesn’t already exist, the Append method will create it:

env = Environment()
env.Append(NEW_VARIABLE = ’added’)
print "NEW_VARIABLE =", env[’NEW_VARIABLE’]

Which yields:

% scons -Q

NEW_VARIABLE = added
scons: ‘.’ is up to date.

7.5.3. Appending to the Beginning of Values in a
Construction Environment

You can append a value to the beginning of an existing construction variable using the Prepend method:

env = Environment(CCFLAGS = ’-DMY_VALUE’)
env.Prepend(CCFLAGS = ’-DFIRST ’)
env.Program(’foo.c’)

SCons then supplies both the -DFIRST and -DMY_VALUE flags when compiling the object file:

% scons -Q

cc -o foo.o -c -DFIRST -DMY_VALUE foo.c
cc -o foo foo.o

If the construction variable doesn’t already exist, the Prepend method will create it:

env = Environment()
env.Prepend(NEW_VARIABLE = ’added’)
print "NEW_VARIABLE =", env[’NEW_VARIABLE’]

Which yields:
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% scons -Q

NEW_VARIABLE = added
scons: ‘.’ is up to date.
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When SCons builds a target file, it does not execute the commands with the same external environment
that you used to execute SCons. Instead, it uses the dictionary stored in the $ENV construction variable
as the external environment for executing commands.

The most important ramification of this behavior is that the PATH environment variable, which controls
where the operating system will look for commands and utilities, is not the same as in the external
environment from which you called SCons. This means that SCons will not, by default, necessarily find
all of the tools that you can execute from the command line.

The default value of the PATH environment variable on a POSIX system is
/usr/local/bin:/bin:/usr/bin. The default value of the PATH environment variable on a
Windows system comes from the Windows registry value for the command interpreter. If you want to
execute any commands--compilers, linkers, etc.--that are not in these default locations, you need to set
the PATH value in the $ENV dictionary in your construction environment.

The simplest way to do this is to initialize explicitly the value when you create the construction
environment; this is one way to do that:

path = [’/usr/local/bin’, ’/bin’, ’/usr/bin’]
env = Environment(ENV = {’PATH’ : path})

Assign a dictionary to the $ENV construction variable in this way completely resets the external
environment so that the only variable that will be set when external commands are executed will be the
PATH value. If you want to use the rest of the values in $ENV and only set the value of PATH, the most
straightforward way is probably:

env[’ENV’][’PATH’] = [’/usr/local/bin’, ’/bin’, ’/usr/bin’]

Note that SCons does allow you to define the directories in the PATH in a string, separated by the
pathname-separator character for your system (’:’ on POSIX systems, ’;’ on Windows):

env[’ENV’][’PATH’] = ’/usr/local/bin:/bin:/usr/bin’

But doing so makes your SConscript file less portable, (although in this case that may not be a huge
concern since the directories you list are likley system-specific, anyway).
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8.1. Propagating PATH From the External Environment

You may want to propagate the external PATH to the execution environment for commands. You do this
by initializing the PATH variable with the PATH value from the os.environ dictionary, which is
Python’s way of letting you get at the external environment:

import os
env = Environment(ENV = {’PATH’ : os.environ[’PATH’]})

Alternatively, you may find it easier to just propagate the entire external environment to the execution
environment for commands. This is simpler to code than explicity selecting the PATH value:

import os
env = Environment(ENV = os.environ)

Either of these will guarantee that SCons will be able to execute any command that you can execute from
the command line. The drawback is that the build can behave differently if it’s run by people with
different PATH values in their environment--for example, if both the /bin and /usr/local/bin

directories have different cc commands, then which one will be used to compile programs will depend on
which directory is listed first in the user’s PATH variable.
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SCons provides a number of ways that allow the writer of the SConscript files to give users a great
deal of control over how to run the builds.

9.1. Not Having to Specify Command-Line Options Each
Time: the SCONSFLAGS Environment Variable

Users may find themselves supplying the same command-line options every time they run SCons. For
example, a user might find that it saves time to specify a value of -j 2 to run the builds in parallel. To
avoid having to type -j 2 by hand every time, you can set the external environment variable
SCONSFLAGS to a string containing command-line options that you want SCons to use.

If, for example, you’re using a POSIX shell that’s compatible with the Bourne shell, and you always
want SCons to use the -Q option, you can set the SCONSFLAGS environment as follows:

% scons

scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...

... [build output] ...
scons: done building targets.
% export SCONSFLAGS="-Q"

% scons

... [build output] ...

Users of csh-style shells on POSIX systems can set the SCONSFLAGS environment as follows:

$ setenv SCONSFLAGS "-Q"

Windows users may typically want to set the SCONSFLAGS in the appropriate tab of the System
Properties window.

9.2. Getting at Command-Line Targets

SCons supports a COMMAND_LINE_TARGETS variable that lets you get at the list of targets that the user
specified on the command line. You can use the targets to manipulate the build in any way you wish. As
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a simple example, suppose that you want to print a reminder to the user whenever a specific program is
built. You can do this by checking for the target in the COMMAND_LINE_TARGETS list:

if ’bar’ in COMMAND_LINE_TARGETS:
print "Don’t forget to copy ‘bar’ to the archive!"

Default(Program(’foo.c’))
Program(’bar.c’)

Then, running SCons with the default target works as it always does, but explicity specifying the bar
target on the command line generates the warning message:

% scons -Q

cc -o foo.o -c foo.c
cc -o foo foo.o
% scons -Q bar

Don’t forget to copy ‘bar’ to the archive!
cc -o bar.o -c bar.c
cc -o bar bar.o

Another practical use for the COMMAND_LINE_TARGETS variable might be to speed up a build by only
reading certain subsidiary SConscript files if a specific target is requested.

9.3. Controlling the Default Targets

One of the most basic things you can control is which targets SCons will build by default--that is, when
there are no targets specified on the command line. As mentioned previously, SCons will normally build
every target in or below the current directory by default--that is, when you don’t explicitly specify one or
more targets on the command line. Sometimes, however, you may want to specify explicitly that only
certain programs, or programs in certain directories, should be built by default. You do this with the
Default function:

env = Environment()
hello = env.Program(’hello.c’)
env.Program(’goodbye.c’)
Default(hello)

This SConstruct file knows how to build two programs, hello and goodbye, but only builds the hello
program by default:

% scons -Q

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q

scons: ‘hello’ is up to date.
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% scons -Q goodbye

cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o

Note that, even when you use the Default function in your SConstruct file, you can still explicitly
specify the current directory (.) on the command line to tell SCons to build everything in (or below) the
current directory:

% scons -Q .

cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o
cc -o hello.o -c hello.c
cc -o hello hello.o

You can also call the Default function more than once, in which case each call adds to the list of targets
to be built by default:

env = Environment()
prog1 = env.Program(’prog1.c’)
Default(prog1)
prog2 = env.Program(’prog2.c’)
prog3 = env.Program(’prog3.c’)
Default(prog3)

Or you can specify more than one target in a single call to the Default function:

env = Environment()
prog1 = env.Program(’prog1.c’)
prog2 = env.Program(’prog2.c’)
prog3 = env.Program(’prog3.c’)
Default(prog1, prog3)

Either of these last two examples will build only the prog1 and prog3 programs by default:

% scons -Q

cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
cc -o prog3.o -c prog3.c
cc -o prog3 prog3.o
% scons -Q .

cc -o prog2.o -c prog2.c
cc -o prog2 prog2.o

You can list a directory as an argument to Default:
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env = Environment()
env.Program([’prog1/main.c’, ’prog1/foo.c’])
env.Program([’prog2/main.c’, ’prog2/bar.c’])
Default(’prog1’)

In which case only the target(s) in that directory will be built by default:

% scons -Q

cc -o prog1/foo.o -c prog1/foo.c
cc -o prog1/main.o -c prog1/main.c
cc -o prog1/main prog1/main.o prog1/foo.o
% scons -Q

scons: ‘prog1’ is up to date.
% scons -Q .

cc -o prog2/bar.o -c prog2/bar.c
cc -o prog2/main.o -c prog2/main.c
cc -o prog2/main prog2/main.o prog2/bar.o

Lastly, if for some reason you don’t want any targets built by default, you can use the Python None

variable:

env = Environment()
prog1 = env.Program(’prog1.c’)
prog2 = env.Program(’prog2.c’)
Default(None)

Which would produce build output like:

% scons -Q

scons: *** No targets specified and no Default() targets found. Stop.
% scons -Q .

cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
cc -o prog2.o -c prog2.c
cc -o prog2 prog2.o

9.3.1. Getting at the List of Default Targets

SCons supports a DEFAULT_TARGETS variable that lets you get at the current list of default targets. The
DEFAULT_TARGETS variable has two important differences from the COMMAND_LINE_TARGETS variable.
First, the DEFAULT_TARGETS variable is a list of internal SCons nodes, so you need to convert the list
elements to strings if you want to print them or look for a specific target name. Fortunately, you can do
this easily by using the Python map function to run the list through str:
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prog1 = Program(’prog1.c’)
Default(prog1)
print "DEFAULT_TARGETS is", map(str, DEFAULT_TARGETS)

(Keep in mind that all of the manipulation of the DEFAULT_TARGETS list takes place during the first
phase when SCons is reading up the SConscript files, which is obvious if we leave off the -Q flag
when we run SCons:)

% scons

scons: Reading SConscript files ...
DEFAULT_TARGETS is [’prog1’]
scons: done reading SConscript files.
scons: Building targets ...
cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
scons: done building targets.

Second, the contents of the DEFAULT_TARGETS list change in response to calls to the Default:
function, as you can see from the following SConstruct file:

prog1 = Program(’prog1.c’)
Default(prog1)
print "DEFAULT_TARGETS is now", map(str, DEFAULT_TARGETS)
prog2 = Program(’prog2.c’)
Default(prog2)
print "DEFAULT_TARGETS is now", map(str, DEFAULT_TARGETS)

Which yields the output:

% scons

scons: Reading SConscript files ...
DEFAULT_TARGETS is now [’prog1’]
DEFAULT_TARGETS is now [’prog1’, ’prog2’]
scons: done reading SConscript files.
scons: Building targets ...
cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
cc -o prog2.o -c prog2.c
cc -o prog2 prog2.o
scons: done building targets.

In practice, this simply means that you need to pay attention to the order in which you call the Default
function and refer to the DEFAULT_TARGETS list, to make sure that you don’t examine the list before
you’ve added the default targets you expect to find in it.
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9.4. Getting at the List of Build Targets, Regardless of
Origin

We’ve already been introduced to the COMMAND_LINE_TARGETS variable, which contains a list of targets
specified on the command line, and the DEFAULT_TARGETS variable, which contains a list of targets
specified via calls to the Default method or function. Sometimes, however, you want a list of whatever
targets SCons will try to build, regardless of whether the targets came from the command line or a
Default call. You could code this up by hand, as follows:

if COMMAND_LINE_TARGETS:
targets = COMMAND_LINE_TARGETS

else:
targets = DEFAULT_TARGETS

SCons, however, provides a convenient BUILD_TARGETS variable that eliminates the need for this
by-hand manipulation. Essentially, the BUILD_TARGETS variable contains a list of the command-line
targets, if any were specified, and if no command-line targets were specified, it contains a list of the
targets specified via the Default method or function.

Because BUILD_TARGETS may contain a list of SCons nodes, you must convert the list elements to
strings if you want to print them or look for a specific target name, just like the DEFAULT_TARGETS list:

prog1 = Program(’prog1.c’)
Program(’prog2.c’)
Default(prog1)
print "BUILD_TARGETS is", map(str, BUILD_TARGETS)

Notice how the value of BUILD_TARGETS changes depending on whether a target is specified on the
command line:

% scons -Q

BUILD_TARGETS is [’prog1’]
cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
% scons -Q prog2

BUILD_TARGETS is [’prog2’]
cc -o prog2.o -c prog2.c
cc -o prog2 prog2.o
% scons -Q -c .

BUILD_TARGETS is [’.’]
Removed prog1.o
Removed prog1
Removed prog2.o
Removed prog2
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9.5. Command-Line variable=value Build Options

You may want to control various aspects of your build by allowing the user to specify variable=value
values on the command line. For example, suppose you want users to be able to build a debug version of
a program by running SCons as follows:

% scons -Q debug=1

SCons provides an ARGUMENTS dictionary that stores all of the variable=value assignments from the
command line. This allows you to modify aspects of your build in response to specifications on the
command line. (Note that unless you want to require that users always specify an option, you probably
want to use the Python ARGUMENTS.get() function, which allows you to specify a default value to be
used if there is no specification on the command line.)

The following code sets the $CCFLAGS construction variable in response to the debug flag being set in
the ARGUMENTS dictionary:

env = Environment()
debug = ARGUMENTS.get(’debug’, 0)
if int(debug):

env.Append(CCFLAGS = ’-g’)
env.Program(’prog.c’)

This results in the -g compiler option being used when debug=1 is used on the command line:

% scons -Q debug=0

cc -o prog.o -c prog.c
cc -o prog prog.o
% scons -Q debug=0

scons: ‘.’ is up to date.
% scons -Q debug=1

cc -o prog.o -c -g prog.c
cc -o prog prog.o
% scons -Q debug=1

scons: ‘.’ is up to date.

Notice that SCons keeps track of the last values used to build the object files, and as a result correctly
rebuilds the object and executable files only when the value of the debug argument has changed.
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9.6. Controlling Command-Line Build Options

Being able to use a command-line build option like debug=1 is handy, but it can be a chore to write
specific Python code to recognize each such option and apply the values to a construction variable. To
help with this, SCons supports a class to define such build options easily, and a mechanism to apply the
build options to a construction environment. This allows you to control how the build options affect
construction environments.

For example, suppose that you want users to set a RELEASE construction variable on the command line
whenever the time comes to build a program for release, and that the value of this variable should be
added to the command line with the appropriate -D option (or other command line option) to pass the
value to the C compiler. Here’s how you might do that by setting the appropriate value in a dictionary for
the $CPPDEFINES construction variable:

opts = Options()
opts.Add(’RELEASE’, ’Set to 1 to build for release’, 0)
env = Environment(options = opts,

CPPDEFINES={’RELEASE_BUILD’ : ’${RELEASE}’})
env.Program([’foo.c’, ’bar.c’])

This SConstruct file first creates an Options object (the opts = Options() call), and then uses the
object’s Add method to indicate that the RELEASE option can be set on the command line, and that it’s
default value will be 0 (the third argument to the Add method). The second argument is a line of help
text; we’ll learn how to use it in the next section.

We then pass the created Options object as an options keyword argument to the Environment call
used to create the construction environment. This then allows a user to set the RELEASE build option on
the command line and have the variable show up in the command line used to build each object from a C
source file:

% scons -Q RELEASE=1

cc -o bar.o -c -DRELEASE_BUILD=1 bar.c
cc -o foo.o -c -DRELEASE_BUILD=1 foo.c
cc -o foo foo.o bar.o

9.7. Providing Help for Command-Line Build Options

To make command-line build options most useful, you ideally want to provide some help text that will
describe the available options when the user runs scons -h. You could write this text by hand, but
SCons provides an easier way. Options objects support a GenerateHelpText method that will, as its
name indicates, generate text that describes the various options that have been added to it. You then pass
the output from this method to the Help function:
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opts = Options(’custom.py’)
opts.Add(’RELEASE’, ’Set to 1 to build for release’, 0)
env = Environment(options = opts)
Help(opts.GenerateHelpText(env))

SCons will now display some useful text when the -h option is used:

% scons -Q -h

RELEASE: Set to 1 to build for release
default: 0
actual: 0

Use scons -H for help about command-line options.

Notice that the help output shows the default value, and the current actual value of the build option.

9.8. Reading Build Options From a File

Being able to use a command-line build option like debug=1 is handy, but it can be a chore to write
specific Python code to recognize each such option and apply the values to a construction variable. To
help with this, SCons supports a class to define such build options easily and to read build option values
from a file. This allows you to control how the build options affect construction environments. The way
you do this is by specifying a file name when you call Options, like custom.py in the following
example:

opts = Options(’custom.py’)
opts.Add(’RELEASE’, ’Set to 1 to build for release’, 0)
env = Environment(options = opts,

CPPDEFINES={’RELEASE_BUILD’ : ’${RELEASE}’})
env.Program([’foo.c’, ’bar.c’])
Help(opts.GenerateHelpText(env))

This then allows us to control the RELEASE variable by setting it in the custom.py file:

RELEASE = 1

Note that this file is actually executed like a Python script. Now when we run SCons:

% scons -Q

cc -o bar.o -c -DRELEASE_BUILD=1 bar.c
cc -o foo.o -c -DRELEASE_BUILD=1 foo.c
cc -o foo foo.o bar.o
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And if we change the contents of custom.py to:

RELEASE = 0

The object files are rebuilt appropriately with the new option:

% scons -Q

cc -o bar.o -c -DRELEASE_BUILD=0 bar.c
cc -o foo.o -c -DRELEASE_BUILD=0 foo.c
cc -o foo foo.o bar.o

9.9. Canned Build Options

SCons provides a number of functions that provide ready-made behaviors for various types of
command-line build options.

9.9.1. True/False Values: the BoolOption Build Option

It’s often handy to be able to specify an option that controls a simple Boolean variable with a true or
false value. It would be even more handy to accomodate users who have different preferences for how
to represent true or false values. The BoolOption function makes it easy to accomodate a variety of
common values that represent true or false.

The BoolOption function takes three arguments: the name of the build option, the default value of the
build option, and the help string for the option. It then returns appropriate information for passing to the
Add method of an Options object, like so:

opts = Options(’custom.py’)
opts.Add(BoolOption(’RELEASE’, ’Set to build for release’, 0))
env = Environment(options = opts,

CPPDEFINES={’RELEASE_BUILD’ : ’${RELEASE}’})
env.Program(’foo.c’)

With this build option, the RELEASE variable can now be enabled by setting it to the value yes or t:

% scons -Q RELEASE=yes foo.o

cc -o foo.o -c -DRELEASE_BUILD=True foo.c
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% scons -Q RELEASE=t foo.o

cc -o foo.o -c -DRELEASE_BUILD=True foo.c

Other values that equate to true include y, 1, on and all.

Conversely, RELEASE may now be given a false value by setting it to no or f:

% scons -Q RELEASE=no foo.o

cc -o foo.o -c -DRELEASE_BUILD=False foo.c

% scons -Q RELEASE=f foo.o

cc -o foo.o -c -DRELEASE_BUILD=False foo.c

Other values that equate to false include n, 0, off and none.

Lastly, if a user tries to specify any other value, SCons supplies an appropriate error message:

% scons -Q RELEASE=bad_value foo.o

scons: *** Error converting option: RELEASE
Invalid value for boolean option: bad_value
File "/home/my/project/SConstruct", line 4, in <module>

9.9.2. Single Value From a List: the EnumOption Build Option

Suppose that we want a user to be able to set a COLOR option that selects a background color to be
displayed by an application, but that we want to restrict the choices to a specific set of allowed colors.
This can be set up quite easily using the EnumOption, which takes a list of allowed_values in
addition to the variable name, default value, and help text arguments:

opts = Options(’custom.py’)
opts.Add(EnumOption(’COLOR’, ’Set background color’, ’red’,

allowed_values=(’red’, ’green’, ’blue’)))
env = Environment(options = opts,

CPPDEFINES={’COLOR’ : ’"${COLOR}"’})
env.Program(’foo.c’)

The user can now explicity set the COLOR build option to any of the specified allowed values:

% scons -Q COLOR=red foo.o

cc -o foo.o -c -DCOLOR="red" foo.c
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% scons -Q COLOR=blue foo.o

cc -o foo.o -c -DCOLOR="blue" foo.c
% scons -Q COLOR=green foo.o

cc -o foo.o -c -DCOLOR="green" foo.c

But, almost more importantly, an attempt to set COLOR to a value that’s not in the list generates an error
message:

% scons -Q COLOR=magenta foo.o

scons: *** Invalid value for option COLOR: magenta
File "/home/my/project/SConstruct", line 5, in <module>

The EnumOption function also supports a way to map alternate names to allowed values. Suppose, for
example, that we want to allow the user to use the word navy as a synonym for blue. We do this by
adding a map dictionary that will map its key values to the desired legal value:

opts = Options(’custom.py’)
opts.Add(EnumOption(’COLOR’, ’Set background color’, ’red’,

allowed_values=(’red’, ’green’, ’blue’),
map={’navy’:’blue’}))

env = Environment(options = opts,
CPPDEFINES={’COLOR’ : ’"${COLOR}"’})

env.Program(’foo.c’)

As desired, the user can then use navy on the command line, and SCons will translate it into blue when
it comes time to use the COLOR option to build a target:

% scons -Q COLOR=navy foo.o

cc -o foo.o -c -DCOLOR="blue" foo.c

By default, when using the EnumOption function, arguments that differ from the legal values only in
case are treated as illegal values:

% scons -Q COLOR=Red foo.o

scons: *** Invalid value for option COLOR: Red
File "/home/my/project/SConstruct", line 5, in <module>
% scons -Q COLOR=BLUE foo.o

scons: *** Invalid value for option COLOR: BLUE
File "/home/my/project/SConstruct", line 5, in <module>
% scons -Q COLOR=nAvY foo.o

scons: *** Invalid value for option COLOR: nAvY
File "/home/my/project/SConstruct", line 5, in <module>
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The EnumOption function can take an additional ignorecase keyword argument that, when set to 1,
tells SCons to allow case differences when the values are specified:

opts = Options(’custom.py’)
opts.Add(EnumOption(’COLOR’, ’Set background color’, ’red’,

allowed_values=(’red’, ’green’, ’blue’),
map={’navy’:’blue’},
ignorecase=1))

env = Environment(options = opts,
CPPDEFINES={’COLOR’ : ’"${COLOR}"’})

env.Program(’foo.c’)

Which yields the output:

% scons -Q COLOR=Red foo.o

cc -o foo.o -c -DCOLOR="Red" foo.c
% scons -Q COLOR=BLUE foo.o

cc -o foo.o -c -DCOLOR="BLUE" foo.c
% scons -Q COLOR=nAvY foo.o

cc -o foo.o -c -DCOLOR="blue" foo.c
% scons -Q COLOR=green foo.o

cc -o foo.o -c -DCOLOR="green" foo.c

Notice that an ignorecase value of 1 preserves the case-spelling that the user supplied. If you want
SCons to translate the names into lower-case, regardless of the case used by the user, specify an
ignorecase value of 2:

opts = Options(’custom.py’)
opts.Add(EnumOption(’COLOR’, ’Set background color’, ’red’,

allowed_values=(’red’, ’green’, ’blue’),
map={’navy’:’blue’},
ignorecase=2))

env = Environment(options = opts,
CPPDEFINES={’COLOR’ : ’"${COLOR}"’})

env.Program(’foo.c’)

Now SCons will use values of red, green or blue regardless of how the user spells those values on the
command line:

% scons -Q COLOR=Red foo.o

cc -o foo.o -c -DCOLOR="red" foo.c
% scons -Q COLOR=nAvY foo.o

cc -o foo.o -c -DCOLOR="blue" foo.c
% scons -Q COLOR=GREEN foo.o

cc -o foo.o -c -DCOLOR="green" foo.c
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9.9.3. Multiple Values From a List: the ListOption Build
Option

Another way in which you might want to allow users to control build option is to specify a list of one or
more legal values. SCons supports this through the ListOption function. If, for example, we want a
user to be able to set a COLORS option to one or more of the legal list of values:

opts = Options(’custom.py’)
opts.Add(ListOption(’COLORS’, ’List of colors’, 0,

[’red’, ’green’, ’blue’]))
env = Environment(options = opts,

CPPDEFINES={’COLORS’ : ’"${COLORS}"’})
env.Program(’foo.c’)

A user can now specify a comma-separated list of legal values, which will get translated into a
space-separated list for passing to the any build commands:

% scons -Q COLORS=red,blue foo.o

cc -o foo.o -c -DCOLORS="red blue" foo.c
% scons -Q COLORS=blue,green,red foo.o

cc -o foo.o -c -DCOLORS="blue green red" foo.c

In addition, the ListOption function allows the user to specify explicit keywords of all or none to
select all of the legal values, or none of them, respectively:

% scons -Q COLORS=all foo.o

cc -o foo.o -c -DCOLORS="red green blue" foo.c
% scons -Q COLORS=none foo.o

cc -o foo.o -c -DCOLORS="" foo.c

And, of course, an illegal value still generates an error message:

% scons -Q COLORS=magenta foo.o

scons: *** Error converting option: COLORS
Invalid value(s) for option: magenta
File "/home/my/project/SConstruct", line 5, in <module>
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9.9.4. Path Names: the PathOption Build Option

SCons supports a PathOption function to make it easy to create a build option to control an expected
path name. If, for example, you need to define a variable in the preprocessor that controls the location of
a configuration file:

opts = Options(’custom.py’)
opts.Add(PathOption(’CONFIG’,

’Path to configuration file’,
’/etc/my_config’))

env = Environment(options = opts,
CPPDEFINES={’CONFIG_FILE’ : ’"$CONFIG"’})

env.Program(’foo.c’)

This then allows the user to override the CONFIG build option on the command line as necessary:

% scons -Q foo.o

cc -o foo.o -c -DCONFIG_FILE="/etc/my_config" foo.c
% scons -Q CONFIG=/usr/local/etc/other_config foo.o

scons: ‘foo.o’ is up to date.

By default, PathOption checks to make sure that the specified path exists and generates an error if it
doesn’t:

% scons -Q CONFIG=/does/not/exist foo.o

scons: *** Path for option CONFIG does not exist: /does/not/exist
File "/home/my/project/SConstruct", line 6, in <module>

PathOption provides a number of methods that you can use to change this behavior. If you want to
ensure that any specified paths are, in fact, files and not directories, use the PathOption.PathIsFile
method:

opts = Options(’custom.py’)
opts.Add(PathOption(’CONFIG’,

’Path to configuration file’,
’/etc/my_config’,
PathOption.PathIsFile))

env = Environment(options = opts,
CPPDEFINES={’CONFIG_FILE’ : ’"$CONFIG"’})

env.Program(’foo.c’)

Conversely, to ensure that any specified paths are directories and not files, use the
PathOption.PathIsDir method:
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opts = Options(’custom.py’)
opts.Add(PathOption(’DBDIR’,

’Path to database directory’,
’/var/my_dbdir’,
PathOption.PathIsDir))

env = Environment(options = opts,
CPPDEFINES={’DBDIR’ : ’"$DBDIR"’})

env.Program(’foo.c’)

If you want to make sure that any specified paths are directories, and you would like the directory created
if it doesn’t already exist, use the PathOption.PathIsDirCreate method:

opts = Options(’custom.py’)
opts.Add(PathOption(’DBDIR’,

’Path to database directory’,
’/var/my_dbdir’,
PathOption.PathIsDirCreate))

env = Environment(options = opts,
CPPDEFINES={’DBDIR’ : ’"$DBDIR"’})

env.Program(’foo.c’)

Lastly, if you don’t care whether the path exists, is a file, or a directory, use the
PathOption.PathAccept method to accept any path that the user supplies:

opts = Options(’custom.py’)
opts.Add(PathOption(’OUTPUT’,

’Path to output file or directory’,
None,
PathOption.PathAccept))

env = Environment(options = opts,
CPPDEFINES={’OUTPUT’ : ’"$OUTPUT"’})

env.Program(’foo.c’)

9.9.5. Enabled/Disabled Path Names: the PackageOption

Build Option

Sometimes you want to give users even more control over a path name variable, allowing them to
explicitly enable or disable the path name by using yes or no keywords, in addition to allow them to
supply an explicit path name. SCons supports the PackageOption function to support this:

opts = Options(’custom.py’)
opts.Add(PackageOption(’PACKAGE’,

’Location package’,
’/opt/location’))

env = Environment(options = opts,
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CPPDEFINES={’PACKAGE’ : ’"$PACKAGE"’})
env.Program(’foo.c’)

When the SConscript file uses the PackageOption funciton, user can now still use the default or
supply an overriding path name, but can now explicitly set the specified variable to a value that indicates
the package should be enabled (in which case the default should be used) or disabled:

% scons -Q foo.o

cc -o foo.o -c -DPACKAGE="/opt/location" foo.c
% scons -Q PACKAGE=/usr/local/location foo.o

cc -o foo.o -c -DPACKAGE="/usr/local/location" foo.c
% scons -Q PACKAGE=yes foo.o

cc -o foo.o -c -DPACKAGE="True" foo.c
% scons -Q PACKAGE=no foo.o

cc -o foo.o -c -DPACKAGE="False" foo.c

9.10. Adding Multiple Command-Line Build Options at
Once

Lastly, SCons provides a way to add multiple build options to an Options object at once. Instead of
having to call the Add method multiple times, you can call the AddOptions method with a list of build
options to be added to the object. Each build option is specified as either a tuple of arguments, just like
you’d pass to the Add method itself, or as a call to one of the canned functions for pre-packaged
command-line build options. in any order:

opts = Options()
opts.AddOptions(

(’RELEASE’, ’Set to 1 to build for release’, 0),
(’CONFIG’, ’Configuration file’, ’/etc/my_config’),
BoolOption(’warnings’, ’compilation with -Wall and similiar’, 1),
EnumOption(’debug’, ’debug output and symbols’, ’no’,

allowed_values=(’yes’, ’no’, ’full’),
map={}, ignorecase=0), # case sensitive

ListOption(’shared’,
’libraries to build as shared libraries’,
’all’,
names = list_of_libs),

PackageOption(’x11’,
’use X11 installed here (yes = search some places)’,
’yes’),

PathOption(’qtdir’, ’where the root of Qt is installed’, qtdir),
)
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Function

It’s often very useful to be able to give users some help that describes the specific targets, build options,
etc., that can be used for your build. SCons provides the Help function to allow you to specify this help
text:

Help("""
Type: ’scons program’ to build the production program,

’scons debug’ to build the debug version.
""")

(Note the above use of the Python triple-quote syntax, which comes in very handy for specifying
multi-line strings like help text.)

When the SConstruct or SConscript files contain such a call to the Help function, the specified help
text will be displayed in response to the SCons -h option:

% scons -h

scons: Reading SConscript files ...
scons: done reading SConscript files.

Type: ’scons program’ to build the production program,
’scons debug’ to build the debug version.

Use scons -H for help about command-line options.

The SConscript files may contain multiple calls to the Help function, in which case the specified
text(s) will be concatenated when displayed. This allows you to split up the help text across multiple
SConscript files. In this situation, the order in which the SConscript files are called will determine
the order in which the Help functions are called, which will determine the order in which the various bits
of text will get concatenated.

Another use would be to make the help text conditional on some variable. For example, suppose you
only want to display a line about building a Windows-only version of a program when actually run on
Windows. The following SConstruct file:

env = Environment()

Help("\nType: ’scons program’ to build the production program.\n")

if env[’PLATFORM’] == ’win32’:
Help("\nType: ’scons windebug’ to build the Windows debug version.\n")
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Will display the complete help text on Windows:

C:\>scons -h

scons: Reading SConscript files ...
scons: done reading SConscript files.

Type: ’scons program’ to build the production program.

Type: ’scons windebug’ to build the Windows debug version.

Use scons -H for help about command-line options.

But only show the relevant option on a Linux or UNIX system:

% scons -h

scons: Reading SConscript files ...
scons: done reading SConscript files.

Type: ’scons program’ to build the production program.

Use scons -H for help about command-line options.

If there is no Help text in the SConstruct or SConscript files, SCons will revert to displaying its
standard list that describes the SCons command-line options. This list is also always displayed whenever
the -H option is used.
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Once a program is built, it is often appropriate to install it in another directory for public use. You use the
Install method to arrange for a program, or any other file, to be copied into a destination directory:

env = Environment()
hello = env.Program(’hello.c’)
env.Install(’/usr/bin’, hello)

Note, however, that installing a file is still considered a type of file "build." This is important when you
remember that the default behavior of SCons is to build files in or below the current directory. If, as in the
example above, you are installing files in a directory outside of the top-level SConstruct file’s directory
tree, you must specify that directory (or a higher directory, such as /) for it to install anything there:

% scons -Q

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q /usr/bin

Install file: "hello" as "/usr/bin/hello"

It can, however, be cumbersome to remember (and type) the specific destination directory in which the
program (or any other file) should be installed. This is an area where the Alias function comes in handy,
allowing you, for example, to create a pseudo-target named install that can expand to the specified
destination directory:

env = Environment()
hello = env.Program(’hello.c’)
env.Install(’/usr/bin’, hello)
env.Alias(’install’, ’/usr/bin’)

This then yields the more natural ability to install the program in its destination as follows:

% scons -Q

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q install

Install file: "hello" as "/usr/bin/hello"
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11.1. Installing Multiple Files in a Directory

You can install multiple files into a directory simply by calling the Install function multiple times:

env = Environment()
hello = env.Program(’hello.c’)
goodbye = env.Program(’goodbye.c’)
env.Install(’/usr/bin’, hello)
env.Install(’/usr/bin’, goodbye)
env.Alias(’install’, ’/usr/bin’)

Or, more succinctly, listing the multiple input files in a list (just like you can do with any other builder):

env = Environment()
hello = env.Program(’hello.c’)
goodbye = env.Program(’goodbye.c’)
env.Install(’/usr/bin’, [hello, goodbye])
env.Alias(’install’, ’/usr/bin’)

Either of these two examples yields:

% scons -Q install

cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o
Install file: "goodbye" as "/usr/bin/goodbye"
cc -o hello.o -c hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello"

11.2. Installing a File Under a Different Name

The Install method preserves the name of the file when it is copied into the destination directory. If
you need to change the name of the file when you copy it, use the InstallAs function:

env = Environment()
hello = env.Program(’hello.c’)
env.InstallAs(’/usr/bin/hello-new’, hello)
env.Alias(’install’, ’/usr/bin’)

This installs the hello program with the name hello-new as follows:

% scons -Q install

cc -o hello.o -c hello.c
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cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello-new"

11.3. Installing Multiple Files Under Different Names

Lastly, if you have multiple files that all need to be installed with different file names, you can either call
the InstallAs function multiple times, or as a shorthand, you can supply same-length lists for both the
target and source arguments:

env = Environment()
hello = env.Program(’hello.c’)
goodbye = env.Program(’goodbye.c’)
env.InstallAs([’/usr/bin/hello-new’,

’/usr/bin/goodbye-new’],
[hello, goodbye])

env.Alias(’install’, ’/usr/bin’)

In this case, the InstallAs function loops through both lists simultaneously, and copies each source file
into its corresponding target file name:

% scons -Q install

cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o
Install file: "goodbye" as "/usr/bin/goodbye-new"
cc -o hello.o -c hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello-new"
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SCons provides a number of platform-independent functions, called factories, that perform common
file system manipulations like copying, moving or deleting files and directories, or making directories.
These functions are factories because they don’t perform the action at the time they’re called, they
each return an Action object that can be executed at the appropriate time.

12.1. Copying Files or Directories: The Copy Factory

Suppose you want to arrange to make a copy of a file, and the Install builder isn’t appropriate because
it may make a hard link on POSIX systems. One way would be to use the Copy action factory in
conjunction with the Command builder:

Command("file.out", "file.in", Copy("$TARGET", "$SOURCE"))

Notice that the action returned by the Copy factory will expand the $TARGET and $SOURCE strings at
the time file.out is built, and that the order of the arguments is the same as that of a builder itself--that
is, target first, followed by source:

% scons -Q

Copy("file.out", "file.in")

You can, of course, name a file explicitly instead of using $TARGET or $SOURCE:

Command("file.out", [], Copy("$TARGET", "file.in"))

Which executes as:

% scons -Q

Copy("file.out", "file.in")

The usefulness of the Copy factory becomes more apparent when you use it in a list of actions passed to
the Command builder. For example, suppose you needed to run a file through a utility that only modifies
files in-place, and can’t "pipe" input to output. One solution is to copy the source file to a temporary file
name, run the utility, and then copy the modified temporary file to the target, which the Copy factory
makes extremely easy:

Command("file.out", "file.in",
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[
Copy("tempfile", "$SOURCE"),
"modify tempfile",
Copy("$TARGET", "tempfile"),

])

The output then looks like:

% scons -Q

Copy("tempfile", "file.in")
modify tempfile
Copy("file.out", "tempfile")

12.2. Deleting Files or Directories: The Delete Factory

If you need to delete a file, then the Delete factory can be used in much the same way as the Copy
factory. For example, if we want to make sure that the temporary file in our last example doesn’t exist
before we copy to it, we could add Delete to the beginning of the command list:

Command("file.out", "file.in",
[
Delete("tempfile"),
Copy("tempfile", "$SOURCE"),
"modify tempfile",
Copy("$TARGET", "tempfile"),

])

When then executes as follows:

% scons -Q

Delete("tempfile")
Copy("tempfile", "file.in")
modify tempfile
Copy("file.out", "tempfile")

Of course, like all of these Action factories, the Delete factory also expands $TARGET and
$SOURCE variables appropriately. For example:

Command("file.out", "file.in",
[
Delete("$TARGET"),
Copy("$TARGET", "$SOURCE")

])
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Executes as:

% scons -Q

Delete("file.out")
Copy("file.out", "file.in")

(Note, however, that you typically don’t need to call the Delete factory explicitly in this way; by
default, SCons deletes its target(s) for you before executing any action.

12.3. Moving (Renaming) Files or Directories: The Move

Factory

The Move factory allows you to rename a file or directory. For example, if we don’t want to copy the
temporary file, we could use:

Command("file.out", "file.in",
[
Copy("tempfile", "$SOURCE"),
"modify tempfile",
Move("$TARGET", "tempfile"),

])

Which would execute as:

% scons -Q

Copy("tempfile", "file.in")
modify tempfile
Move("file.out", "tempfile")

12.4. Updating the Modification Time of a File: The Touch

Factory

If you just need to update the recorded modification time for a file, use the Touch factory:

Command("file.out", "file.in",
[
Copy("$TARGET", "$SOURCE"),
Touch("$TARGET"),
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])

Which executes as:

% scons -Q

Copy("file.out", "file.in")
Touch("file.out")

12.5. Creating a Directory: The Mkdir Factory

If you need to create a directory, use the Mkdir factory. For example, if we need to process a file in a
temporary directory in which the processing tool will create other files that we don’t care about, you
could use:

Command("file.out", "file.in",
[
Delete("tempdir"),
Mkdir("tempdir"),
Copy("tempdir/${SOURCE.file}", "$SOURCE"),
"process tempdir",
Move("$TARGET", "tempdir/output_file"),
Delete("tempdir"),

])

Which executes as:

% scons -Q

Delete("tempdir")
Mkdir("tempdir")
Copy("tempdir/file.in", "file.in")
process tempdir
Move("file.out", "tempdir/output_file")
scons: *** [file.out] No such file or directory

12.6. Changing File or Directory Permissions: The Chmod

Factory

To change permissions on a file or directory, use the Chmod factory. The permission argument uses
POSIX-style permission bits and should typically be expressed as an octal, not decimal, number:
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Command("file.out", "file.in",
[
Copy("$TARGET", "$SOURCE"),
Chmod("$TARGET", 0755),

])

Which executes:

% scons -Q

Copy("file.out", "file.in")
Chmod("file.out", 0755)

12.7. Executing an action immediately: the Execute

Function

We’ve been showing you how to use Action factories in the Command function. You can also execute an
Action returned by a factory (or actually, any Action) at the time the SConscript file is read by
wrapping it up in the Execute function. For example, if we need to make sure that a directory exists
before we build any targets,

Execute(Mkdir(’/tmp/my_temp_directory’))

Notice that this will create the directory while the SConscript file is being read:

% scons

scons: Reading SConscript files ...
Mkdir("/tmp/my_temp_directory")
scons: done reading SConscript files.
scons: Building targets ...
scons: ‘.’ is up to date.
scons: done building targets.

If you’re familiar with Python, you may wonder why you would want to use this instead of just calling
the native Python os.mkdir() function. The advantage here is that the Mkdir action will behave
appropriately if the user specifies the SCons -n or -q options--that is, it will print the action but not
actually make the directory when -n is specified, or make the directory but not print the action when -q

is specified.
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There are two occasions when SCons will, by default, remove target files. The first is when SCons
determines that an target file needs to be rebuilt and removes the existing version of the target before
executing The second is when SCons is invoked with the -c option to "clean" a tree of its built targets.
These behaviours can be suppressed with the Precious and NoClean functions, respectively.

13.1. Preventing target removal during build: the
Precious Function

By default, SCons removes targets before building them. Sometimes, however, this is not what you want.
For example, you may want to update a library incrementally, not by having it deleted and then rebuilt
from all of the constituent object files. In such cases, you can use the Precious method to prevent
SCons from removing the target before it is built:

env = Environment(RANLIBCOM=”)
lib = env.Library(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])
env.Precious(lib)

Although the output doesn’t look any different, SCons does not, in fact, delete the target library before
rebuilding it:

% scons -Q

cc -o f1.o -c f1.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o

SCons will, however, still delete files marked as Precious when the -c option is used.

13.2. Preventing target removal during clean: the NoClean

Function

By default, SCons removes all built targets when invoked with the -c option to clean a source tree of
built targets. Sometimes, however, this is not what you want. For example, you may want to remove only
intermediate generated files (such as object files), but leave the final targets (the libraries) untouched. In
such cases, you can use the NoClean method to prevent SCons from removing a target during a clean:

env = Environment(RANLIBCOM=”)
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lib = env.Library(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])
env.NoClean(lib)

Notice that the libfoo.a is not listed as a removed file:

% scons -Q

cc -o f1.o -c f1.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o
% scons -c

scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Cleaning targets ...
Removed f1.o
Removed f2.o
Removed f3.o
scons: done cleaning targets.

13.3. Removing additional files during clean: the Clean

Function

There may be additional files that you want removed when the -c option is used, but which SCons
doesn’t know about because they’re not normal target files. For example, perhaps a command you invoke
creates a log file as part of building the target file you want. You would like the log file cleaned, but you
don’t want to have to teach SCons that the command "builds" two files.

You can use the Clean function to arrange for additional files to be removed when the -c option is used.
Notice, however, that the Clean function takes two arguments, and the second argument is the name of
the additional file you want cleaned (foo.log in this example):

t = Command(’foo.out’, ’foo.in’, ’build -o $TARGET $SOURCE’)
Clean(t, ’foo.log’)

The first argument is the target with which you want the cleaning of this additional file associated. In the
above example, we’ve used the return value from the Command function, which represents the foo.out
target. Now whenever the foo.out target is cleaned by the -c option, the foo.log file will be removed
as well:

% scons -Q

build -o foo.out foo.in
% scons -Q -c

Removed foo.out
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Removed foo.log
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The source code for large software projects rarely stays in a single directory, but is nearly always divided
into a hierarchy of directories. Organizing a large software build using SCons involves creating a
hierarchy of build scripts using the SConscript function.

14.1. SConscript Files

As we’ve already seen, the build script at the top of the tree is called SConstruct. The top-level
SConstruct file can use the SConscript function to include other subsidiary scripts in the build.
These subsidiary scripts can, in turn, use the SConscript function to include still other scripts in the
build. By convention, these subsidiary scripts are usually named SConscript. For example, a top-level
SConstruct file might arrange for four subsidiary scripts to be included in the build as follows:

SConscript([’drivers/display/SConscript’,
’drivers/mouse/SConscript’,
’parser/SConscript’,
’utilities/SConscript’])

In this case, the SConstruct file lists all of the SConscript files in the build explicitly. (Note,
however, that not every directory in the tree necessarily has an SConscript file.) Alternatively, the
drivers subdirectory might contain an intermediate SConscript file, in which case the SConscript
call in the top-level SConstruct file would look like:

SConscript([’drivers/SConscript’,
’parser/SConscript’,
’utilities/SConscript’])

And the subsidiary SConscript file in the drivers subdirectory would look like:

SConscript([’display/SConscript’,
’mouse/SConscript’])

Whether you list all of the SConscript files in the top-level SConstruct file, or place a subsidiary
SConscript file in intervening directories, or use some mix of the two schemes, is up to you and the
needs of your software.
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14.2. Path Names Are Relative to the SConscript

Directory

Subsidiary SConscript files make it easy to create a build hierarchy because all of the file and directory
names in a subsidiary SConscript files are interpreted relative to the directory in which the
SConscript file lives. Typically, this allows the SConscript file containing the instructions to build a
target file to live in the same directory as the source files from which the target will be built, making it
easy to update how the software is built whenever files are added or deleted (or other changes are made).

For example, suppose we want to build two programs prog1 and prog2 in two separate directories with
the same names as the programs. One typical way to do this would be with a top-level SConstruct file
like this:

SConscript([’prog1/SConscript’,
’prog2/SConscript’])

And subsidiary SConscript files that look like this:

env = Environment()
env.Program(’prog1’, [’main.c’, ’foo1.c’, ’foo2.c’])

And this:

env = Environment()
env.Program(’prog2’, [’main.c’, ’bar1.c’, ’bar2.c’])

Then, when we run SCons in the top-level directory, our build looks like:

% scons -Q

cc -o prog1/foo1.o -c prog1/foo1.c
cc -o prog1/foo2.o -c prog1/foo2.c
cc -o prog1/main.o -c prog1/main.c
cc -o prog1/prog1 prog1/main.o prog1/foo1.o prog1/foo2.o
cc -o prog2/bar1.o -c prog2/bar1.c
cc -o prog2/bar2.o -c prog2/bar2.c
cc -o prog2/main.o -c prog2/main.c
cc -o prog2/prog2 prog2/main.o prog2/bar1.o prog2/bar2.o

Notice the following: First, you can have files with the same names in multiple directories, like main.c in
the above example. Second, unlike standard recursive use of Make, SCons stays in the top-level directory
(where the SConstruct file lives) and issues commands that use the path names from the top-level
directory to the target and source files within the hierarchy.
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14.3. Top-Level Path Names in Subsidiary SConscript

Files

If you need to use a file from another directory, it’s sometimes more convenient to specify the path to a
file in another directory from the top-level SConstruct directory, even when you’re using that file in a
subsidiary SConscript file in a subdirectory. You can tell SCons to interpret a path name as relative to
the top-level SConstruct directory, not the local directory of the SConscript file, by appending a #
(hash mark) to the beginning of the path name:

env = Environment()
env.Program(’prog’, [’main.c’, ’#lib/foo1.c’, ’foo2.c’])

In this example, the lib directory is directly underneath the top-level SConstruct directory. If the
above SConscript file is in a subdirectory named src/prog, the output would look like:

% scons -Q

cc -o lib/foo1.o -c lib/foo1.c
cc -o src/prog/foo2.o -c src/prog/foo2.c
cc -o src/prog/main.o -c src/prog/main.c
cc -o src/prog/prog src/prog/main.o lib/foo1.o src/prog/foo2.o

(Notice that the lib/foo1.o object file is built in the same directory as its source file. See Chapter 15,
below, for information about how to build the object file in a different subdirectory.)

14.4. Absolute Path Names

Of course, you can always specify an absolute path name for a file--for example:

env = Environment()
env.Program(’prog’, [’main.c’, ’/usr/joe/lib/foo1.c’, ’foo2.c’])

Which, when executed, would yield:

% scons -Q

cc -o src/prog/foo2.o -c src/prog/foo2.c
cc -o src/prog/main.o -c src/prog/main.c
cc -o /usr/joe/lib/foo1.o -c /usr/joe/lib/foo1.c
cc -o src/prog/prog src/prog/main.o /usr/joe/lib/foo1.o src/prog/foo2.o
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(As was the case with top-relative path names, notice that the /usr/joe/lib/foo1.o object file is
built in the same directory as its source file. See Chapter 15, below, for information about how to build
the object file in a different subdirectory.)

14.5. Sharing Environments (and Other Variables)
Between SConscript Files

In the previous example, each of the subsidiary SConscript files created its own construction
environment by calling Environment separately. This obviously works fine, but if each program must
be built with the same construction variables, it’s cumbersome and error-prone to initialize separate
construction environments in the same way over and over in each subsidiary SConscript file.

SCons supports the ability to export variables from a parent SConscript file to its subsidiary
SConscript files, which allows you to share common initialized values throughout your build hierarchy.

14.5.1. Exporting Variables

There are two ways to export a variable, such as a construction environment, from an SConscript file,
so that it may be used by other SConscript files. First, you can call the Export function with a list of
variables, or a string of white-space separated variable names. Each call to Export adds one or more
variables to a global list of variables that are available for import by other SConscript files.

env = Environment()
Export(’env’)

You may export more than one variable name at a time:

env = Environment()
debug = ARGUMENTS[’debug’]
Export(’env’, ’debug’)

Because white space is not legal in Python variable names, the Export function will even automatically
split a string into separate names for you:

Export(’env debug’)

Second, you can specify a list of variables to export as a second argument to the SConscript function
call:

SConscript(’src/SConscript’, ’env’)
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Or as the exports keyword argument:

SConscript(’src/SConscript’, exports=’env’)

These calls export the specified variables to only the listed SConscript files. You may, however, specify
more than one SConscript file in a list:

SConscript([’src1/SConscript’,
’src2/SConscript’], exports=’env’)

This is functionally equivalent to calling the SConscript function multiple times with the same
exports argument, one per SConscript file.

14.5.2. Importing Variables

Once a variable has been exported from a calling SConscript file, it may be used in other SConscript
files by calling the Import function:

Import(’env’)
env.Program(’prog’, [’prog.c’])

The Import call makes the env construction environment available to the SConscript file, after which
the variable can be used to build programs, libraries, etc.

Like the Export function, the Import function can be used with multiple variable names:

Import(’env’, ’debug’)
env = env.Clone(DEBUG = debug)
env.Program(’prog’, [’prog.c’])

And the Import function will similarly split a string along white-space into separate variable names:

Import(’env debug’)
env = env.Clone(DEBUG = debug)
env.Program(’prog’, [’prog.c’])

Lastly, as a special case, you may import all of the variables that have been exported by supplying an
asterisk to the Import function:
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Import(’*’)
env = env.Clone(DEBUG = debug)
env.Program(’prog’, [’prog.c’])

If you’re dealing with a lot of SConscript files, this can be a lot simpler than keeping arbitrary lists of
imported variables in each file.

14.5.3. Returning Values From an SConscript File

Sometimes, you would like to be able to use information from a subsidiary SConscript file in some
way. For example, suppose that you want to create one library from source files scattered throughout a
number of subsidiary SConscript files. You can do this by using the Return function to return values
from the subsidiary SConscript files to the calling file.

If, for example, we have two subdirectories foo and bar that should each contribute a source file to a
Library, what we’d like to be able to do is collect the object files from the subsidiary SConscript calls
like this:

env = Environment()
Export(’env’)
objs = []
for subdir in [’foo’, ’bar’]:

o = SConscript(’%s/SConscript’ % subdir)
objs.append(o)

env.Library(’prog’, objs)

We can do this by using the Return function in the foo/SConscript file like this:

Import(’env’)
obj = env.Object(’foo.c’)
Return(’obj’)

(The corresponding bar/SConscript file should be pretty obvious.) Then when we run SCons, the
object files from the subsidiary subdirectories are all correctly archived in the desired library:

% scons -Q

cc -o bar/bar.o -c bar/bar.c
cc -o foo/foo.o -c foo/foo.c
ar rc libprog.a foo/foo.o bar/bar.o
ranlib libprog.a
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It’s often useful to keep any built files completely separate from the source files. In SCons, this is usually
done by creating one or more separate variant directory trees that are used to hold the built objects files,
libraries, and executable programs, etc. for a specific flavor, or variant, of build. SCons provides two
ways to do this, one through the SConscript function that we’ve already seen, and the second through a
more flexible VariantDir function.

One historical note: the VariantDir function used to be called BuildDir. That name is still supported
but has been deprecated because the SCons functionality differs from the model of a "build directory"
implemented by other build systems like the GNU Autotools.

15.1. Specifying a Variant Directory Tree as Part of an
SConscript Call

The most straightforward way to establish a variant directory tree uses the fact that the usual way to set
up a build hierarchy is to have an SConscript file in the source subdirectory. If you then pass a
variant_dir argument to the SConscript function call:

SConscript(’src/SConscript’, variant_dir=’build’)

SCons will then build all of the files in the build subdirectory:

% ls src

SConscript hello.c
% scons -Q

cc -o build/hello.o -c build/hello.c
cc -o build/hello build/hello.o
% ls build

SConscript hello hello.c hello.o

But wait a minute--what’s going on here? SCons created the object file build/hello.o in the build
subdirectory, as expected. But even though our hello.c file lives in the src subdirectory, SCons has
actually compiled a build/hello.c file to create the object file.

What’s happened is that SCons has duplicated the hello.c file from the src subdirectory to the build
subdirectory, and built the program from there. The next section explains why SCons does this.
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15.2. Why SCons Duplicates Source Files in a Variant
Directory Tree

SCons duplicates source files in variant directory trees because it’s the most straightforward way to
guarantee a correct build regardless of include-file directory paths, relative references between files, or
tool support for putting files in different locations, and the SCons philosophy is to, by default, guarantee
a correct build in all cases.

The most direct reason to duplicate source files in variant directories is simply that some tools (mostly
older vesions) are written to only build their output files in the same directory as the source files. In this
case, the choices are either to build the output file in the source directory and move it to the variant
directory, or to duplicate the source files in the variant directory.

Additionally, relative references between files can cause problems if we don’t just duplicate the hierarchy
of source files in the variant directory. You can see this at work in use of the C preprocessor #include
mechanism with double quotes, not angle brackets:

#include "file.h"

The de facto standard behavior for most C compilers in this case is to first look in the same directory as
the source file that contains the #include line, then to look in the directories in the preprocessor search
path. Add to this that the SCons implementation of support for code repositories (described below)
means not all of the files will be found in the same directory hierarchy, and the simplest way to make
sure that the right include file is found is to duplicate the source files into the variant directory, which
provides a correct build regardless of the original location(s) of the source files.

Although source-file duplication guarantees a correct build even in these end-cases, it can usually be
safely disabled. The next section describes how you can disable the duplication of source files in the
variant directory.

15.3. Telling SCons to Not Duplicate Source Files in the
Variant Directory Tree

In most cases and with most tool sets, SCons can place its target files in a build subdirectory without
duplicating the source files and everything will work just fine. You can disable the default SCons
behavior by specifying duplicate=0 when you call the SConscript function:

SConscript(’src/SConscript’, variant_dir=’build’, duplicate=0)
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When this flag is specified, SCons uses the variant directory like most people expect--that is, the output
files are placed in the variant directory while the source files stay in the source directory:

% ls src

SConscript
hello.c
% scons -Q

cc -c src/hello.c -o build/hello.o
cc -o build/hello build/hello.o
% ls build

hello
hello.o

15.4. The VariantDir Function

Use the VariantDir function to establish that target files should be built in a separate directory from the
source files:

VariantDir(’build’, ’src’)
env = Environment()
env.Program(’build/hello.c’)

Note that when you’re not using an SConscript file in the src subdirectory, you must actually specify
that the program must be built from the build/hello.c file that SCons will duplicate in the build
subdirectory.

When using the VariantDir function directly, SCons still duplicates the source files in the variant
directory by default:

% ls src

hello.c
% scons -Q

cc -o build/hello.o -c build/hello.c
cc -o build/hello build/hello.o
% ls build

hello hello.c hello.o

You can specify the same duplicate=0 argument that you can specify for an SConscript call:

VariantDir(’build’, ’src’, duplicate=0)
env = Environment()
env.Program(’build/hello.c’)
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In which case SCons will disable duplication of the source files:

% ls src

hello.c
% scons -Q

cc -o build/hello.o -c src/hello.c
cc -o build/hello build/hello.o
% ls build

hello hello.o

15.5. Using VariantDir With an SConscript File

Even when using the VariantDir function, it’s much more natural to use it with a subsidiary
SConscript file. For example, if the src/SConscript looks like this:

env = Environment()
env.Program(’hello.c’)

Then our SConstruct file could look like:

VariantDir(’build’, ’src’)
SConscript(’build/SConscript’)

Yielding the following output:

% ls src

SConscript hello.c
% scons -Q

cc -o build/hello.o -c build/hello.c
cc -o build/hello build/hello.o
% ls build

SConscript hello hello.c hello.o

Notice that this is completely equivalent to the use of SConscript that we learned about in the previous
section.
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The variant_dir keyword argument of the SConscript function provides everything we need to
show how easy it is to create variant builds using SCons. Suppose, for example, that we want to build a
program for both Windows and Linux platforms, but that we want to build it in a shared directory with
separate side-by-side build directories for the Windows and Linux versions of the program.

platform = ARGUMENTS.get(’OS’, Platform())

include = "#export/$PLATFORM/include"
lib = "#export/$PLATFORM/lib"
bin = "#export/$PLATFORM/bin"

env = Environment(PLATFORM = platform,
BINDIR = bin,
INCDIR = include,
LIBDIR = lib,
CPPPATH = [include],
LIBPATH = [lib],
LIBS = ’world’)

Export(’env’)

env.SConscript(’src/SConscript’, variant_dir=’build/$PLATFORM’)

This SConstruct file, when run on a Linux system, yields:

% scons -Q OS=linux

Install file: "build/linux/world/world.h" as "export/linux/include/world.h"
cc -o build/linux/hello/hello.o -c -Iexport/linux/include build/linux/hello/hello.c
cc -o build/linux/world/world.o -c -Iexport/linux/include build/linux/world/world.c
ar rc build/linux/world/libworld.a build/linux/world/world.o
ranlib build/linux/world/libworld.a
Install file: "build/linux/world/libworld.a" as "export/linux/lib/libworld.a"
cc -o build/linux/hello/hello build/linux/hello/hello.o -Lexport/linux/lib -lworld
Install file: "build/linux/hello/hello" as "export/linux/bin/hello"

The same SConstruct file on Windows would build:

C:\>scons -Q OS=windows

Install file: "build/windows/world/world.h" as "export/windows/include/world.h"
cl /nologo /Iexport\windows\include /c build\windows\hello\hello.c /Fobuild\windows\hello\hello.obj
cl /nologo /Iexport\windows\include /c build\windows\world\world.c /Fobuild\windows\world\world.obj
lib /nologo /OUT:build\windows\world\world.lib build\windows\world\world.obj
Install file: "build/windows/world/world.lib" as "export/windows/lib/world.lib"
link /nologo /OUT:build\windows\hello\hello.exe /LIBPATH:export\windows\lib world.lib build\windows\hello\hello.obj
Install file: "build/windows/hello/hello.exe" as "export/windows/bin/hello.exe"
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Although SCons provides many useful methods for building common software products: programs,
libraries, documents. you frequently want to be able to build some other type of file not supported
directly by SCons Fortunately, SCons makes it very easy to define your own Builder objects for any
custom file types you want to build. (In fact, the SCons interfaces for creating Builder objects are
flexible enough and easy enough to use that all of the the SCons built-in Builder objects are created the
mechanisms described in this section.)

17.1. Writing Builders That Execute External Commands

The simplest Builder to create is one that executes an external command. For example, if we want to
build an output file by running the contents of the input file through a command named foobuild,
creating that Builder might look like:

bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)

All the above line does is create a free-standing Builder object. The next section will show us how to
actually use it.

17.2. Attaching a Builder to a Construction Environment

A Builder object isn’t useful until it’s attached to a construction environment so that we can call
it to arrange for files to be built. This is done through the $BUILDERS construction variable in an
environment. The $BUILDERS variable is a Python dictionary that maps the names by which you want
to call various Builder objects to the objects themselves. For example, if we want to call the Builder
we just defined by the name Foo, our SConstruct file might look like:

bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)
env = Environment(BUILDERS = {’Foo’ : bld})

With the Builder so attached to our construction environment we can now actually call it like so:

env.Foo(’file.foo’, ’file.input’)

Then when we run SCons it looks like:

% scons -Q

foobuild < file.input > file.foo
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Note, however, that the default $BUILDERS variable in a construction environment comes with a
default set of Builder objects already defined: Program, Library, etc. And when we explicitly set the
$BUILDERS variable when we create the construction environment, the default Builders are no
longer part of the environment:

bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)
env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file.foo’, ’file.input’)
env.Program(’hello.c’)

% scons -Q

AttributeError: SConsEnvironment instance has no attribute ’Program’:
File "/home/my/project/SConstruct", line 4:
env.Program(’hello.c’)

To be able to use both our own defined Builder objects and the default Builder objects in the same
construction environment, you can either add to the $BUILDERS variable using the Append
function:

env = Environment()
bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)
env.Append(BUILDERS = {’Foo’ : bld})
env.Foo(’file.foo’, ’file.input’)
env.Program(’hello.c’)

Or you can explicitly set the appropriately-named key in the $BUILDERS dictionary:

env = Environment()
bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)
env[’BUILDERS’][’Foo’] = bld
env.Foo(’file.foo’, ’file.input’)
env.Program(’hello.c’)

Either way, the same construction environment can then use both the newly-defined Foo Builder

and the default Program Builder:

% scons -Q

foobuild < file.input > file.foo
cc -o hello.o -c hello.c
cc -o hello hello.o
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17.3. Letting SCons Handle The File Suffixes

By supplying additional information when you create a Builder, you can let SCons add appropriate file
suffixes to the target and/or the source file. For example, rather than having to specify explicitly that you
want the Foo Builder to build the file.foo target file from the file.input source file, you can give
the .foo and .input suffixes to the Builder, making for more compact and readable calls to the Foo
Builder:

bld = Builder(action = ’foobuild < $SOURCE > $TARGET’,
suffix = ’.foo’,
src_suffix = ’.input’)

env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file1’)
env.Foo(’file2’)

% scons -Q

foobuild < file1.input > file1.foo
foobuild < file2.input > file2.foo

You can also supply a prefix keyword argument if it’s appropriate to have SCons append a prefix to the
beginning of target file names.

17.4. Builders That Execute Python Functions

In SCons, you don’t have to call an external command to build a file. You can, instead, define a Python
function that a Builder object can invoke to build your target file (or files). Such a builder
function definition looks like:

def build_function(target, source, env):
# Code to build "target" from "source"
return None

The arguments of a builder function are:

target

A list of Node objects representing the target or targets to be built by this builder function. The file
names of these target(s) may be extracted using the Python str function.

source

A list of Node objects representing the sources to be used by this builder function to build the
targets. The file names of these source(s) may be extracted using the Python str function.

93



Chapter 17. Writing Your Own Builders

env

The construction environment used for building the target(s). The builder function may use
any of the environment’s construction variables in any way to affect how it builds the targets.

The builder function must return a 0 or None value if the target(s) are built successfully. The builder
function may raise an exception or return any non-zero value to indicate that the build is unsuccessful,

Once you’ve defined the Python function that will build your target file, defining a Builder object for it
is as simple as specifying the name of the function, instead of an external command, as the Builder’s
action argument:

def build_function(target, source, env):
# Code to build "target" from "source"
return None

bld = Builder(action = build_function,
suffix = ’.foo’,
src_suffix = ’.input’)

env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file’)

And notice that the output changes slightly, reflecting the fact that a Python function, not an external
command, is now called to build the target file:

% scons -Q

build_function(["file.foo"], ["file.input"])

17.5. Builders That Create Actions Using a Generator

SCons Builder objects can create an action "on the fly" by using a function called a generator. This
provides a great deal of flexibility to construct just the right list of commands to build your target. A
generator looks like:

def generate_actions(source, target, env, for_signature):
return ’foobuild < %s > %s’ % (target[0], source[0])

The arguments of a generator are:

source

A list of Node objects representing the sources to be built by the command or other action generated
by this function. The file names of these source(s) may be extracted using the Python str function.
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target

A list of Node objects representing the target or targets to be built by the command or other action
generated by this function. The file names of these target(s) may be extracted using the Python str

function.

env

The construction environment used for building the target(s). The generator may use any of
the environment’s construction variables in any way to determine what command or other action to
return.

for_signature

A flag that specifies whether the generator is being called to contribute to a build signature, as
opposed to actually executing the command.

The generator must return a command string or other action that will be used to build the specified
target(s) from the specified source(s).

Once you’ve defined a generator, you create a Builder to use it by specifying the generator keyword
argument instead of action.

def generate_actions(source, target, env, for_signature):
return ’foobuild < %s > %s’ % (source[0], target[0])

bld = Builder(generator = generate_actions,
suffix = ’.foo’,
src_suffix = ’.input’)

env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file’)

% scons -Q

foobuild < file.input > file.foo

Note that it’s illegal to specify both an action and a generator for a Builder.

17.6. Builders That Modify the Target or Source Lists
Using an Emitter

SCons supports the ability for a Builder to modify the lists of target(s) from the specified source(s).

def modify_targets(target, source, env):
target.append(’new_target’)
source.append(’new_source’)
return target, source

bld = Builder(action = ’foobuild $TARGETS - $SOURCES’,
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suffix = ’.foo’,
src_suffix = ’.input’,
emitter = modify_targets)

env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file’)

% scons -Q

foobuild file.foo new_target - file.input new_source

bld = Builder(action = ’my_command’,
suffix = ’.foo’,
src_suffix = ’.input’,
emitter = ’MY_EMITTER’)

def modify1(target, source, env):
return target, source

def modify2(target, source, env):
return target, source

env1 = Environment(BUILDERS = {’Foo’ : bld},
MY_EMITTER = modify1)

env2 = Environment(BUILDERS = {’Foo’ : bld},
MY_EMITTER = modify2)

env1.Foo(’file1’)
env2.Foo(’file2’)
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Builder

Creating a Builder and attaching it to a construction environment allows for a lot of flexibility
when you want to re-use actions to build multiple files of the same type. This can, however, be
cumbersome if you only need to execute one specific command to build a single file (or group of files).
For these situations, SCons supports a Command Builder that arranges for a specific action to be
executed to build a specific file or files. This looks a lot like the other builders (like Program, Object,
etc.), but takes as an additional argument the command to be executed to build the file:

env = Environment()
env.Command(’foo.out’, ’foo.in’, "sed ’s/x/y/’ < $SOURCE > $TARGET")

When executed, SCons runs the specified command, substituting $SOURCE and $TARGET as expected:

% scons -Q

sed ’s/x/y/’ < foo.in > foo.out

This is often more convenient than creating a Builder object and adding it to the $BUILDERS variable
of a construction environment

Note that the action you specify to the Command Builder can be any legal SCons Action, such as a
Python function:

env = Environment()
def build(target, source, env):

# Whatever it takes to build
return None

env.Command(’foo.out’, ’foo.in’, build)

Which executes as follows:

% scons -Q

build(["foo.out"], ["foo.in"])
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function

The env.AddMethod(function, [name]) function is used to add a method to an environment. It’s typically
used to add a "pseudo-builder" or wrap up a call to multiple builders. In the first example, we want to
install the program into the standard bin dir, but also copy it into a local install/bin dir that might be used
to build a package from.

def install_in_bin_dirs(env, source):
"""Install source in both bin dirs"""
i1 = env.Install("$BIN", source)
i2 = env.Install("$LOCALBIN", source)
return [i1[0], i2][0] # Return a list, like a normal builder

env = Environment(BIN=’/usr/bin’, LOCALBIN=’#install/bin’)
env.AddMethod(install_in_bin_dirs, "InstallInBinDirs")
env.InstallInBinDirs(Program(’hello.c’)) # installs hello in both bin dirs

This produces the following:

% scons -Q

cc -o hello.o -c hello.c
cc -o hello hello.o
Install file: "hello" as "install/bin/hello"

It also gives more flexibility in parsing arguments than you can get with a builder. The next example
shows a pseudo-builder with a named argument that modifies the filename, and a separate argument for
the resource file (rather than having the builder figure it out by file extension). Also this example
demonstrates using the global AddMethod function to add a method to the global Environment class, so
it will be used in all subsequently created environments.

import sys
def BuildTestProg(env, testfile, resourcefile, testdir="tests"):

"""Build the test program;
prepends "test_" to src and target, and puts target into testdir."""
srcfile="test_%s.c"%testfile
if sys.platform==’win32’:

target="%s/test_%s$EXESUFFIX"%(testdir,[testfile, resourcefile])
else:

target="%s/test_%s$EXESUFFIX"%(testdir,testfile)
p = env.Program(target, srcfile)
return p

AddMethod(Environment, BuildTestProg)

# Now use it
env=Environment()
env.BuildTestProg(’stuff’, resourcefile=’res.rc’)
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This produces the following (on Linux, anyway; Windows would include the resource file):

% scons -Q

cc -o test_stuff.o -c test_stuff.c
cc -o tests/test_stuff test_stuff.o
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SCons has built-in scanners that know how to look in C, Fortran and IDL source files for information
about other files that targets built from those files depend on--for example, in the case of files that use the
C preprocessor, the .h files that are specified using #include lines in the source. You can use the same
mechanisms that SCons uses to create its built-in scanners to write scanners of your own for file types
that SCons does not know how to scan "out of the box."

20.1. A Simple Scanner Example

Suppose, for example, that we want to create a simple scanner for .foo files. A .foo file contains some
text that will be processed, and can include other files on lines that begin with include followed by a
file name:

include filename.foo

Scanning a file will be handled by a Python function that you must supply. Here is a function that will
use the Python re module to scan for the include lines in our example:

import re

include_re = re.compile(r’^include\s+(\S+)$’, re.M)

def kfile_scan(node, env, path, arg):
contents = node.get_contents()
return include_re.findall(contents)

The scanner function must accept the four specified arguments and return a list of implicit dependencies.
Presumably, these would be dependencies found from examining the contents of the file, although the
function can perform any manipulation at all to generate the list of dependencies.

node

An SCons node object representing the file being scanned. The path name to the file can be used by
converting the node to a string using the str() function, or an internal SCons get_contents()
object method can be used to fetch the contents.

env

The construction environment in effect for this scan. The scanner function may choose to use
construction variables from this environment to affect its behavior.
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path

A list of directories that form the search path for included files for this scanner. This is how SCons
handles the $CPPPATH and $LIBPATH variables.

arg

An optional argument that you can choose to have passed to this scanner function by various
scanner instances.

A Scanner object is created using the Scanner function, which typically takes an skeys argument to
associate the type of file suffix with this scanner. The Scanner object must then be associated with the
$SCANNERS construction variable of a construction environment, typically by using the Append
method:

kscan = Scanner(function = kfile_scan,
skeys = [’.k’])

env.Append(SCANNERS = kscan)

When we put it all together, it looks like:

import re

include_re = re.compile(r’^include\s+(\S+)$’, re.M)

def kfile_scan(node, env, path):
contents = node.get_contents()
includes = include_re.findall(contents)
return includes

kscan = Scanner(function = kfile_scan,
skeys = [’.k’])

env = Environment(ENV = {’PATH’ : ’/usr/local/bin’})
env.Append(SCANNERS = kscan)

env.Command(’foo’, ’foo.k’, ’kprocess < $SOURCES > $TARGET’)
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Often, a software project will have one or more central repositories, directory trees that contain source
code, or derived files, or both. You can eliminate additional unnecessary rebuilds of files by having
SCons use files from one or more code repositories to build files in your local build tree.

21.1. The Repository Method

It’s often useful to allow multiple programmers working on a project to build software from source files
and/or derived files that are stored in a centrally-accessible repository, a directory copy of the source
code tree. (Note that this is not the sort of repository maintained by a source code management system
like BitKeeper, CVS, or Subversion.) You use the Repository method to tell SCons to search one or
more central code repositories (in order) for any source files and derived files that are not present in the
local build tree:

env = Environment()
env.Program(’hello.c’)
Repository(’/usr/repository1’, ’/usr/repository2’)

Multiple calls to the Repository method will simply add repositories to the global list that SCons
maintains, with the exception that SCons will automatically eliminate the current directory and any
non-existent directories from the list.

21.2. Finding source files in repositories

The above example specifies that SCons will first search for files under the /usr/repository1 tree
and next under the /usr/repository2 tree. SCons expects that any files it searches for will be found
in the same position relative to the top-level directory. In the above example, if the hello.c file is not
found in the local build tree, SCons will search first for a /usr/repository1/hello.c file and then
for a /usr/repository2/hello.c file to use in its place.

So given the SConstruct file above, if the hello.c file exists in the local build directory, SCons will
rebuild the hello program as normal:

% scons -Q

cc -o hello.o -c hello.c
cc -o hello hello.o

If, however, there is no local hello.c file, but one exists in /usr/repository1, SCons will recompile
the hello program from the source file it finds in the repository:
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% scons -Q

cc -o hello.o -c /usr/repository1/hello.c
cc -o hello hello.o

And similarly, if there is no local hello.c file and no /usr/repository1/hello.c, but one exists in
/usr/repository2:

% scons -Q

cc -o hello.o -c /usr/repository2/hello.c
cc -o hello hello.o

21.3. Finding #include files in repositories

We’ve already seen that SCons will scan the contents of a source file for #include file names and
realize that targets built from that source file also depend on the #include file(s). For each directory in
the $CPPPATH list, SCons will actually search the corresponding directories in any repository trees and
establish the correct dependencies on any #include files that it finds in repository directory.

Unless the C compiler also knows about these directories in the repository trees, though, it will be unable
to find the #include files. If, for example, the hello.c file in our previous example includes the
hello.h; in its current directory, and the hello.h; only exists in the repository:

% scons -Q

cc -o hello.o -c hello.c
hello.c:1: hello.h: No such file or directory

In order to inform the C compiler about the repositories, SCons will add appropriate -I flags to the
compilation commands for each directory in the $CPPPATH list. So if we add the current directory to the
construction environment $CPPPATH like so:

env = Environment(CPPPATH = [’.’])
env.Program(’hello.c’)
Repository(’/usr/repository1’)

Then re-executing SCons yields:

% scons -Q

cc -o hello.o -c -I. -I/usr/repository1 hello.c
cc -o hello hello.o

103



Chapter 21. Building From Code Repositories

The order of the -I options replicates, for the C preprocessor, the same repository-directory search path
that SCons uses for its own dependency analysis. If there are multiple repositories and multiple
$CPPPATH directories, SCons will add the repository directories to the beginning of each $CPPPATH
directory, rapidly multiplying the number of -I flags. If, for example, the $CPPPATH contains three
directories (and shorter repository path names!):

env = Environment(CPPPATH = [’dir1’, ’dir2’, ’dir3’])
env.Program(’hello.c’)
Repository(’/r1’, ’/r2’)

Then we’ll end up with nine -I options on the command line, three (for each of the $CPPPATH
directories) times three (for the local directory plus the two repositories):

% scons -Q

cc -o hello.o -c -Idir1 -I/r1/dir1 -I/r2/dir1 -Idir2 -I/r1/dir2 -I/r2/dir2 -Idir3 -I/r1/dir3 -I/r2/dir3 hello.c
cc -o hello hello.o

21.3.1. Limitations on #include files in repositories

SCons relies on the C compiler’s -I options to control the order in which the preprocessor will search
the repository directories for #include files. This causes a problem, however, with how the C
preprocessor handles #include lines with the file name included in double-quotes.

As we’ve seen, SCons will compile the hello.c file from the repository if it doesn’t exist in the local
directory. If, however, the hello.c file in the repository contains a #include line with the file name in
double quotes:

#include "hello.h"
int
main(int argc, char *argv[])
{

printf(HELLO_MESSAGE);
return (0);

}

Then the C preprocessor will always use a hello.h file from the repository directory first, even if there
is a hello.h file in the local directory, despite the fact that the command line specifies -I as the first
option:

% scons -Q

cc -o hello.o -c -I. -I/usr/repository1 /usr/repository1/hello.c
cc -o hello hello.o
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This behavior of the C preprocessor--always search for a #include file in double-quotes first in the
same directory as the source file, and only then search the -I--can not, in general, be changed. In other
words, it’s a limitation that must be lived with if you want to use code repositories in this way. There are
three ways you can possibly work around this C preprocessor behavior:

1. Some modern versions of C compilers do have an option to disable or control this behavior. If so,
add that option to $CFLAGS (or $CXXFLAGS or both) in your construction environment(s). Make
sure the option is used for all construction environments that use C preprocessing!

2. Change all occurrences of #include "file.h" to #include <file.h>. Use of #include with
angle brackets does not have the same behavior--the -I directories are searched first for #include
files--which gives SCons direct control over the list of directories the C preprocessor will search.

3. Require that everyone working with compilation from repositories check out and work on entire
directories of files, not individual files. (If you use local wrapper scripts around your source code
control system’s command, you could add logic to enforce this restriction there.

21.4. Finding the SConstruct file in repositories

SCons will also search in repositories for the SConstruct file and any specified SConscript files. This
poses a problem, though: how can SCons search a repository tree for an SConstruct file if the
SConstruct file itself contains the information about the pathname of the repository? To solve this
problem, SCons allows you to specify repository directories on the command line using the -Y option:

% scons -Q -Y /usr/repository1 -Y /usr/repository2

When looking for source or derived files, SCons will first search the repositories specified on the
command line, and then search the repositories specified in the SConstruct or SConscript files.

21.5. Finding derived files in repositories

If a repository contains not only source files, but also derived files (such as object files, libraries, or
executables), SCons will perform its normal MD5 signature calculation to decide if a derived file in a
repository is up-to-date, or the derived file must be rebuilt in the local build directory. For the SCons
signature calculation to work correctly, a repository tree must contain the .sconsign files that SCons
uses to keep track of signature information.

Usually, this would be done by a build integrator who would run SCons in the repository to create all of
its derived files and .sconsign files, or who would run SCons in a separate build directory and copy the
resulting tree to the desired repository:

% cd /usr/repository1

% scons -Q
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cc -o file1.o -c file1.c
cc -o file2.o -c file2.c
cc -o hello.o -c hello.c
cc -o hello hello.o file1.o file2.o

(Note that this is safe even if the SConstruct file lists /usr/repository1 as a repository, because
SCons will remove the current build directory from its repository list for that invocation.)

Now, with the repository populated, we only need to create the one local source file we’re interested in
working with at the moment, and use the -Y option to tell SCons to fetch any other files it needs from the
repository:

% cd $HOME/build

% edit hello.c

% scons -Q -Y /usr/repository1

cc -c -o hello.o hello.c
cc -o hello hello.o /usr/repository1/file1.o /usr/repository1/file2.o

Notice that SCons realizes that it does not need to rebuild local copies file1.o and file2.o files, but
instead uses the already-compiled files from the repository.

21.6. Guaranteeing local copies of files

If the repository tree contains the complete results of a build, and we try to build from the repository
without any files in our local tree, something moderately surprising happens:

% mkdir $HOME/build2

% cd $HOME/build2

% scons -Q -Y /usr/all/repository hello

scons: ‘hello’ is up-to-date.

Why does SCons say that the hello program is up-to-date when there is no hello program in the local
build directory? Because the repository (not the local directory) contains the up-to-date hello program,
and SCons correctly determines that nothing needs to be done to rebuild that up-to-date copy of the file.

There are, however, many times when you want to ensure that a local copy of a file always exists. A
packaging or testing script, for example, may assume that certain generated files exist locally. To tell
SCons to make a copy of any up-to-date repository file in the local build directory, use the Local
function:

env = Environment()
hello = env.Program(’hello.c’)
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Local(hello)

If we then run the same command, SCons will make a local copy of the program from the repository
copy, and tell you that it is doing so:

% scons -Y /usr/all/repository hello

Local copy of hello from /usr/all/repository/hello
scons: ‘hello’ is up-to-date.

(Notice that, because the act of making the local copy is not considered a "build" of the hello file, SCons
still reports that it is up-to-date.)
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SCons has integrated support for multi-platform build configuration similar to that offered by GNU
Autoconf, such as figuring out what libraries or header files are available on the local system. This
section describes how to use this SCons feature.

Note: This chapter is still under development, so not everything is explained as well as it should be.
See the SCons man page for additional information.

22.1. Configure Contexts

The basic framework for multi-platform build configuration in SCons is to attach a configure
context to a construction environment by calling the Configure function, perform a number of checks
for libraries, functions, header files, etc., and to then call the configure context’s Finish method to finish
off the configuration:

env = Environment()
conf = Configure(env)
# Checks for libraries, header files, etc. go here!
env = conf.Finish()

SCons provides a number of basic checks, as well as a mechanism for adding your own custom checks.

Note that SCons uses its own dependency mechanism to determine when a check needs to be run--that is,
SCons does not run the checks every time it is invoked, but caches the values returned by previous
checks and uses the cached values unless something has changed. This saves a tremendous amount of
developer time while working on cross-platform build issues.

The next sections describe the basic checks that SCons supports, as well as how to add your own custom
checks.

22.2. Checking for the Existence of Header Files

Testing the existence of a header file requires knowing what language the header file is. A configure
context has a CheckCHeader method that checks for the existence of a C header file:

env = Environment()
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conf = Configure(env)
if not conf.CheckCHeader(’math.h’):

print ’Math.h must be installed!’
Exit(1)

if conf.CheckCHeader(’foo.h’):
conf.env.Append(’-DHAS_FOO_H’)

env = conf.Finish()

Note that you can choose to terminate the build if a given header file doesn’t exist, or you can modify the
construction environment based on the existence of a header file.

If you need to check for the existence a C++ header file, use the CheckCXXHeader method:

env = Environment()
conf = Configure(env)
if not conf.CheckCXXHeader(’vector.h’):

print ’vector.h must be installed!’
Exit(1)

env = conf.Finish()

22.3. Checking for the Availability of a Function

Check for the availability of a specific function using the CheckFunc method:

env = Environment()
conf = Configure(env)
if not conf.CheckFunc(’strcpy’):

print ’Did not find strcpy(), using local version’
conf.env.Append(’-Dstrcpy=my_local_strcpy’)

env = conf.Finish()

22.4. Checking for the Availability of a Library

Check for the availability of a library using the CheckLib method. You only specify the basename of the
library, you don’t need to add a lib prefix or a .a or .lib suffix:

env = Environment()
conf = Configure(env)
if not conf.CheckLib(’m’):

print ’Did not find libm.a or m.lib, exiting!’
Exit(1)
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env = conf.Finish()

Because the ability to use a library successfully often depends on having access to a header file that
describes the library’s interface, you can check for a library and a header file at the same time by using
the CheckLibWithHeader method:

env = Environment()
conf = Configure(env)
if not conf.CheckLibWithHeader(’m’, ’math.h’):

print ’Did not find libm.a or m.lib, exiting!’
Exit(1)

env = conf.Finish()

This is essentially shorthand for separate calls to the CheckHeader and CheckLib functions.

22.5. Checking for the Availability of a typedef

Check for the availability of a typedef by using the CheckType method:

env = Environment()
conf = Configure(env)
if not conf.CheckType(’off_t’):

print ’Did not find off_t typedef, assuming int’
conf.env.Append(CCFLAGS = ’-Doff_t=int’)

env = conf.Finish()

You can also add a string that will be placed at the beginning of the test file that will be used to check for
the typedef. This provide a way to specify files that must be included to find the typedef:

env = Environment()
conf = Configure(env)
if not conf.CheckType(’off_t’, ’#include <sys/types.h>\n’):

print ’Did not find off_t typedef, assuming int’
conf.env.Append(CCFLAGS = ’-Doff_t=int’)

env = conf.Finish()

22.6. Adding Your Own Custom Checks

A custom check is a Python function that checks for a certain condition to exist on the running system,
usually using methods that SCons supplies to take care of the details of checking whether a compilation

110



Chapter 22. Multi-Platform Configuration (Autoconf Functionality)

succeeds, a link succeeds, a program is runnable, etc. A simple custom check for the existence of a
specific library might look as follows:

mylib_test_source_file = """
#include <mylib.h>
int main(int argc, char **argv)
{

MyLibrary mylib(argc, argv);
return 0;

}
"""

def CheckMyLibrary(context):
context.Message(’Checking for MyLibrary...’)
result = context.TryLink(mylib_test_source_file, ’.c’)
context.Result(result)
return result

The Message and Result methods should typically begin and end a custom check to let the user know
what’s going on: the Message call prints the specified message (with no trailing newline) and the
Result call prints ok if the check succeeds and failed if it doesn’t. The TryLink method actually
tests for whether the specified program text will successfully link.

(Note that a custom check can modify its check based on any arguments you choose to pass it, or by
using or modifying the configure context environment in the context.env attribute.)

This custom check function is then attached to the configure context by passing a dictionary to the
Configure call that maps a name of the check to the underlying function:

env = Environment()
conf = Configure(env, custom_tests = {’CheckMyLibrary’ : CheckMyLibrary})

You’ll typically want to make the check and the function name the same, as we’ve done here, to avoid
potential confusion.

We can then put these pieces together and actually call the CheckMyLibrary check as follows:

mylib_test_source_file = """
#include <mylib.h>
int main(int argc, char **argv)
{

MyLibrary mylib(argc, argv);
return 0;

}
"""

def CheckMyLibrary(context):

111



Chapter 22. Multi-Platform Configuration (Autoconf Functionality)

context.Message(’Checking for MyLibrary... ’)
result = context.TryLink(mylib_test_source_file, ’.c’)
context.Result(result)
return result

env = Environment()
conf = Configure(env, custom_tests = {’CheckMyLibrary’ : CheckMyLibrary})
if not conf.CheckMyLibrary():

print ’MyLibrary is not installed!’
Exit(1)

env = conf.Finish()

# We would then add actual calls like Program() to build
# something using the "env" construction environment.

If MyLibrary is not installed on the system, the output will look like:

% scons

scons: Reading SConscript file ...
Checking for MyLibrary... failed
MyLibrary is not installed!

If MyLibrary is installed, the output will look like:

% scons

scons: Reading SConscript file ...
Checking for MyLibrary... failed
scons: done reading SConscript
scons: Building targets ...

.

.

.

22.7. Not Configuring When Cleaning Targets

Using multi-platform configuration as described in the previous sections will run the configuration
commands even when invoking scons -c to clean targets:

% scons -Q -c

Checking for MyLibrary... ok
Removed foo.o
Removed foo
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Although running the platform checks when removing targets doesn’t hurt anything, it’s usually
unnecessary. You can avoid this by using the GetOption(); method to check whether the -c (clean)
option has been invoked on the command line:

env = Environment()
if not env.GetOption(’clean’):

conf = Configure(env, custom_tests = {’CheckMyLibrary’ : CheckMyLibrary})
if not conf.CheckMyLibrary():

print ’MyLibrary is not installed!’
Exit(1)

env = conf.Finish()

% scons -Q -c

Removed foo.o
Removed foo

113



Chapter 23. Caching Built Files

On multi-developer software projects, you can sometimes speed up every developer’s builds a lot by
allowing them to share the derived files that they build. SCons makes this easy, as well as reliable.

23.1. Specifying the Shared Cache Directory

To enable sharing of derived files, use the CacheDir function in any SConscript file:

CacheDir(’/usr/local/build_cache’)

Note that the directory you specify must already exist and be readable and writable by all developers
who will be sharing derived files. It should also be in some central location that all builds will be able to
access. In environments where developers are using separate systems (like individual workstations) for
builds, this directory would typically be on a shared or NFS-mounted file system.

Here’s what happens: When a build has a CacheDir specified, every time a file is built, it is stored in the
shared cache directory along with its MD5 build signature. 1 On subsequent builds, before an action is
invoked to build a file, SCons will check the shared cache directory to see if a file with the exact same
build signature already exists. If so, the derived file will not be built locally, but will be copied into the
local build directory from the shared cache directory, like so:

% scons -Q

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c

Removed hello.o
Removed hello
% scons -Q

Retrieved ‘hello.o’ from cache
Retrieved ‘hello’ from cache

23.2. Keeping Build Output Consistent

One potential drawback to using a shared cache is that the output printed by SCons can be inconsistent
from invocation to invocation, because any given file may be rebuilt one time and retrieved from the
shared cache the next time. This can make analyzing build output more difficult, especially for
automated scripts that expect consistent output each time.
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If, however, you use the --cache-show option, SCons will print the command line that it would have
executed to build the file, even when it is retrieving the file from the shared cache. This makes the build
output consistent every time the build is run:

% scons -Q

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c

Removed hello.o
Removed hello
% scons -Q --cache-show

cc -o hello.o -c hello.c
cc -o hello hello.o

The trade-off, of course, is that you no longer know whether or not SCons has retrieved a derived file
from cache or has rebuilt it locally.

23.3. Not Using the Shared Cache for Specific Files

You may want to disable caching for certain specific files in your configuration. For example, if you only
want to put executable files in a central cache, but not the intermediate object files, you can use the
NoCache function to specify that the object files should not be cached:

env = Environment()
obj = env.Object(’hello.c’)
env.Program(’hello.c’)
CacheDir(’cache’)
NoCache(’hello.o’)

Then when you run scons after cleaning the built targets, it will recompile the object file locally (since it
doesn’t exist in the shared cache directory), but still realize that the shared cache directory contains an
up-to-date executable program that can be retrieved instead of re-linking:

% scons -Q

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c

Removed hello.o
Removed hello
% scons -Q

cc -o hello.o -c hello.c
Retrieved ‘hello’ from cache
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23.4. Disabling the Shared Cache

Retrieving an already-built file from the shared cache is usually a significant time-savings over
rebuilding the file, but how much of a savings (or even whether it saves time at all) can depend a great
deal on your system or network configuration. For example, retrieving cached files from a busy server
over a busy network might end up being slower than rebuilding the files locally.

In these cases, you can specify the --cache-disable command-line option to tell SCons to not
retrieve already-built files from the shared cache directory:

% scons -Q

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c

Removed hello.o
Removed hello
% scons -Q

Retrieved ‘hello.o’ from cache
Retrieved ‘hello’ from cache
% scons -Q -c

Removed hello.o
Removed hello
% scons -Q --cache-disable

cc -o hello.o -c hello.c
cc -o hello hello.o

23.5. Populating a Shared Cache With Already-Built Files

Sometimes, you may have one or more derived files already built in your local build tree that you wish to
make available to other people doing builds. For example, you may find it more effective to perform
integration builds with the cache disabled (per the previous section) and only populate the shared cache
directory with the built files after the integration build has completed successfully. This way, the cache
will only get filled up with derived files that are part of a complete, successful build not with files that
might be later overwritten while you debug integration problems.

In this case, you can use the the --cache-force option to tell SCons to put all derived files in the
cache, even if the files already exist in your local tree from having been built by a previous invocation:

% scons -Q --cache-disable

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c

Removed hello.o
Removed hello
% scons -Q --cache-disable
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cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q --cache-force

scons: ‘.’ is up to date.
% scons -Q

scons: ‘.’ is up to date.

Notice how the above sample run demonstrates that the --cache-disable option avoids putting the
built hello.o and hello files in the cache, but after using the --cache-force option, the files have
been put in the cache for the next invocation to retrieve.

23.6. Minimizing Cache Contention: the --random Option

If you allow multiple builds to update the shared cache directory simultaneously, two builds that occur at
the same time can sometimes start "racing" with one another to build the same files in the same order. If,
for example, you are linking multiple files into an executable program:

Program(’prog’,
[’f1.c’, ’f2.c’, ’f3.c’, ’f4.c’, ’f5.c’])

SCons will normally build the input object files on which the program depends in their normal, sorted
order:

% scons -Q

cc -o f1.o -c f1.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
cc -o f4.o -c f4.c
cc -o f5.o -c f5.c
cc -o prog f1.o f2.o f3.o f4.o f5.o

But if two such builds take place simultaneously, they may each look in the cache at nearly the same time
and both decide that f1.o must be rebuilt and pushed into the shared cache directory, then both decide
that f2.o must be rebuilt (and pushed into the shared cache directory), then both decide that f3.o must
be rebuilt... This won’t cause any actual build problems--both builds will succeed, generate correct
output files, and populate the cache--but it does represent wasted effort.

To alleviate such contention for the cache, you can use the --random command-line option to tell SCons
to build dependencies in a random order:

% scons -Q --random

cc -o f3.o -c f3.c
cc -o f1.o -c f1.c
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cc -o f5.o -c f5.c
cc -o f2.o -c f2.c
cc -o f4.o -c f4.c
cc -o prog f1.o f2.o f3.o f4.o f5.o

Multiple builds using the --random option will usually build their dependencies in different, random
orders, which minimizes the chances for a lot of contention for same-named files in the shared cache
directory. Multiple simultaneous builds might still race to try to build the same target file on occasion,
but long sequences of inefficient contention should be rare.

Note, of course, the --random option will cause the output that SCons prints to be inconsistent from
invocation to invocation, which may be an issue when trying to compare output from different build runs.

If you want to make sure dependencies will be built in a random order without having to specify the
--random on very command line, you can use the SetOption function to set the random option within
any SConscript file:

Program(’prog’,
[’f1.c’, ’f2.c’, ’f3.c’, ’f4.c’, ’f5.c’])

SetOption(’random’, 1)
Program(’prog’,

[’f1.c’, ’f2.c’, ’f3.c’, ’f4.c’, ’f5.c’])

Notes
1. Actually, the MD5 signature is used as the name of the file in the shared cache directory in which the

contents are stored.
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We’ve already seen how you can use the Alias function to create a target named install:

env = Environment()
hello = env.Program(’hello.c’)
env.Install(’/usr/bin’, hello)
env.Alias(’install’, ’/usr/bin’)

You can then use this alias on the command line to tell SCons more naturally that you want to install files:

% scons -Q install

cc -o hello.o -c hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello"

Like other Builder methods, though, the Alias method returns an object representing the alias being
built. You can then use this object as input to anothother Builder. This is especially useful if you use
such an object as input to another call to the Alias Builder, allowing you to create a hierarchy of
nested aliases:

env = Environment()
p = env.Program(’foo.c’)
l = env.Library(’bar.c’)
env.Install(’/usr/bin’, p)
env.Install(’/usr/lib’, l)
ib = env.Alias(’install-bin’, ’/usr/bin’)
il = env.Alias(’install-lib’, ’/usr/lib’)
env.Alias(’install’, [ib, il])

This example defines separate install, install-bin, and install-lib aliases, allowing you finer
control over what gets installed:

% scons -Q install-bin

cc -o foo.o -c foo.c
cc -o foo foo.o
Install file: "foo" as "/usr/bin/foo"
% scons -Q install-lib

cc -o bar.o -c bar.c
ar rc libbar.a bar.o
ranlib libbar.a
Install file: "libbar.a" as "/usr/lib/libbar.a"
% scons -Q -c /

Removed foo.o
Removed foo
Removed /usr/bin/foo

119



Chapter 24. Alias Targets

Removed bar.o
Removed libbar.a
Removed /usr/lib/libbar.a
% scons -Q install

cc -o foo.o -c foo.c
cc -o foo foo.o
Install file: "foo" as "/usr/bin/foo"
cc -o bar.o -c bar.c
ar rc libbar.a bar.o
ranlib libbar.a
Install file: "libbar.a" as "/usr/lib/libbar.a"
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So far, we’ve been using examples of building C and C++ programs to demonstrate the features of
SCons. SCons also supports building Java programs, but Java builds are handled slightly differently,
which reflects the ways in which the Java compiler and tools build programs differently than other
languages’ tool chains.

25.1. Building Java Class Files: the Java Builder

The basic activity when programming in Java, of course, is to take one or more .java files containing
Java source code and to call the Java compiler to turn them into one or more .class files. In SCons, you
do this by giving the Java Builder a target directory in which to put the .class files, and a source
directory that contains the .java files:

Java(’classes’, ’src’)

If the src directory contains three .java source files, then running SCons might look like this:

% scons -Q

javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java

SCons will actually search the src directory tree for all of the .java files. The Java compiler will then
create the necessary class files in the classes subdirectory, based on the class names found in the
.java files.

25.2. How SCons Handles Java Dependencies

In addition to searching the source directory for .java files, SCons actually runs the .java files through
a stripped-down Java parser that figures out what classes are defined. In other words, SCons knows,
without you having to tell it, what .class files will be produced by the javac call. So our one-liner
example from the preceding section:

Java(’classes’, ’src’)

Will not only tell you reliably that the .class files in the classes subdirectory are up-to-date:

% scons -Q

javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java
% scons -Q classes

scons: ‘classes’ is up to date.
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But it will also remove all of the generated .class files, even for inner classes, without you having to
specify them manually. For example, if our Example1.java and Example3.java files both define
additional classes, and the class defined in Example2.java has an inner class, running scons -c will
clean up all of those .class files as well:

% scons -Q

javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java
% scons -Q -c classes

Removed classes/Example1.class
Removed classes/AdditionalClass1.class
Removed classes/Example2$Inner2.class
Removed classes/Example2.class
Removed classes/Example3.class
Removed classes/AdditionalClass3.class

25.3. Building Java Archive (.jar) Files: the Jar Builder

After building the class files, it’s common to collect them into a Java archive (.jar) file, which you do
by calling the Jar Builder method. If you want to just collect all of the class files within a subdirectory,
you can just specify that subdirectory as the Jar source:

Java(target = ’classes’, source = ’src’)
Jar(target = ’test.jar’, source = ’classes’)

SCons will then pass that directory to the jar command, which will collect all of the underlying .class

files:

% scons -Q

javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java
jar cf test.jar classes

If you want to keep all of the .class files for multiple programs in one location, and only archive some
of them in each .jar file, you can pass the Jar builder a list of files as its source. It’s extremely simple
to create multiple .jar files this way, using the lists of target class files created by calls to the Java
builder as sources to the various Jar calls:

prog1_class_files = Java(target = ’classes’, source = ’prog1’)
prog2_class_files = Java(target = ’classes’, source = ’prog2’)
Jar(target = ’prog1.jar’, source = prog1_class_files)
Jar(target = ’prog2.jar’, source = prog2_class_files)
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This will then create prog1.jar and prog2.jar next to the subdirectories that contain their .java
files:

% scons -Q

javac -d classes -sourcepath prog1 prog1/Example1.java prog1/Example2.java
javac -d classes -sourcepath prog2 prog2/Example3.java prog2/Example4.java
jar cf prog1.jar -C classes Example1.class -C classes Example2.class
jar cf prog2.jar -C classes Example3.class -C classes Example4.class

25.4. Building C Header and Stub Files: the JavaH Builder

You can generate C header and source files for implementing native methods, by using the JavaH
Builder. There are several ways of using the JavaH Builder. One typical invocation might look like:

classes = Java(target = ’classes’, source = ’src/pkg/sub’)
JavaH(target = ’native’, source = classes)

The source is a list of class files generated by the call to the Java Builder, and the target is the output
directory in which we want the C header files placed. The target gets converted into the -d when SCons
runs javah:

% scons -Q

javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java src/pkg/sub/Example3.java
javah -d native -classpath classes pkg.sub.Example1 pkg.sub.Example2 pkg.sub.Example3

In this case, the call to javah will generate the header files native/pkg_sub_Example1.h,
native/pkg_sub_Example2.h and native/pkg_sub_Example3.h. Notice that SCons remembered
that the class files were generated with a target directory of classes, and that it then specified that target
directory as the -classpath option to the call to javah.

Although it’s more convenient to use the list of class files returned by the Java Builder as the source of a
call to the JavaH Builder, you can specify the list of class files by hand, if you prefer. If you do, you
need to set the $JAVACLASSDIR construction variable when calling JavaH:

Java(target = ’classes’, source = ’src/pkg/sub’)
class_file_list = [’classes/pkg/sub/Example1.class’,

’classes/pkg/sub/Example2.class’,
’classes/pkg/sub/Example3.class’]

JavaH(target = ’native’, source = class_file_list, JAVACLASSDIR = ’classes’)

The $JAVACLASSDIR value then gets converted into the -classpath when SCons runs javah:
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% scons -Q

javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java src/pkg/sub/Example3.java
javah -d native -classpath classes pkg.sub.Example1 pkg.sub.Example2 pkg.sub.Example3

Lastly, if you don’t want a separate header file generated for each source file, you can specify an explicit
File Node as the target of the JavaH Builder:

classes = Java(target = ’classes’, source = ’src/pkg/sub’)
JavaH(target = File(’native.h’), source = classes)

Because SCons assumes by default that the target of the JavaH builder is a directory, you need to use the
File function to make sure that SCons doesn’t create a directory named native.h. When a file is used,
though, SCons correctly converts the file name into the javah -o option:

% scons -Q

javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java src/pkg/sub/Example3.java
javah -o native.h -classpath classes pkg.sub.Example1 pkg.sub.Example2 pkg.sub.Example3

25.5. Building RMI Stub and Skeleton Class Files: the
RMIC Builder

You can generate Remote Method Invocation stubs by using the RMIC Builder. The source is a list of
directories, typically returned by a call to the Java Builder, and the target is an output directory where
the _Stub.class and _Skel.class files will be placed:

classes = Java(target = ’classes’, source = ’src/pkg/sub’)
RMIC(target = ’outdir’, source = classes)

As it did with the JavaH Builder, SCons remembers the class directory and passes it as the -classpath
option to rmic:

% scons -Q

javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java
rmic -d outdir -classpath classes pkg.sub.Example1 pkg.sub.Example2

This example would generate the files outdir/pkg/sub/Example1_Skel.class,
outdir/pkg/sub/Example1_Stub.class, outdir/pkg/sub/Example2_Skel.class and
outdir/pkg/sub/Example2_Stub.class.
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The experience of configuring any software build tool to build a large code base usually, at some point,
involves trying to figure out why the tool is behaving a certain way, and how to get it to behave the way
you want. SCons is no different. This appendix contains a number of different ways in which you can get
some additional insight into SCons’ behavior.

Note that we’re always interested in trying to improve how you can troubleshoot configuration problems.
If you run into a problem that has you scratching your head, and which there just doesn’t seem to be a
good way to debug, odds are pretty good that someone else will run into the same problem, too. If so,
please let the SCons development team know (preferably by filing a bug report or feature request at our
project pages at tigris.org) so that we can use your feedback to try to come up with a better way to help
you, and others, get the necessary insight into SCons behavior to help identify and fix configuration
issues.

26.1. Why is That Target Being Rebuilt? the
--debug=explain Option

Let’s look at a simple example of a misconfigured build that causes a target to be rebuilt every time
SCons is run:

# Intentionally misspell the output file name in the
# command used to create the file:
Command(’file.out’, ’file.in’, ’cp $SOURCE file.oout’)

(Note to Windows users: The POSIX cp command copies the first file named on the command line to the
second file. In our example, it copies the file.in file to the file.out file.)

Now if we run SCons multiple times on this example, we see that it re-runs the cp command every time:

% scons -Q

cp file.in file.oout
% scons -Q

cp file.in file.oout
% scons -Q

cp file.in file.oout

In this example, the underlying cause is obvious: we’ve intentionally misspelled the output file name in
the cp command, so the command doesn’t actually build the file.out file that we’ve told SCons to
expect. But if the problem weren’t obvious, it would be helpful to specify the --debug=explain option
on the command line to have SCons tell us very specifically why it’s decided to rebuild the target:
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% scons -Q --debug=explain

scons: building ‘file.out’ because it doesn’t exist
cp file.in file.oout

If this had been a more complicated example involving a lot of build output, having SCons tell us that it’s
trying to rebuild the target file because it doesn’t exist would be an important clue that something was
wrong with the command that we invoked to build it.

The --debug=explain option also comes in handy to help figure out what input file changed. Given a
simple configuration that builds a program from three source files, changing one of the source files and
rebuilding with the --debug=explain option shows very specifically why SCons rebuilds the files that
it does:

% scons -Q

cc -o file1.o -c file1.c
cc -o file2.o -c file2.c
cc -o file3.o -c file3.c
cc -o prog file1.o file2.o file3.o
% edit file2.c

[CHANGE THE CONTENTS OF file2.c]
% scons -Q --debug=explain

scons: rebuilding ‘file2.o’ because ‘file2.c’ changed
cc -o file2.o -c file2.c
scons: rebuilding ‘prog’ because ‘file2.o’ changed
cc -o prog file1.o file2.o file3.o

This becomes even more helpful in identifying when a file is rebuilt due to a change in an implicit
dependency, such as an incuded .h file. If the file1.c and file3.c files in our example both included
a hello.h file, then changing that included file and re-running SCons with the --debug=explain
option will pinpoint that it’s the change to the included file that starts the chain of rebuilds:

% scons -Q

cc -o file1.o -c -I. file1.c
cc -o file2.o -c -I. file2.c
cc -o file3.o -c -I. file3.c
cc -o prog file1.o file2.o file3.o
% edit hello.h

[CHANGE THE CONTENTS OF hello.h]
% scons -Q --debug=explain

scons: rebuilding ‘file1.o’ because ‘hello.h’ changed
cc -o file1.o -c -I. file1.c
scons: rebuilding ‘file3.o’ because ‘hello.h’ changed
cc -o file3.o -c -I. file3.c
scons: rebuilding ‘prog’ because:

‘file1.o’ changed
‘file3.o’ changed

cc -o prog file1.o file2.o file3.o
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(Note that the --debug=explain option will only tell you why SCons decided to rebuild necessary
targets. It does not tell you what files it examined when deciding not to rebuild a target file, which is
often a more valuable question to answer.)

26.2. What’s in That Construction Environment? the Dump

Method

When you create a construction environment, SCons populates it with construction variables that are set
up for various compilers, linkers and utilities that it finds on your system. Although this is usually helpful
and what you want, it might be frustrating if SCons doesn’t set certain variables that you expect to be set.
In situations like this, it’s sometimes helpful to use the construction environment Dump method to print
all or some of the construction variables. Note that the Dump method returns the representation of the
variables in the environment for you to print (or otherwise manipulate):

env = Environment()
print env.Dump()

On a POSIX system with gcc installed, this might generate:

% scons

scons: Reading SConscript files ...
{ ’BUILDERS’: {’_InternalInstall’: <function InstallBuilderWrapper at 0x700000>, ’_InternalInstallAs’: <function InstallAsBuilderWrapper at 0x700000>},
’CONFIGUREDIR’: ’#/.sconf_temp’,
’CONFIGURELOG’: ’#/config.log’,
’CPPSUFFIXES’: [ ’.c’,

’.C’,
’.cxx’,
’.cpp’,
’.c++’,
’.cc’,
’.h’,
’.H’,
’.hxx’,
’.hpp’,
’.hh’,
’.F’,
’.fpp’,
’.FPP’,
’.m’,
’.mm’,
’.S’,
’.spp’,
’.SPP’],

’DSUFFIXES’: [’.d’],
’Dir’: <SCons.Defaults.Variable_Method_Caller instance at 0x700000>,
’Dirs’: <SCons.Defaults.Variable_Method_Caller instance at 0x700000>,
’ENV’: {’PATH’: ’/usr/local/bin:/opt/bin:/bin:/usr/bin’},

127



Chapter 26. Troubleshooting

’ESCAPE’: <function escape at 0x700000>,
’File’: <SCons.Defaults.Variable_Method_Caller instance at 0x700000>,
’IDLSUFFIXES’: [’.idl’, ’.IDL’],
’INSTALL’: <function copyFunc at 0x700000>,
’LATEXSUFFIXES’: [’.tex’, ’.ltx’, ’.latex’],
’LIBPREFIX’: ’lib’,
’LIBPREFIXES’: [’$LIBPREFIX’],
’LIBSUFFIX’: ’.a’,
’LIBSUFFIXES’: [’$LIBSUFFIX’, ’$SHLIBSUFFIX’],
’MAXLINELENGTH’: 128072,
’OBJPREFIX’: ”,
’OBJSUFFIX’: ’.o’,
’PLATFORM’: ’posix’,
’PROGPREFIX’: ”,
’PROGSUFFIX’: ”,
’PSPAWN’: <function piped_env_spawn at 0x700000>,
’RDirs’: <SCons.Defaults.Variable_Method_Caller instance at 0x700000>,
’SCANNERS’: [],
’SHELL’: ’sh’,
’SHLIBPREFIX’: ’$LIBPREFIX’,
’SHLIBSUFFIX’: ’.so’,
’SHOBJPREFIX’: ’$OBJPREFIX’,
’SHOBJSUFFIX’: ’$OBJSUFFIX’,
’SPAWN’: <function spawnvpe_spawn at 0x700000>,
’TEMPFILE’: <class SCons.Platform.TempFileMunge at 0x700000>,
’TEMPFILEPREFIX’: ’@’,
’TOOLS’: [’install’, ’install’],
’_CPPDEFFLAGS’: ’${_defines(CPPDEFPREFIX, CPPDEFINES, CPPDEFSUFFIX, __env__)}’,
’_CPPINCFLAGS’: ’$( ${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs, TARGET, SOURCE)} $)’,
’_LIBDIRFLAGS’: ’$( ${_concat(LIBDIRPREFIX, LIBPATH, LIBDIRSUFFIX, __env__, RDirs, TARGET, SOURCE)} $)’,
’_LIBFLAGS’: ’${_concat(LIBLINKPREFIX, LIBS, LIBLINKSUFFIX, __env__)}’,
’__RPATH’: ’$_RPATH’,
’_concat’: <function _concat at 0x700000>,
’_defines’: <function _defines at 0x700000>,
’_stripixes’: <function _stripixes at 0x700000>}

scons: done reading SConscript files.
scons: Building targets ...
scons: ‘.’ is up to date.
scons: done building targets.

On a Windows system with Visual C++ the output might look like:

C:\>scons
scons: Reading SConscript files ...
{ ’BUILDERS’: {’_InternalInstall’: <function InstallBuilderWrapper at 0x700000>, ’Object’: <SCons.Builder.CompositeBuilder instance at 0x700000>, ’PCH’: <SCons.Builder.BuilderBase instance at 0x700000>, ’RES’: <SCons.Builder.BuilderBase instance at 0x700000>, ’SharedObject’: <SCons.Builder.CompositeBuilder instance at 0x700000>, ’StaticObject’: <SCons.Builder.CompositeBuilder instance at 0x700000>, ’_InternalInstallAs’: <function InstallAsBuilderWrapper at 0x700000>},
’CC’: ’cl’,
’CCCOM’: <SCons.Action.FunctionAction instance at 0x700000>,
’CCCOMFLAGS’: ’$CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS /c $SOURCES /Fo$TARGET $CCPCHFLAGS $CCPDBFLAGS’,
’CCFLAGS’: [’/nologo’],
’CCPCHFLAGS’: [’${(PCH and "/Yu%s /Fp%s"%(PCHSTOP or "",File(PCH))) or ""}’],
’CCPDBFLAGS’: [’${(PDB and "/Z7") or ""}’],
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’CFILESUFFIX’: ’.c’,
’CFLAGS’: [],
’CONFIGUREDIR’: ’#/.sconf_temp’,
’CONFIGURELOG’: ’#/config.log’,
’CPPDEFPREFIX’: ’/D’,
’CPPDEFSUFFIX’: ”,
’CPPSUFFIXES’: [ ’.c’,

’.C’,
’.cxx’,
’.cpp’,
’.c++’,
’.cc’,
’.h’,
’.H’,
’.hxx’,
’.hpp’,
’.hh’,
’.F’,
’.fpp’,
’.FPP’,
’.m’,
’.mm’,
’.S’,
’.spp’,
’.SPP’],

’CXX’: ’$CC’,
’CXXCOM’: ’$CXX $CXXFLAGS $CCCOMFLAGS’,
’CXXFILESUFFIX’: ’.cc’,
’CXXFLAGS’: [’$CCFLAGS’, ’$(’, ’/TP’, ’$)’],
’DSUFFIXES’: [’.d’],
’Dir’: <SCons.Defaults.Variable_Method_Caller instance at 0x700000>,
’Dirs’: <SCons.Defaults.Variable_Method_Caller instance at 0x700000>,
’ENV’: { ’INCLUDE’: ’C:\\Program Files\\Microsoft Visual Studio/VC98\\include’,

’LIB’: ’C:\\Program Files\\Microsoft Visual Studio/VC98\\lib’,
’PATH’: ’C:\\Program Files\\Microsoft Visual Studio\\Common\\tools\\WIN95;C:\\Program Files\\Microsoft Visual Studio\\Common\\MSDev98\\bin;C:\\Program Files\\Microsoft Visual Studio\\Common\\tools;C:\\Program Files\\Microsoft Visual Studio/VC98\\bin’,
’PATHEXT’: ’.COM;.EXE;.BAT;.CMD’,
’SystemRoot’: ’C:/WINDOWS’},

’ESCAPE’: <function escape at 0x700000>,
’File’: <SCons.Defaults.Variable_Method_Caller instance at 0x700000>,
’IDLSUFFIXES’: [’.idl’, ’.IDL’],
’INCPREFIX’: ’/I’,
’INCSUFFIX’: ”,
’INSTALL’: <function copyFunc at 0x700000>,
’LATEXSUFFIXES’: [’.tex’, ’.ltx’, ’.latex’],
’LIBPREFIX’: ”,
’LIBPREFIXES’: [’$LIBPREFIX’],
’LIBSUFFIX’: ’.lib’,
’LIBSUFFIXES’: [’$LIBSUFFIX’],
’MAXLINELENGTH’: 2048,
’MSVS’: {’VERSION’: ’6.0’, ’VERSIONS’: [’6.0’]},
’MSVS_VERSION’: ’6.0’,
’OBJPREFIX’: ”,
’OBJSUFFIX’: ’.obj’,
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’PCHCOM’: ’$CXX $CXXFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS /c $SOURCES /Fo${TARGETS[1]} /Yc$PCHSTOP /Fp${TARGETS[0]} $CCPDBFLAGS $PCHPDBFLAGS’,
’PCHPDBFLAGS’: [’${(PDB and "/Yd") or ""}’],
’PLATFORM’: ’win32’,
’PROGPREFIX’: ”,
’PROGSUFFIX’: ’.exe’,
’PSPAWN’: <function piped_spawn at 0x700000>,
’RC’: ’rc’,
’RCCOM’: ’$RC $_CPPDEFFLAGS $_CPPINCFLAGS $RCFLAGS /fo$TARGET $SOURCES’,
’RCFLAGS’: [],
’RDirs’: <SCons.Defaults.Variable_Method_Caller instance at 0x700000>,
’SCANNERS’: [],
’SHCC’: ’$CC’,
’SHCCCOM’: <SCons.Action.FunctionAction instance at 0x700000>,
’SHCCFLAGS’: [’$CCFLAGS’],
’SHCFLAGS’: [’$CFLAGS’],
’SHCXX’: ’$CXX’,
’SHCXXCOM’: ’$SHCXX $SHCXXFLAGS $CCCOMFLAGS’,
’SHCXXFLAGS’: [’$CXXFLAGS’],
’SHELL’: None,
’SHLIBPREFIX’: ”,
’SHLIBSUFFIX’: ’.dll’,
’SHOBJPREFIX’: ’$OBJPREFIX’,
’SHOBJSUFFIX’: ’$OBJSUFFIX’,
’SPAWN’: <function spawn at 0x700000>,
’STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME’: 1,
’TEMPFILE’: <class SCons.Platform.TempFileMunge at 0x700000>,
’TEMPFILEPREFIX’: ’@’,
’TOOLS’: [’msvc’, ’install’, ’install’],
’_CPPDEFFLAGS’: ’${_defines(CPPDEFPREFIX, CPPDEFINES, CPPDEFSUFFIX, __env__)}’,
’_CPPINCFLAGS’: ’$( ${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs, TARGET, SOURCE)} $)’,
’_LIBDIRFLAGS’: ’$( ${_concat(LIBDIRPREFIX, LIBPATH, LIBDIRSUFFIX, __env__, RDirs, TARGET, SOURCE)} $)’,
’_LIBFLAGS’: ’${_concat(LIBLINKPREFIX, LIBS, LIBLINKSUFFIX, __env__)}’,
’_concat’: <function _concat at 0x700000>,
’_defines’: <function _defines at 0x700000>,
’_stripixes’: <function _stripixes at 0x700000>}

scons: done reading SConscript files.
scons: Building targets ...
scons: ‘.’ is up to date.
scons: done building targets.

The construction environments in these examples have actually been restricted to just gcc and Visual
C++, respectively. In a real-life situation, the construction environments will likely contain a great many
more variables. Also note that we’ve massaged the example output above to make the memory address of
all objects a constant 0x700000. In reality, you would see a different hexadecimal number for each
object.

To make it easier to see just what you’re interested in, the Dump method allows you to specify a specific
constrcution variable that you want to disply. For example, it’s not unusual to want to verify the external
environment used to execute build commands, to make sure that the PATH and other environment
variables are set up the way they should be. You can do this as follows:
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env = Environment()
print env.Dump(’ENV’)

Which might display the following when executed on a POSIX system:

% scons

scons: Reading SConscript files ...
{’PATH’: ’/usr/local/bin:/opt/bin:/bin:/usr/bin’}
scons: done reading SConscript files.
scons: Building targets ...
scons: ‘.’ is up to date.
scons: done building targets.

And the following when executed on a Windows system:

C:\>scons
scons: Reading SConscript files ...
{ ’INCLUDE’: ’C:\\Program Files\\Microsoft Visual Studio/VC98\\include’,
’LIB’: ’C:\\Program Files\\Microsoft Visual Studio/VC98\\lib’,
’PATH’: ’C:\\Program Files\\Microsoft Visual Studio\\Common\\tools\\WIN95;C:\\Program Files\\Microsoft Visual Studio\\Common\\MSDev98\\bin;C:\\Program Files\\Microsoft Visual Studio\\Common\\tools;C:\\Program Files\\Microsoft Visual Studio/VC98\\bin’,
’PATHEXT’: ’.COM;.EXE;.BAT;.CMD’,
’SystemRoot’: ’C:/WINDOWS’}

scons: done reading SConscript files.
scons: Building targets ...
scons: ‘.’ is up to date.
scons: done building targets.

26.3. What Dependencies Does SCons Know About? the
--tree Option

Sometimes the best way to try to figure out what SCons is doing is simply to take a look at the
dependency graph that it constructs based on your SConscript files. The --tree option will display all
or part of the SCons dependency graph in an "ASCII art" graphical format that shows the dependency
hierarchy.

For example, given the following input SConstruct file:

env = Environment(CPPPATH = [’.’])
env.Program(’prog’, [’f1.c’, ’f2.c’, ’f3.c’])

Running SCons with the --tree=all option yields:
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% scons -Q --tree=all

cc -o f1.o -c -I. f1.c
cc -o f2.o -c -I. f2.c
cc -o f3.o -c -I. f3.c
cc -o prog f1.o f2.o f3.o
+-.
+-SConstruct
+-f1.c
+-f1.o
| +-f1.c
| +-inc.h
+-f2.c
+-f2.o
| +-f2.c
| +-inc.h
+-f3.c
+-f3.o
| +-f3.c
| +-inc.h
+-inc.h
+-prog
+-f1.o
| +-f1.c
| +-inc.h
+-f2.o
| +-f2.c
| +-inc.h
+-f3.o
+-f3.c
+-inc.h

The tree will also be printed when the -n (no execute) option is used, which allows you to examine the
dependency graph for a configuration without actually rebuilding anything in the tree.

The --tree option only prints the dependency graph for the specified targets (or the default target(s) if
none are specified on the command line). So if you specify a target like f2.o on the command line, the
--tree option will only print the dependency graph for that file:

% scons -Q --tree=all f2.o

cc -o f2.o -c -I. f2.c
+-f2.o
+-f2.c
+-inc.h

This is, of course, useful for restricting the output from a very large build configuration to just a portion
in which you’re interested. Multiple targets are fine, in which case a tree will be printed for each
specified target:
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% scons -Q --tree=all f1.o f3.o

cc -o f1.o -c -I. f1.c
+-f1.o
+-f1.c
+-inc.h

cc -o f3.o -c -I. f3.c
+-f3.o
+-f3.c
+-inc.h

The status argument may be used to tell SCons to print status information about each file in the
dependency graph:

% scons -Q --tree=status

cc -o f1.o -c -I. f1.c
cc -o f2.o -c -I. f2.c
cc -o f3.o -c -I. f3.c
cc -o prog f1.o f2.o f3.o
E = exists
R = exists in repository only
b = implicit builder
B = explicit builder
S = side effect
P = precious
A = always build
C = current
N = no clean
H = no cache

[E b ]+-.
[E C ] +-SConstruct
[E C ] +-f1.c
[E B C ] +-f1.o
[E C ] | +-f1.c
[E C ] | +-inc.h
[E C ] +-f2.c
[E B C ] +-f2.o
[E C ] | +-f2.c
[E C ] | +-inc.h
[E C ] +-f3.c
[E B C ] +-f3.o
[E C ] | +-f3.c
[E C ] | +-inc.h
[E C ] +-inc.h
[E B C ] +-prog
[E B C ] +-f1.o
[E C ] | +-f1.c
[E C ] | +-inc.h
[E B C ] +-f2.o
[E C ] | +-f2.c
[E C ] | +-inc.h
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[E B C ] +-f3.o
[E C ] +-f3.c
[E C ] +-inc.h

Note that --tree=all,status is equivalent; the all is assumed if only status is present. As an
alternative to all, you can specify --tree=derived to have SCons only print derived targets in the
tree output, skipping source files (like .c and .h files):

% scons -Q --tree=derived

cc -o f1.o -c -I. f1.c
cc -o f2.o -c -I. f2.c
cc -o f3.o -c -I. f3.c
cc -o prog f1.o f2.o f3.o
+-.
+-f1.o
+-f2.o
+-f3.o
+-prog
+-f1.o
+-f2.o
+-f3.o

You can use the status modifier with derived as well:

% scons -Q --tree=derived,status

cc -o f1.o -c -I. f1.c
cc -o f2.o -c -I. f2.c
cc -o f3.o -c -I. f3.c
cc -o prog f1.o f2.o f3.o
E = exists
R = exists in repository only
b = implicit builder
B = explicit builder
S = side effect
P = precious
A = always build
C = current
N = no clean
H = no cache

[E b ]+-.
[E B C ] +-f1.o
[E B C ] +-f2.o
[E B C ] +-f3.o
[E B C ] +-prog
[E B C ] +-f1.o
[E B C ] +-f2.o
[E B C ] +-f3.o
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Note that the order of the --tree= arguments doesn’t matter; --tree=status,derived is completely
equivalent.

The default behavior of the --tree option is to repeat all of the dependencies each time the library
dependency (or any other dependency file) is encountered in the tree. If certain target files share other
target files, such as two programs that use the same library:

env = Environment(CPPPATH = [’.’],
LIBS = [’foo’],
LIBPATH = [’.’])

env.Library(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])
env.Program(’prog1.c’)
env.Program(’prog2.c’)

Then there can be a lot of repetition in the --tree= output:

% scons -Q --tree=all

cc -o f1.o -c -I. f1.c
cc -o f2.o -c -I. f2.c
cc -o f3.o -c -I. f3.c
ar rc libfoo.a f1.o f2.o f3.o
ranlib libfoo.a
cc -o prog1.o -c -I. prog1.c
cc -o prog1 prog1.o -L. -lfoo
cc -o prog2.o -c -I. prog2.c
cc -o prog2 prog2.o -L. -lfoo
+-.
+-SConstruct
+-f1.c
+-f1.o
| +-f1.c
| +-inc.h
+-f2.c
+-f2.o
| +-f2.c
| +-inc.h
+-f3.c
+-f3.o
| +-f3.c
| +-inc.h
+-inc.h
+-libfoo.a
| +-f1.o
| | +-f1.c
| | +-inc.h
| +-f2.o
| | +-f2.c
| | +-inc.h
| +-f3.o
| +-f3.c
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| +-inc.h
+-prog1
| +-prog1.o
| | +-prog1.c
| | +-inc.h
| +-libfoo.a
| +-f1.o
| | +-f1.c
| | +-inc.h
| +-f2.o
| | +-f2.c
| | +-inc.h
| +-f3.o
| +-f3.c
| +-inc.h
+-prog1.c
+-prog1.o
| +-prog1.c
| +-inc.h
+-prog2
| +-prog2.o
| | +-prog2.c
| | +-inc.h
| +-libfoo.a
| +-f1.o
| | +-f1.c
| | +-inc.h
| +-f2.o
| | +-f2.c
| | +-inc.h
| +-f3.o
| +-f3.c
| +-inc.h
+-prog2.c
+-prog2.o
+-prog2.c
+-inc.h

In a large configuration with many internal libraries and include files, this can very quickly lead to huge
output trees. To help make this more manageable, a prune modifier may be added to the option list, in
which case SCons will print the name of a target that has already been visited during the tree-printing in
[square brackets] as an indication that the dependencies of the target file may be found by looking
farther up the tree:

% scons -Q --tree=prune

cc -o f1.o -c -I. f1.c
cc -o f2.o -c -I. f2.c
cc -o f3.o -c -I. f3.c
ar rc libfoo.a f1.o f2.o f3.o
ranlib libfoo.a
cc -o prog1.o -c -I. prog1.c
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cc -o prog1 prog1.o -L. -lfoo
cc -o prog2.o -c -I. prog2.c
cc -o prog2 prog2.o -L. -lfoo
+-.
+-SConstruct
+-f1.c
+-f1.o
| +-f1.c
| +-inc.h
+-f2.c
+-f2.o
| +-f2.c
| +-inc.h
+-f3.c
+-f3.o
| +-f3.c
| +-inc.h
+-inc.h
+-libfoo.a
| +-[f1.o]
| +-[f2.o]
| +-[f3.o]
+-prog1
| +-prog1.o
| | +-prog1.c
| | +-inc.h
| +-[libfoo.a]
+-prog1.c
+-[prog1.o]
+-prog2
| +-prog2.o
| | +-prog2.c
| | +-inc.h
| +-[libfoo.a]
+-prog2.c
+-[prog2.o]

Like the status keyword, the prune argument by itself is equivalent to --tree=all,prune.

26.4. How is SCons Constructing the Command Lines It
Executes? the --debug=presub Option

Sometimes it’s useful to look at the pre-substitution string that SCons uses to generate the command
lines it executes. This can be done with the --debug=presub option:

% scons -Q --debug=presub

Building prog.o with action:
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$CC -o $TARGET -c $CFLAGS $CCFLAGS $_CCOMCOM $SOURCES
cc -o prog.o -c -I. prog.c
Building prog with action:
$SMART_LINKCOM

cc -o prog prog.o

26.5. Where is SCons Searching for Libraries? the
--debug=findlibs Option

To get some insight into what library names SCons is searching for, and in which directories it is
searching, Use the --debug=findlibs option. Given the following input SConstruct file:

env = Environment(LIBPATH = [’libs1’, ’libs2’])
env.Program(’prog.c’, LIBS=[’foo’, ’bar’])

And the libraries libfoo.a and libbar.a in libs1 and libs2, respectively, use of the
--debug=findlibs option yields:

% scons -Q --debug=findlibs

findlibs: looking for ’libfoo.a’ in ’libs1’ ...
findlibs: ... FOUND ’libfoo.a’ in ’libs1’
findlibs: looking for ’libfoo.so’ in ’libs1’ ...
findlibs: looking for ’libfoo.so’ in ’libs2’ ...
findlibs: looking for ’libbar.a’ in ’libs1’ ...
findlibs: looking for ’libbar.a’ in ’libs2’ ...
findlibs: ... FOUND ’libbar.a’ in ’libs2’
findlibs: looking for ’libbar.so’ in ’libs1’ ...
findlibs: looking for ’libbar.so’ in ’libs2’ ...

cc -o prog.o -c prog.c
cc -o prog prog.o -Llibs1 -Llibs2 -lfoo -lbar

26.6. Where is SCons Blowing Up? the
--debug=stacktrace Option

In general, SCons tries to keep its error messages short and informative. That means we usually try to
avoid showing the stack traces that are familiar to experienced Python programmers, since they usually
contain much more information than is useful to most people.

For example, the following SConstruct file:
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Program(’prog.c’)

Generates the following error if the prog.c file does not exist:

% scons -Q

scons: *** Source ‘prog.c’ not found, needed by target ‘prog.o’. Stop.

In this case, the error is pretty obvious. But if it weren’t, and you wanted to try to get more information
about the error, the --debug=stacktrace option would show you exactly where in the SCons source
code the problem occurs:

% scons -Q --debug=stacktrace

scons: *** Source ‘prog.c’ not found, needed by target ‘prog.o’. Stop.
scons: internal stack trace:
File "bootstrap/src/engine/SCons/Job.py", line 131, in start
File "bootstrap/src/engine/SCons/Script/Main.py", line 169, in prepare
File "bootstrap/src/engine/SCons/Taskmaster.py", line 169, in prepare
File "bootstrap/src/engine/SCons/Node/FS.py", line 2551, in prepare
File "bootstrap/src/engine/SCons/Node/__init__.py", line 349, in prepare

Of course, if you do need to dive into the SCons source code, we’d like to know if, or how, the error
messages or troubleshooting options could have been improved to avoid that. Not everyone has the
necessary time or Python skill to dive into the source code, and we’d like to improve SCons for those
people as well...

26.7. How is SCons Making Its Decisions? the
--taskmastertrace Option

The internal SCons subsystem that handles walking the dependency graph and controls the
decision-making about what to rebuild is the Taskmaster. SCons supports a --taskmastertrace
option that tells the Taskmaster to print information about the children (dependencies) of the various
Nodes on its walk down the graph, which specific dependent Nodes are being evaluated, and in what
order.

The --taskmastertrace option takes as an argument the name of a file in which to put the trace
output, with - (a single hyphen) indicating that the trace messages should be printed to the standard
output:

env = Environment(CPPPATH = [’.’])
env.Program(’prog.c’)
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% scons -Q --taskmastertrace=- prog

Taskmaster: ’prog’: children:
[’prog.o’]
waiting on unfinished children:
[’prog.o’]

Taskmaster: ’prog.o’: children:
[’inc.h’, ’prog.c’]
waiting on unfinished children:
[’inc.h’, ’prog.c’]

Taskmaster: ’prog.c’: evaluating prog.c
Taskmaster: ’inc.h’: evaluating inc.h
Taskmaster: ’prog.o’: children:

[’inc.h’, ’prog.c’]
evaluating prog.o

cc -o prog.o -c -I. prog.c
Taskmaster: ’prog’: children:

[’prog.o’]
evaluating prog

cc -o prog prog.o

The --taskmastertrace option doesn’t provide information about the actual calculations involved in
deciding if a file is up-to-date, but it does show all of the dependencies it knows about for each Node, and
the order in which those dependencies are evaluated. This can be useful as an alternate way to determine
whether or not your SCons configuration, or the implicit dependency scan, has actually identified all the
correct dependencies you want it to.
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This appendix contains descriptions of all of the construction variables that are potentially available "out
of the box" in this version of SCons. Whether or not setting a construction variable in a construction
environment will actually have an effect depends on whether any of the Tools and/or Builders that use
the variable have been included in the construction environment.

In this appendix, we have appended the initial $ (dollar sign) to the beginning of each variable name
when it appears in the text, but left off the dollar sign in the left-hand column where the name appears for
each entry.

AR

The static library archiver.

ARCHITECTURE

Specifies the system architecture for which the package is being built. The default is the system
architecture of the machine on which SCons is running. This is used to fill in the Architecture:
field in an Ipkg control file, and as part of the name of a generated RPM file.

ARCOM

The command line used to generate a static library from object files.

ARCOMSTR

The string displayed when an object file is generated from an assembly-language source file. If this
is not set, then $ARCOM (the command line) is displayed.

env = Environment(ARCOMSTR = "Archiving $TARGET")

ARFLAGS

General options passed to the static library archiver.

AS

The assembler.

ASCOM

The command line used to generate an object file from an assembly-language source file.

ASCOMSTR

The string displayed when an object file is generated from an assembly-language source file. If this
is not set, then $ASCOM (the command line) is displayed.

env = Environment(ASCOMSTR = "Assembling $TARGET")

ASFLAGS

General options passed to the assembler.

141



Appendix A. Construction Variables

ASPPCOM

The command line used to assemble an assembly-language source file into an object file after first
running the file through the C preprocessor. Any options specified in the $ASFLAGS and
$CPPFLAGS construction variables are included on this command line.

ASPPCOMSTR

The string displayed when an object file is generated from an assembly-language source file after
first running the file through the C preprocessor. If this is not set, then $ASPPCOM (the command
line) is displayed.

env = Environment(ASPPCOMSTR = "Assembling $TARGET")

ASPPFLAGS

General options when an assembling an assembly-language source file into an object file after first
running the file through the C preprocessor. The default is to use the value of $ASFLAGS.

BIBTEX

The bibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter
and typesetter.

BIBTEXCOM

The command line used to call the bibliography generator for the TeX formatter and typesetter and
the LaTeX structured formatter and typesetter.

BIBTEXCOMSTR

The string displayed when generating a bibliography for TeX or LaTeX. If this is not set, then
$BIBTEXCOM (the command line) is displayed.

env = Environment(BIBTEXCOMSTR = "Generating bibliography $TARGET")

BIBTEXFLAGS

General options passed to the bibliography generator for the TeX formatter and typesetter and the
LaTeX structured formatter and typesetter.

BITKEEPER

The BitKeeper executable.

BITKEEPERCOM

The command line for fetching source files using BitKeeper.

BITKEEPERCOMSTR

The string displayed when fetching a source file using BitKeeper. If this is not set, then
$BITKEEPERCOM (the command line) is displayed.

BITKEEPERGET

The command ($BITKEEPER) and subcommand for fetching source files using BitKeeper.
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BITKEEPERGETFLAGS

Options that are passed to the BitKeeper get subcommand.

BUILDERS

A dictionary mapping the names of the builders available through this environment to underlying
Builder objects. Builders named Alias, CFile, CXXFile, DVI, Library, Object, PDF, PostScript, and
Program are available by default. If you initialize this variable when an Environment is created:

env = Environment(BUILDERS = {’NewBuilder’ : foo})

the default Builders will no longer be available. To use a new Builder object in addition to the
default Builders, add your new Builder object like this:

env = Environment()
env.Append(BUILDERS = {’NewBuilder’ : foo})

or this:

env = Environment()
env[’BUILDERS][’NewBuilder’] = foo

CC

The C compiler.

CCCOM

The command line used to compile a C source file to a (static) object file. Any options specified in
the $CFLAGS, $CCFLAGS and $CPPFLAGS construction variables are included on this command
line.

CCCOMSTR

The string displayed when a C source file is compiled to a (static) object file. If this is not set, then
$CCCOM (the command line) is displayed.

env = Environment(CCCOMSTR = "Compiling static object $TARGET")

CCFLAGS

General options that are passed to the C and C++ compilers.

CCPCHFLAGS

Options added to the compiler command line to support building with precompiled headers. The
default value expands expands to the appropriate Microsoft Visual C++ command-line options
when the $PCH construction variable is set.

CCPDBFLAGS

Options added to the compiler command line to support storing debugging information in a
Microsoft Visual C++ PDB file. The default value expands expands to appropriate Microsoft Visual
C++ command-line options when the $PDB construction variable is set.
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The Visual C++ compiler option that SCons uses by default to generate PDB information is /Z7.
This works correctly with parallel (-j) builds because it embeds the debug information in the
intermediate object files, as opposed to sharing a single PDB file between multiple object files. This
is also the only way to get debug information embedded into a static library. Using the /Zi instead
may yield improved link-time performance, although parallel builds will no longer work.

You can generate PDB files with the /Zi switch by overriding the default $CCPDBFLAGS variable
as follows:

import SCons.Util
env[’CCPDBFLAGS’] = SCons.Util.CLVar([’${(PDB and "/Zi /Fd%s" % File(PDB)) or ""}’])

An alternative would be to use the /Zi to put the debugging information in a separate .pdb file for
each object file by overriding the $CCPDBFLAGS variable as follows:

env[’CCPDBFLAGS’] = ’/Zi /Fd${TARGET}.pdb’

CCVERSION

The version number of the C compiler. This may or may not be set, depending on the specific C
compiler being used.

CFILESUFFIX

The suffix for C source files. This is used by the internal CFile builder when generating C files from
Lex (.l) or YACC (.y) input files. The default suffix, of course, is .c (lower case). On
case-insensitive systems (like Windows), SCons also treats .C (upper case) files as C files.

CFLAGS

General options that are passed to the C compiler (C only; not C++).

CHANGE_SPECFILE

A hook for modifying the file that controls the packaging build (the .spec for RPM, the control
for Ipkg, the .wxs for MSI). If set, the function will be called after the SCons template for the file
has been written. XXX

CHANGELOG

The name of a file containing the change log text to be included in the package. This is included as
the %changelog section of the RPM .spec file.

_concat

A function used to produce variables like $_CPPINCFLAGS. It takes four or five arguments: a
prefix to concatenate onto each element, a list of elements, a suffix to concatenate onto each
element, an environment for variable interpolation, and an optional function that will be called to
transform the list before concatenation.

env[’_CPPINCFLAGS’] = ’$( ${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs)} $)’,
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CONFIGUREDIR

The name of the directory in which Configure context test files are written. The default is
.sconf_temp in the top-level directory containing the SConstruct file.

CONFIGURELOG

The name of the Configure context log file. The default is config.log in the top-level directory
containing the SConstruct file.

_CPPDEFFLAGS

An automatically-generated construction variable containing the C preprocessor command-line
options to define values. The value of $_CPPDEFFLAGS is created by appending
$CPPDEFPREFIX and $CPPDEFSUFFIX to the beginning and end of each directory in
$CPPDEFINES.

CPPDEFINES

A platform independent specification of C preprocessor definitions. The definitions will be added to
command lines through the automatically-generated $_CPPDEFFLAGS construction variable (see
above), which is constructed according to the type of value of $CPPDEFINES:

If $CPPDEFINES is a string, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX
construction variables will be added to the beginning and end.

# Will add -Dxyz to POSIX compiler command lines,
# and /Dxyz to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES=’xyz’)

If $CPPDEFINES is a list, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction
variables will be appended to the beginning and end of each element in the list. If any element is a
list or tuple, then the first item is the name being defined and the second item is its value:

# Will add -DB=2 -DA to POSIX compiler command lines,
# and /DB=2 /DA to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES=[(’B’, 2), ’A’])

If $CPPDEFINES is a dictionary, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX
construction variables will be appended to the beginning and end of each item from the dictionary.
The key of each dictionary item is a name being defined to the dictionary item’s corresponding
value; if the value is None, then the name is defined without an explicit value. Note that the
resulting flags are sorted by keyword to ensure that the order of the options on the command line is
consistent each time scons is run.

# Will add -DA -DB=2 to POSIX compiler command lines,
# and /DA /DB=2 to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES={’B’:2, ’A’:None})

CPPDEFPREFIX

The prefix used to specify preprocessor definitions on the C compiler command line. This will be
appended to the beginning of each definition in the $CPPDEFINES construction variable when the
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$_CPPDEFFLAGS variable is automatically generated.

CPPDEFSUFFIX

The suffix used to specify preprocessor definitions on the C compiler command line. This will be
appended to the end of each definition in the $CPPDEFINES construction variable when the
$_CPPDEFFLAGS variable is automatically generated.

CPPFLAGS

User-specified C preprocessor options. These will be included in any command that uses the C
preprocessor, including not just compilation of C and C++ source files via the $CCCOM,
$SHCCCOM, $CXXCOM and $SHCXXCOM command lines, but also the $FORTRANPPCOM,
$SHFORTRANPPCOM, $F77PPCOM and $SHF77PPCOM command lines used to compile a
Fortran source file, and the $ASPPCOM command line used to assemble an assembly language
source file, after first running each file through the C preprocessor. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from
$CPPPATH. See $_CPPINCFLAGS, below, for the variable that expands to those options.

_CPPINCFLAGS

An automatically-generated construction variable containing the C preprocessor command-line
options for specifying directories to be searched for include files. The value of $_CPPINCFLAGS is
created by appending $INCPREFIX and $INCSUFFIX to the beginning and end of each directory
in $CPPPATH.

CPPPATH

The list of directories that the C preprocessor will search for include directories. The C/C++
implicit dependency scanner will search these directories for include files. Don’t explicitly put
include directory arguments in CCFLAGS or CXXFLAGS because the result will be non-portable
and the directories will not be searched by the dependency scanner. Note: directory names in
CPPPATH will be looked-up relative to the SConscript directory when they are used in a command.
To force scons to look-up a directory relative to the root of the source tree use #:

env = Environment(CPPPATH=’#/include’)

The directory look-up can also be forced using the Dir() function:

include = Dir(’include’)
env = Environment(CPPPATH=include)

The directory list will be added to command lines through the automatically-generated
$_CPPINCFLAGS construction variable, which is constructed by appending the values of the
$INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory
in $CPPPATH. Any command lines you define that need the CPPPATH directory list should include
$_CPPINCFLAGS:

env = Environment(CCCOM="my_compiler $_CPPINCFLAGS -c -o $TARGET $SOURCE")
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CPPSUFFIXES

The list of suffixes of files that will be scanned for C preprocessor implicit dependencies (#include
lines). The default list is:

[".c", ".C", ".cxx", ".cpp", ".c++", ".cc",
".h", ".H", ".hxx", ".hpp", ".hh",
".F", ".fpp", ".FPP",
".m", ".mm",
".S", ".spp", ".SPP"]

CVS

The CVS executable.

CVSCOFLAGS

Options that are passed to the CVS checkout subcommand.

CVSCOM

The command line used to fetch source files from a CVS repository.

CVSCOMSTR

The string displayed when fetching a source file from a CVS repository. If this is not set, then
$CVSCOM (the command line) is displayed.

CVSFLAGS

General options that are passed to CVS. By default, this is set to -d $CVSREPOSITORY to specify
from where the files must be fetched.

CVSREPOSITORY

The path to the CVS repository. This is referenced in the default $CVSFLAGS value.

CXX

The C++ compiler.

CXXCOM

The command line used to compile a C++ source file to an object file. Any options specified in the
$CXXFLAGS and $CPPFLAGS construction variables are included on this command line.

CXXCOMSTR

The string displayed when a C++ source file is compiled to a (static) object file. If this is not set,
then $CXXCOM (the command line) is displayed.

env = Environment(CXXCOMSTR = "Compiling static object $TARGET")

CXXFILESUFFIX

The suffix for C++ source files. This is used by the internal CXXFile builder when generating C++
files from Lex (.ll) or YACC (.yy) input files. The default suffix is .cc. SCons also treats files with
the suffixes .cpp, .cxx, .c++, and .C++ as C++ files, and files with .mm suffixes as Objective C++

147



Appendix A. Construction Variables

files. On case-sensitive systems (Linux, UNIX, and other POSIX-alikes), SCons also treats .C
(upper case) files as C++ files.

CXXFLAGS

General options that are passed to the C++ compiler. By default, this includes the value of
$CCFLAGS, so that setting $CCFLAGS affects both C and C++ compilation. If you want to add
C++-specific flags, you must set or override the value of $CXXFLAGS.

CXXVERSION

The version number of the C++ compiler. This may or may not be set, depending on the specific
C++ compiler being used.

DESCRIPTION

A long description of the project being packaged. This is included in the relevant section of the file
that controls the packaging build.

DESCRIPTION_lang

A language-specific long description for the specified lang. This is used to populate a
%description -l section of an RPM .spec file.

Dir

A function that converts a string into a Dir instance relative to the target being built.

Dirs

A function that converts a list of strings into a list of Dir instances relative to the target being built.

DSUFFIXES

The list of suffixes of files that will be scanned for imported D package files. The default list is:

[’.d’]

DVIPDF

The TeX DVI file to PDF file converter.

DVIPDFCOM

The command line used to convert TeX DVI files into a PDF file.

DVIPDFCOMSTR

The string displayed when a TeX DVI file is converted into a PDF file. If this is not set, then
$DVIPDFCOM (the command line) is displayed.

DVIPDFFLAGS

General options passed to the TeX DVI file to PDF file converter.

DVIPS

The TeX DVI file to PostScript converter.
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DVIPSFLAGS

General options passed to the TeX DVI file to PostScript converter.

ENV

A dictionary of environment variables to use when invoking commands. When $ENV is used in a
command all list values will be joined using the path separator and any other non-string values will
simply be coerced to a string. Note that, by default, scons does not propagate the environment in
force when you execute scons to the commands used to build target files. This is so that builds will
be guaranteed repeatable regardless of the environment variables set at the time scons is invoked.

If you want to propagate your environment variables to the commands executed to build target files,
you must do so explicitly:

import os
env = Environment(ENV = os.environ)

Note that you can choose only to propagate certain environment variables. A common example is
the system PATH environment variable, so that scons uses the same utilities as the invoking shell (or
other process):

import os
env = Environment(ENV = {’PATH’ : os.environ[’PATH’]})

ESCAPE

A function that will be called to escape shell special characters in command lines. The function
should take one argument: the command line string to escape; and should return the escaped
command line.

F77

The Fortran 77 compiler. You should normally set the $FORTRAN variable, which specifies the
default Fortran compiler for all Fortran versions. You only need to set $F77 if you need to use a
specific compiler or compiler version for Fortran 77 files.

F77COM

The command line used to compile a Fortran 77 source file to an object file. You only need to set
$F77COM if you need to use a specific command line for Fortran 77 files. You should normally set
the $FORTRANCOM variable, which specifies the default command line for all Fortran versions.

F77COMSTR

The string displayed when a Fortran 77 source file is compiled to an object file. If this is not set,
then $F77COM or $FORTRANCOM (the command line) is displayed.

F77FILESUFFIXES

The list of file extensions for which the F77 dialect will be used. By default, this is [’.f77’]
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F77FLAGS

General user-specified options that are passed to the Fortran 77 compiler. Note that this variable
does not contain -I (or similar) include search path options that scons generates automatically from
$F77PATH. See $_F77INCFLAGS below, for the variable that expands to those options. You only
need to set $F77FLAGS if you need to define specific user options for Fortran 77 files. You should
normally set the $FORTRANFLAGS variable, which specifies the user-specified options passed to
the default Fortran compiler for all Fortran versions.

_F77INCFLAGS

An automatically-generated construction variable containing the Fortran 77 compiler command-line
options for specifying directories to be searched for include files. The value of $_F77INCFLAGS is
created by appending $INCPREFIX and $INCSUFFIX to the beginning and end of each directory
in $F77PATH.

F77PATH

The list of directories that the Fortran 77 compiler will search for include directories. The implicit
dependency scanner will search these directories for include files. Don’t explicitly put include
directory arguments in $F77FLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory names in $F77PATH will be looked-up
relative to the SConscript directory when they are used in a command. To force scons to look-up a
directory relative to the root of the source tree use #: You only need to set $F77PATH if you need to
define a specific include path for Fortran 77 files. You should normally set the $FORTRANPATH
variable, which specifies the include path for the default Fortran compiler for all Fortran versions.

env = Environment(F77PATH=’#/include’)

The directory look-up can also be forced using the Dir() function:

include = Dir(’include’)
env = Environment(F77PATH=include)

The directory list will be added to command lines through the automatically-generated
$_F77INCFLAGS construction variable, which is constructed by appending the values of the
$INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory
in $F77PATH. Any command lines you define that need the F77PATH directory list should include
$_F77INCFLAGS:

env = Environment(F77COM="my_compiler $_F77INCFLAGS -c -o $TARGET $SOURCE")

F77PPCOM

The command line used to compile a Fortran 77 source file to an object file after first running the
file through the C preprocessor. Any options specified in the $F77FLAGS and $CPPFLAGS
construction variables are included on this command line. You only need to set $F77PPCOM if you
need to use a specific C-preprocessor command line for Fortran 77 files. You should normally set
the $FORTRANPPCOM variable, which specifies the default C-preprocessor command line for all
Fortran versions.
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F77PPCOMSTR

The string displayed when a Fortran 77 source file is compiled to an object file after first running the
file through the C preprocessor. If this is not set, then $F77PPCOM or $FORTRANPPCOM (the
command line) is displayed.

F77PPFILESUFFIXES

The list of file extensions for which the compilation + preprocessor pass for F77 dialect will be
used. By default, this is empty

F90

The Fortran 90 compiler. You should normally set the $FORTRAN variable, which specifies the
default Fortran compiler for all Fortran versions. You only need to set $F90 if you need to use a
specific compiler or compiler version for Fortran 90 files.

F90COM

The command line used to compile a Fortran 90 source file to an object file. You only need to set
$F90COM if you need to use a specific command line for Fortran 90 files. You should normally set
the $FORTRANCOM variable, which specifies the default command line for all Fortran versions.

F90COMSTR

The string displayed when a Fortran 90 source file is compiled to an object file. If this is not set,
then $F90COM or $FORTRANCOM (the command line) is displayed.

F90FILESUFFIXES

The list of file extensions for which the F90 dialect will be used. By default, this is [’.f90’]

F90FLAGS

General user-specified options that are passed to the Fortran 90 compiler. Note that this variable
does not contain -I (or similar) include search path options that scons generates automatically from
$F90PATH. See $_F90INCFLAGS below, for the variable that expands to those options. You only
need to set $F90FLAGS if you need to define specific user options for Fortran 90 files. You should
normally set the $FORTRANFLAGS variable, which specifies the user-specified options passed to
the default Fortran compiler for all Fortran versions.

_F90INCFLAGS

An automatically-generated construction variable containing the Fortran 90 compiler command-line
options for specifying directories to be searched for include files. The value of $_F90INCFLAGS is
created by appending $INCPREFIX and $INCSUFFIX to the beginning and end of each directory
in $F90PATH.

F90PATH

The list of directories that the Fortran 90 compiler will search for include directories. The implicit
dependency scanner will search these directories for include files. Don’t explicitly put include
directory arguments in $F90FLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory names in $F90PATH will be looked-up
relative to the SConscript directory when they are used in a command. To force scons to look-up a
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directory relative to the root of the source tree use #: You only need to set $F90PATH if you need to
define a specific include path for Fortran 90 files. You should normally set the $FORTRANPATH
variable, which specifies the include path for the default Fortran compiler for all Fortran versions.

env = Environment(F90PATH=’#/include’)

The directory look-up can also be forced using the Dir() function:

include = Dir(’include’)
env = Environment(F90PATH=include)

The directory list will be added to command lines through the automatically-generated
$_F90INCFLAGS construction variable, which is constructed by appending the values of the
$INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory
in $F90PATH. Any command lines you define that need the F90PATH directory list should include
$_F90INCFLAGS:

env = Environment(F90COM="my_compiler $_F90INCFLAGS -c -o $TARGET $SOURCE")

F90PPCOM

The command line used to compile a Fortran 90 source file to an object file after first running the
file through the C preprocessor. Any options specified in the $F90FLAGS and $CPPFLAGS
construction variables are included on this command line. You only need to set $F90PPCOM if you
need to use a specific C-preprocessor command line for Fortran 90 files. You should normally set
the $FORTRANPPCOM variable, which specifies the default C-preprocessor command line for all
Fortran versions.

F90PPCOMSTR

The string displayed when a Fortran 90 source file is compiled after first running the file through the
C preprocessor. If this is not set, then $F90PPCOM or $FORTRANPPCOM (the command line) is
displayed.

F90PPFILESUFFIXES

The list of file extensions for which the compilation + preprocessor pass for F90 dialect will be
used. By default, this is empty

F95

The Fortran 95 compiler. You should normally set the $FORTRAN variable, which specifies the
default Fortran compiler for all Fortran versions. You only need to set $F95 if you need to use a
specific compiler or compiler version for Fortran 95 files.

F95COM

The command line used to compile a Fortran 95 source file to an object file. You only need to set
$F95COM if you need to use a specific command line for Fortran 95 files. You should normally set
the $FORTRANCOM variable, which specifies the default command line for all Fortran versions.
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F95COMSTR

The string displayed when a Fortran 95 source file is compiled to an object file. If this is not set,
then $F95COM or $FORTRANCOM (the command line) is displayed.

F95FILESUFFIXES

The list of file extensions for which the F95 dialect will be used. By default, this is [’.f95’]

F95FLAGS

General user-specified options that are passed to the Fortran 95 compiler. Note that this variable
does not contain -I (or similar) include search path options that scons generates automatically from
$F95PATH. See $_F95INCFLAGS below, for the variable that expands to those options. You only
need to set $F95FLAGS if you need to define specific user options for Fortran 95 files. You should
normally set the $FORTRANFLAGS variable, which specifies the user-specified options passed to
the default Fortran compiler for all Fortran versions.

_F95INCFLAGS

An automatically-generated construction variable containing the Fortran 95 compiler command-line
options for specifying directories to be searched for include files. The value of $_F95INCFLAGS is
created by appending $INCPREFIX and $INCSUFFIX to the beginning and end of each directory
in $F95PATH.

F95PATH

The list of directories that the Fortran 95 compiler will search for include directories. The implicit
dependency scanner will search these directories for include files. Don’t explicitly put include
directory arguments in $F95FLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory names in $F95PATH will be looked-up
relative to the SConscript directory when they are used in a command. To force scons to look-up a
directory relative to the root of the source tree use #: You only need to set $F95PATH if you need to
define a specific include path for Fortran 95 files. You should normally set the $FORTRANPATH
variable, which specifies the include path for the default Fortran compiler for all Fortran versions.

env = Environment(F95PATH=’#/include’)

The directory look-up can also be forced using the Dir() function:

include = Dir(’include’)
env = Environment(F95PATH=include)

The directory list will be added to command lines through the automatically-generated
$_F95INCFLAGS construction variable, which is constructed by appending the values of the
$INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory
in $F95PATH. Any command lines you define that need the F95PATH directory list should include
$_F95INCFLAGS:

env = Environment(F95COM="my_compiler $_F95INCFLAGS -c -o $TARGET $SOURCE")

153



Appendix A. Construction Variables

F95PPCOM

The command line used to compile a Fortran 95 source file to an object file after first running the
file through the C preprocessor. Any options specified in the $F95FLAGS and $CPPFLAGS
construction variables are included on this command line. You only need to set $F95PPCOM if you
need to use a specific C-preprocessor command line for Fortran 95 files. You should normally set
the $FORTRANPPCOM variable, which specifies the default C-preprocessor command line for all
Fortran versions.

F95PPCOMSTR

The string displayed when a Fortran 95 source file is compiled to an object file after first running the
file through the C preprocessor. If this is not set, then $F95PPCOM or $FORTRANPPCOM (the
command line) is displayed.

F95PPFILESUFFIXES

The list of file extensions for which the compilation + preprocessor pass for F95 dialect will be
used. By default, this is empty

File

A function that converts a string into a File instance relative to the target being built.

FORTRAN

The default Fortran compiler for all versions of Fortran.

FORTRANCOM

The command line used to compile a Fortran source file to an object file. By default, any options
specified in the $FORTRANFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_FORTRANMODFLAG,
and $_FORTRANINCFLAGS construction variables are included on this command line.

FORTRANCOMSTR

The string displayed when a Fortran source file is compiled to an object file. If this is not set, then
$FORTRANCOM (the command line) is displayed.

FORTRANFILESUFFIXES

The list of file extensions for which the FORTRAN dialect will be used. By default, this is [’.f’,
’.for’, ’.ftn’]

FORTRANFLAGS

General user-specified options that are passed to the Fortran compiler. Note that this variable does
not contain -I (or similar) include or module search path options that scons generates automatically
from $FORTRANPATH. See $_FORTRANINCFLAGS and $_FORTRANMODFLAG, below, for
the variables that expand those options.

_FORTRANINCFLAGS

An automatically-generated construction variable containing the Fortran compiler command-line
options for specifying directories to be searched for include files and module files. The value of
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$_FORTRANINCFLAGS is created by prepending/appending $INCPREFIX and $INCSUFFIX to
the beginning and end of each directory in $FORTRANPATH.

FORTRANMODDIR

Directory location where the Fortran compiler should place any module files it generates. This
variable is empty, by default. Some Fortran compilers will internally append this directory in the
search path for module files, as well.

FORTRANMODDIRPREFIX

The prefix used to specify a module directory on the Fortran compiler command line. This will be
appended to the beginning of the directory in the $FORTRANMODDIR construction variables
when the $_FORTRANMODFLAG variables is automatically generated.

FORTRANMODDIRSUFFIX

The suffix used to specify a module directory on the Fortran compiler command line. This will be
appended to the beginning of the directory in the $FORTRANMODDIR construction variables
when the $_FORTRANMODFLAG variables is automatically generated.

_FORTRANMODFLAG

An automatically-generated construction variable containing the Fortran compiler command-line
option for specifying the directory location where the Fortran compiler should place any module
files that happen to get generated during compilation. The value of $_FORTRANMODFLAG is
created by prepending/appending $FORTRANMODDIRPREFIX and
$FORTRANMODDIRSUFFIX to the beginning and end of the directory in $FORTRANMODDIR.

FORTRANMODPREFIX

The module file prefix used by the Fortran compiler. SCons assumes that the Fortran compiler
follows the quasi-standard naming convention for module files of module_name.mod. As a result,
this variable is left empty, by default. For situations in which the compiler does not necessarily
follow the normal convention, the user may use this variable. Its value will be appended to every
module file name as scons attempts to resolve dependencies.

FORTRANMODSUFFIX

The module file suffix used by the Fortran compiler. SCons assumes that the Fortran compiler
follows the quasi-standard naming convention for module files of module_name.mod. As a result,
this variable is set to ".mod", by default. For situations in which the compiler does not necessarily
follow the normal convention, the user may use this variable. Its value will be appended to every
module file name as scons attempts to resolve dependencies.

FORTRANPATH

The list of directories that the Fortran compiler will search for include files and (for some
compilers) module files. The Fortran implicit dependency scanner will search these directories for
include files (but not module files since they are autogenerated and, as such, may not actually exist
at the time the scan takes place). Don’t explicitly put include directory arguments in
FORTRANFLAGS because the result will be non-portable and the directories will not be searched
by the dependency scanner. Note: directory names in FORTRANPATH will be looked-up relative to
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the SConscript directory when they are used in a command. To force scons to look-up a directory
relative to the root of the source tree use #:

env = Environment(FORTRANPATH=’#/include’)

The directory look-up can also be forced using the Dir() function:

include = Dir(’include’)
env = Environment(FORTRANPATH=include)

The directory list will be added to command lines through the automatically-generated
$_FORTRANINCFLAGS construction variable, which is constructed by appending the values of
the $INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each
directory in $FORTRANPATH. Any command lines you define that need the FORTRANPATH
directory list should include $_FORTRANINCFLAGS:

env = Environment(FORTRANCOM="my_compiler $_FORTRANINCFLAGS -c -o $TARGET $SOURCE")

FORTRANPPCOM

The command line used to compile a Fortran source file to an object file after first running the file
through the C preprocessor. By default, any options specified in the $FORTRANFLAGS,
$CPPFLAGS, $_CPPDEFFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS
construction variables are included on this command line.

FORTRANPPCOMSTR

The string displayed when a Fortran source file is compiled to an object file after first running the
file throught the C preprocessor. If this is not set, then $FORTRANPPCOM (the command line) is
displayed.

FORTRANPPFILESUFFIXES

The list of file extensions for which the compilation + preprocessor pass for FORTRAN dialect will
be used. By default, this is [’.fpp’, ’.FPP’]

FORTRANSUFFIXES

The list of suffixes of files that will be scanned for Fortran implicit dependencies (INCLUDE lines
and USE statements). The default list is:

[".f", ".F", ".for", ".FOR", ".ftn", ".FTN", ".fpp", ".FPP",
".f77", ".F77", ".f90", ".F90", ".f95", ".F95"]

FRAMEWORKPATH

On Mac OS X with gcc, a list containing the paths to search for frameworks. Used by the compiler
to find framework-style includes like #include <Fmwk/Header.h>. Used by the linker to find
user-specified frameworks when linking (see $FRAMEWORKS). For example:

env.AppendUnique(FRAMEWORKPATH=’#myframeworkdir’)

will add

... -Fmyframeworkdir
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to the compiler and linker command lines.

_FRAMEWORKPATH

On Mac OS X with gcc, an automatically-generated construction variable containing the linker
command-line options corresponding to $FRAMEWORKPATH.

FRAMEWORKPATHPREFIX

On Mac OS X with gcc, the prefix to be used for the FRAMEWORKPATH entries. (see
$FRAMEWORKPATH). The default value is -F.

FRAMEWORKPREFIX

On Mac OS X with gcc, the prefix to be used for linking in frameworks (see $FRAMEWORKS).
The default value is -framework.

_FRAMEWORKS

On Mac OS X with gcc, an automatically-generated construction variable containing the linker
command-line options for linking with FRAMEWORKS.

FRAMEWORKS

On Mac OS X with gcc, a list of the framework names to be linked into a program or shared library
or bundle. The default value is the empty list. For example:

env.AppendUnique(FRAMEWORKS=Split(’System Cocoa SystemConfiguration’))

FRAMEWORKSFLAGS

On Mac OS X with gcc, general user-supplied frameworks options to be added at the end of a
command line building a loadable module. (This has been largely superceded by the
$FRAMEWORKPATH, $FRAMEWORKPATHPREFIX, $FRAMEWORKPREFIX and
$FRAMEWORKS variables described above.)

GS

The Ghostscript program used to convert PostScript to PDF files.

GSCOM

The Ghostscript command line used to convert PostScript to PDF files.

GSCOMSTR

The string displayed when Ghostscript is used to convert a PostScript file to a PDF file. If this is not
set, then $GSCOM (the command line) is displayed.

GSFLAGS

General options passed to the Ghostscript program when converting PostScript to PDF files.
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IDLSUFFIXES

The list of suffixes of files that will be scanned for IDL implicit dependencies (#include or import
lines). The default list is:

[".idl", ".IDL"]

IMPLICIT_COMMAND_DEPENDENCIES

Controls whether or not SCons will add implicit dependencies for the commands executed to build
targets.

By default, SCons will add to each target an implicit dependency on the command represented by
the first argument on any command line it executes. The specific file for the dependency is found by
searching the PATH variable in the ENV environment used to execute the command.

If the construction variable $IMPLICIT_COMMAND_DEPENDENCIES is set to a false value
(None, False, 0, etc.), then the implicit dependency will not be added to the targets built with that
construction environment.

env = Environment(IMPLICIT_COMMAND_DEPENDENCIES = 0)

INCPREFIX

The prefix used to specify an include directory on the C compiler command line. This will be
appended to the beginning of each directory in the $CPPPATH and $FORTRANPATH construction
variables when the $_CPPINCFLAGS and $_FORTRANINCFLAGS variables are automatically
generated.

INCSUFFIX

The suffix used to specify an include directory on the C compiler command line. This will be
appended to the end of each directory in the $CPPPATH and $FORTRANPATH construction
variables when the $_CPPINCFLAGS and $_FORTRANINCFLAGS variables are automatically
generated.

INSTALL

A function to be called to install a file into a destination file name. The default function copies the
file into the destination (and sets the destination file’s mode and permission bits to match the source
file’s). The function takes the following arguments:

def install(dest, source, env):

dest is the path name of the destination file. source is the path name of the source file. env is the
construction environment (a dictionary of construction values) in force for this file installation.

INSTALLSTR

The string displayed when a file is installed into a destination file name. The default is:

Install file: "$SOURCE" as "$TARGET"
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INTEL_C_COMPILER_VERSION

Set by the "intelc" Tool to the major version number of the Intel C compiler selected for use.

JAR

The Java archive tool.

JARCHDIR

The directory to which the Java archive tool should change (using the -C option).

JARCOM

The command line used to call the Java archive tool.

JARCOMSTR

The string displayed when the Java archive tool is called If this is not set, then $JARCOM (the
command line) is displayed.

env = Environment(JARCOMSTR = "JARchiving $SOURCES into $TARGET")

JARFLAGS

General options passed to the Java archive tool. By default this is set to cf to create the necessary
jar file.

JARSUFFIX

The suffix for Java archives: .jar by default.

JAVABOOTCLASSPATH

Specifies the list of directories that will be added to the javac command line via the
-bootclasspath option. The individual directory names will be separated by the operating
system’s path separate character (: on UNIX/Linux/POSIX, ; on Windows).

JAVAC

The Java compiler.

JAVACCOM

The command line used to compile a directory tree containing Java source files to corresponding
Java class files. Any options specified in the $JAVACFLAGS construction variable are included on
this command line.

JAVACCOMSTR

The string displayed when compiling a directory tree of Java source files to corresponding Java
class files. If this is not set, then $JAVACCOM (the command line) is displayed.

env = Environment(JAVACCOMSTR = "Compiling class files $TARGETS from $SOURCES")

JAVACFLAGS

General options that are passed to the Java compiler.
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JAVACLASSDIR

The directory in which Java class files may be found. This is stripped from the beginning of any
Java .class file names supplied to the JavaH builder.

JAVACLASSPATH

Specifies the list of directories that will be searched for Java .class file. The directories in this list
will be added to the javac and javah command lines via the -classpath option. The individual
directory names will be separated by the operating system’s path separate character (: on
UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory via the -classpath option. SCons does
not currently search the $JAVACLASSPATH directories for dependency .class files.

JAVACLASSSUFFIX

The suffix for Java class files; .class by default.

JAVAH

The Java generator for C header and stub files.

JAVAHCOM

The command line used to generate C header and stub files from Java classes. Any options specified
in the $JAVAHFLAGS construction variable are included on this command line.

JAVAHCOMSTR

The string displayed when C header and stub files are generated from Java classes. If this is not set,
then $JAVAHCOM (the command line) is displayed.

env = Environment(JAVAHCOMSTR = "Generating header/stub file(s) $TARGETS from $SOURCES")

JAVAHFLAGS

General options passed to the C header and stub file generator for Java classes.

JAVASOURCEPATH

Specifies the list of directories that will be searched for input .java file. The directories in this list
will be added to the javac command line via the -sourcepath option. The individual directory
names will be separated by the operating system’s path separate character (: on
UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory via the -sourcepath option. SCons does
not currently search the $JAVASOURCEPATH directories for dependency .java files.

JAVASUFFIX

The suffix for Java files; .java by default.
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JAVAVERSION

Specifies the Java version being used by the Java builder. This is not currently used to select one
version of the Java compiler vs. another. Instead, you should set this to specify the version of Java
supported by your javac compiler. The default is 1.4.

This is sometimes necessary because Java 1.5 changed the file names that are created for nested
anonymous inner classes, which can cause a mismatch with the files that SCons expects will be
generated by the javac compiler. Setting $JAVAVERSION to 1.5 (or 1.6, as appropriate) can make
SCons realize that a Java 1.5 or 1.6 build is actually up to date.

LATEX

The LaTeX structured formatter and typesetter.

LATEXCOM

The command line used to call the LaTeX structured formatter and typesetter.

LATEXCOMSTR

The string displayed when calling the LaTeX structured formatter and typesetter. If this is not set,
then $LATEXCOM (the command line) is displayed.

env = Environment(LATEXCOMSTR = "Building $TARGET from LaTeX input $SOURCES")

LATEXFLAGS

General options passed to the LaTeX structured formatter and typesetter.

LATEXRETRIES

The maximum number of times that LaTeX will be re-run if the .log generated by the
$LATEXCOM command indicates that there are undefined references. The default is to try to
resolve undefined references by re-running LaTeX up to three times.

LATEXSUFFIXES

The list of suffixes of files that will be scanned for LaTeX implicit dependencies (\include or
\import files). The default list is:

[".tex", ".ltx", ".latex"]

LDMODULE

The linker for building loadable modules. By default, this is the same as $SHLINK.

LDMODULECOM

The command line for building loadable modules. On Mac OS X, this uses the $LDMODULE,
$LDMODULEFLAGS and $FRAMEWORKSFLAGS variables. On other systems, this is the same
as $SHLINK.
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LDMODULECOMSTR

The string displayed when building loadable modules. If this is not set, then $LDMODULECOM
(the command line) is displayed.

LDMODULEFLAGS

General user options passed to the linker for building loadable modules.

LDMODULEPREFIX

The prefix used for loadable module file names. On Mac OS X, this is null; on other systems, this is
the same as $SHLIBPREFIX.

LDMODULESUFFIX

The suffix used for loadable module file names. On Mac OS X, this is null; on other systems, this is
the same as $SHLIBSUFFIX.

LEX

The lexical analyzer generator.

LEXCOM

The command line used to call the lexical analyzer generator to generate a source file.

LEXCOMSTR

The string displayed when generating a source file using the lexical analyzer generator. If this is not
set, then $LEXCOM (the command line) is displayed.

env = Environment(LEXCOMSTR = "Lex’ing $TARGET from $SOURCES")

LEXFLAGS

General options passed to the lexical analyzer generator.

_LIBDIRFLAGS

An automatically-generated construction variable containing the linker command-line options for
specifying directories to be searched for library. The value of $_LIBDIRFLAGS is created by
appending $LIBDIRPREFIX and $LIBDIRSUFFIX to the beginning and end of each directory in
$LIBPATH.

LIBDIRPREFIX

The prefix used to specify a library directory on the linker command line. This will be appended to
the beginning of each directory in the $LIBPATH construction variable when the $_LIBDIRFLAGS
variable is automatically generated.

LIBDIRSUFFIX

The suffix used to specify a library directory on the linker command line. This will be appended to
the end of each directory in the $LIBPATH construction variable when the $_LIBDIRFLAGS
variable is automatically generated.
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_LIBFLAGS

An automatically-generated construction variable containing the linker command-line options for
specifying libraries to be linked with the resulting target. The value of $_LIBFLAGS is created by
appending $LIBLINKPREFIX and $LIBLINKSUFFIX to the beginning and end of each filename
in $LIBS.

LIBLINKPREFIX

The prefix used to specify a library to link on the linker command line. This will be appended to the
beginning of each library in the $LIBS construction variable when the $_LIBFLAGS variable is
automatically generated.

LIBLINKSUFFIX

The suffix used to specify a library to link on the linker command line. This will be appended to the
end of each library in the $LIBS construction variable when the $_LIBFLAGS variable is
automatically generated.

LIBPATH

The list of directories that will be searched for libraries. The implicit dependency scanner will
search these directories for include files. Don’t explicitly put include directory arguments in
$LINKFLAGS or $SHLINKFLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory names in LIBPATH will be looked-up
relative to the SConscript directory when they are used in a command. To force scons to look-up a
directory relative to the root of the source tree use #:

env = Environment(LIBPATH=’#/libs’)

The directory look-up can also be forced using the Dir() function:

libs = Dir(’libs’)
env = Environment(LIBPATH=libs)

The directory list will be added to command lines through the automatically-generated
$_LIBDIRFLAGS construction variable, which is constructed by appending the values of the
$LIBDIRPREFIX and $LIBDIRSUFFIX construction variables to the beginning and end of each
directory in $LIBPATH. Any command lines you define that need the LIBPATH directory list
should include $_LIBDIRFLAGS:

env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")

LIBPREFIX

The prefix used for (static) library file names. A default value is set for each platform (posix, win32,
os2, etc.), but the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect
the names of the libraries they create.

LIBPREFIXES

A list of all legal prefixes for library file names. When searching for library dependencies, SCons
will look for files with these prefixes, the base library name, and suffixes in the $LIBSUFFIXES list.
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LIBS

A list of one or more libraries that will be linked with any executable programs created by this
environment.

The library list will be added to command lines through the automatically-generated $_LIBFLAGS
construction variable, which is constructed by appending the values of the $LIBLINKPREFIX and
$LIBLINKSUFFIX construction variables to the beginning and end of each filename in $LIBS. Any
command lines you define that need the LIBS library list should include $_LIBFLAGS:

env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")

If you add a File object to the $LIBS list, the name of that file will be added to $_LIBFLAGS, and
thus the link line, as is, without $LIBLINKPREFIX or $LIBLINKSUFFIX. For example:

env.Append(LIBS=File(’/tmp/mylib.so’))

In all cases, scons will add dependencies from the executable program to all the libraries in this list.

LIBSUFFIX

The suffix used for (static) library file names. A default value is set for each platform (posix, win32,
os2, etc.), but the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect
the names of the libraries they create.

LIBSUFFIXES

A list of all legal suffixes for library file names. When searching for library dependencies, SCons
will look for files with prefixes, in the $LIBPREFIXES list, the base library name, and these
suffixes.

LICENSE

The abbreviated name of the license under which this project is released (gpl, lpgl, bsd etc.). See
http://www.opensource.org/licenses/alphabetical for a list of license names.

LINK

The linker.

LINKCOM

The command line used to link object files into an executable.

LINKCOMSTR

The string displayed when object files are linked into an executable. If this is not set, then
$LINKCOM (the command line) is displayed.

env = Environment(LINKCOMSTR = "Linking $TARGET")
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LINKFLAGS

General user options passed to the linker. Note that this variable should not contain -l (or similar)
options for linking with the libraries listed in $LIBS, nor -L (or similar) library search path options
that scons generates automatically from $LIBPATH. See $_LIBFLAGS above, for the variable that
expands to library-link options, and $_LIBDIRFLAGS above, for the variable that expands to
library search path options.

M4

The M4 macro preprocessor.

M4COM

The command line used to pass files through the M4 macro preprocessor.

M4COMSTR

The string displayed when a file is passed through the M4 macro preprocessor. If this is not set, then
$M4COM (the command line) is displayed.

M4FLAGS

General options passed to the M4 macro preprocessor.

MAKEINDEX

The makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter
and typesetter.

MAKEINDEXCOM

The command line used to call the makeindex generator for the TeX formatter and typesetter and
the LaTeX structured formatter and typesetter.

MAKEINDEXCOMSTR

The string displayed when calling the makeindex generator for the TeX formatter and typesetter and
the LaTeX structured formatter and typesetter. If this is not set, then $MAKEINDEXCOM (the
command line) is displayed.

MAKEINDEXFLAGS

General options passed to the makeindex generator for the TeX formatter and typesetter and the
LaTeX structured formatter and typesetter.

MAXLINELENGTH

The maximum number of characters allowed on an external command line. On Win32 systems, link
lines longer than this many characters are linked via a temporary file name.

MIDL

The Microsoft IDL compiler.

MIDLCOM

The command line used to pass files to the Microsoft IDL compiler.
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MIDLCOMSTR

The string displayed when the Microsoft IDL copmiler is called. If this is not set, then $MIDLCOM
(the command line) is displayed.

MIDLFLAGS

General options passed to the Microsoft IDL compiler.

MSVS

When the Microsoft Visual Studio tools are initialized, they set up this dictionary with the following
keys:

VERSION: the version of MSVS being used (can be set via MSVS_VERSION)

VERSIONS: the available versions of MSVS installed

VCINSTALLDIR: installed directory of Visual C++

VSINSTALLDIR: installed directory of Visual Studio

FRAMEWORKDIR: installed directory of the .NET framework

FRAMEWORKVERSIONS: list of installed versions of the .NET framework, sorted latest to oldest.

FRAMEWORKVERSION: latest installed version of the .NET framework

FRAMEWORKSDKDIR: installed location of the .NET SDK.

PLATFORMSDKDIR: installed location of the Platform SDK.

PLATFORMSDK_MODULES: dictionary of installed Platform SDK modules, where the
dictionary keys are keywords for the various modules, and the values are 2-tuples where the first is
the release date, and the second is the version number.

If a value isn’t set, it wasn’t available in the registry.

MSVS_IGNORE_IDE_PATHS

Tells the MS Visual Studio tools to use minimal INCLUDE, LIB, and PATH settings, instead of the
settings from the IDE.
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For Visual Studio, SCons will (by default) automatically determine where MSVS is installed, and
use the LIB, INCLUDE, and PATH variables set by the IDE. You can override this behavior by
setting these variables after Environment initialization, or by setting MSVS_IGNORE_IDE_PATHS
= 1 in the Environment initialization. Specifying this will not leave these unset, but will set them to
a minimal set of paths needed to run the tools successfully.

For VS6, the mininimal set is:

INCLUDE:’<VSDir>\VC98\ATL\include;<VSDir>\VC98\MFC\include;<VSDir>\VC98\include’
LIB:’<VSDir>\VC98\MFC\lib;<VSDir>\VC98\lib’
PATH:’<VSDir>\Common\MSDev98\bin;<VSDir>\VC98\bin’

For VS7, it is:

INCLUDE:’<VSDir>\Vc7\atlmfc\include;<VSDir>\Vc7\include’
LIB:’<VSDir>\Vc7\atlmfc\lib;<VSDir>\Vc7\lib’
PATH:’<VSDir>\Common7\Tools\bin;<VSDir>\Common7\Tools;<VSDir>\Vc7\bin’

Where ’<VSDir>’ is the installed location of Visual Studio.

MSVS_PROJECT_BASE_PATH

The string placed in a generated Microsoft Visual Studio solution file as the value of the
SccProjectFilePathRelativizedFromConnection0 and
SccProjectFilePathRelativizedFromConnection1 attributes of the
GlobalSection(SourceCodeControl) section. There is no default value.

MSVS_PROJECT_GUID

The string placed in a generated Microsoft Visual Studio project file as the value of the
ProjectGUID attribute. The string is also placed in the SolutionUniqueID attribute of the
GlobalSection(SourceCodeControl) section of the Microsoft Visual Studio solution file.
There is no default value.

MSVS_SCC_AUX_PATH

The path name placed in a generated Microsoft Visual Studio project file as the value of the
SccAuxPath attribute if the MSVS_SCC_PROVIDER construction variable is also set. There is no
default value.

MSVS_SCC_LOCAL_PATH

The path name placed in a generated Microsoft Visual Studio project file as the value of the
SccLocalPath attribute if the MSVS_SCC_PROVIDER construction variable is also set. The path
name is also placed in the SccLocalPath0 and SccLocalPath1 attributes of the
GlobalSection(SourceCodeControl) section of the Microsoft Visual Studio solution file.
There is no default value.
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MSVS_SCC_PROJECT_NAME

The project name placed in a generated Microsoft Visual Studio project file as the value of the
SccProjectName attribute. There is no default value.

MSVS_SCC_PROVIDER

The string placed in a generated Microsoft Visual Studio project file as the value of the
SccProvider attribute. The string is also placed in the SccProvider1 attribute of the
GlobalSection(SourceCodeControl) section of the Microsoft Visual Studio solution file.
There is no default value.

MSVS_USE_MFC_DIRS

Tells the MS Visual Studio tool(s) to use the MFC directories in its default paths for compiling and
linking. The $MSVS_USE_MFC_DIRS variable has no effect if the INCLUDE or LIB environment
variables are set explictly.

Under Visual Studio version 6, setting $MSVS_USE_MFC_DIRS to a non-zero value adds the
ATL\include and MFC\include directories to the default INCLUDE external environment
variable, and adds the MFC\lib directory to the default LIB external environment variable.

Under Visual Studio version 7, setting $MSVS_USE_MFC_DIRS to a non-zero value adds the
atlmfc\include directory to the default INCLUDE external environment variable, and adds the
atlmfc\lib directory to the default LIB external environment variable.

Under Visual Studio version 8, setting $MSVS_USE_MFC_DIRS to a non-zero value will, by
default, add the atlmfc\include directory to the default INCLUDE external environment
variable, and the atlmfc\lib directory to the default LIB external environment variable. If,
however, the [’MSVS’][’PLATFORMSDKDIR’] variable is set, then the mfc and the atl
subdirectories of the PLATFORMSDKDIR are added to the default value of the INCLUDE external
environment variable, and the default value of the LIB external environment variable is left
untouched.

MSVS_VERSION

Sets the preferred version of MSVS to use.

SCons will (by default) select the latest version of MSVS installed on your machine. So, if you have
version 6 and version 7 (MSVS .NET) installed, it will prefer version 7. You can override this by
specifying the MSVS_VERSION variable in the Environment initialization, setting it to the
appropriate version (’6.0’ or ’7.0’, for example). If the given version isn’t installed, tool
initialization will fail.
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MSVSBUILDCOM

The build command line placed in a generated Microsoft Visual Studio project file. The default is to
have Visual Studio invoke SCons with any specified build targets.

MSVSCLEANCOM

The clean command line placed in a generated Microsoft Visual Studio project file. The default is to
have Visual Studio invoke SCons with the -c option to remove any specified targets.

MSVSENCODING

The encoding string placed in a generated Microsoft Visual Studio project file. The default is
encoding Windows-1252.

MSVSPROJECTCOM

The action used to generate Microsoft Visual Studio project files.

MSVSPROJECTSUFFIX

The suffix used for Microsoft Visual Studio project (DSP) files. The default value is .vcproj when
using Visual Studio version 7.x (.NET) or later version, and .dsp when using earlier versions of
Visual Studio.

MSVSREBUILDCOM

The rebuild command line placed in a generated Microsoft Visual Studio project file. The default is
to have Visual Studio invoke SCons with any specified rebuild targets.

MSVSSCONS

The SCons used in generated Microsoft Visual Studio project files. The default is the version of
SCons being used to generate the project file.

MSVSSCONSCOM

The default SCons command used in generated Microsoft Visual Studio project files.

MSVSSCONSCRIPT

The sconscript file (that is, SConstruct or SConscript file) that will be invoked by Visual Studio
project files (through the $MSVSSCONSCOM variable). The default is the same sconscript file that
contains the call to MSVSProject to build the project file.

MSVSSCONSFLAGS

The SCons flags used in generated Microsoft Visual Studio project files.

MSVSSOLUTIONCOM

The action used to generate Microsoft Visual Studio solution files.

MSVSSOLUTIONSUFFIX

The suffix used for Microsoft Visual Studio solution (DSW) files. The default value is .sln when
using Visual Studio version 7.x (.NET), and .dsw when using earlier versions of Visual Studio.
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MWCW_VERSION

The version number of the MetroWerks CodeWarrior C compiler to be used.

MWCW_VERSIONS

A list of installed versions of the MetroWerks CodeWarrior C compiler on this system.

NAME

Specfies the name of the project to package.

no_import_lib

When set to non-zero, suppresses creation of a corresponding Windows static import lib by the
SharedLibrary builder when used with MinGW, Microsoft Visual Studio or Metrowerks. This
also suppresses creation of an export (.exp) file when using Microsoft Visual Studio.

OBJPREFIX

The prefix used for (static) object file names.

OBJSUFFIX

The suffix used for (static) object file names.

P4

The Perforce executable.

P4COM

The command line used to fetch source files from Perforce.

P4COMSTR

The string displayed when fetching a source file from Perforce. If this is not set, then $P4COM (the
command line) is displayed.

P4FLAGS

General options that are passed to Perforce.

PACKAGEROOT

Specifies the directory where all files in resulting archive will be placed if applicable. The default
value is "$NAME-$VERSION".

PACKAGETYPE

Selects the package type to build. Currently these are available:

* msi - Microsoft Installer * rpm - Redhat Package Manger * ipkg - Itsy Package Management
System * tarbz2 - compressed tar * targz - compressed tar * zip - zip file * src_tarbz2 - compressed
tar source * src_targz - compressed tar source * src_zip - zip file source

This may be overridden with the "package_type" command line option.
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PACKAGEVERSION

The version of the package (not the underlying project). This is currently only used by the rpm
packager and should reflect changes in the packaging, not the underlying project code itself.

PCH

The Microsoft Visual C++ precompiled header that will be used when compiling object files. This
variable is ignored by tools other than Microsoft Visual C++. When this variable is defined SCons
will add options to the compiler command line to cause it to use the precompiled header, and will
also set up the dependencies for the PCH file. Example:

env[’PCH’] = ’StdAfx.pch’

PCHCOM

The command line used by the PCH builder to generated a precompiled header.

PCHCOMSTR

The string displayed when generating a precompiled header. If this is not set, then $PCHCOM (the
command line) is displayed.

PCHPDBFLAGS

A construction variable that, when expanded, adds the /yD flag to the command line only if the
$PDB construction variable is set.

PCHSTOP

This variable specifies how much of a source file is precompiled. This variable is ignored by tools
other than Microsoft Visual C++, or when the PCH variable is not being used. When this variable is
define it must be a string that is the name of the header that is included at the end of the precompiled
portion of the source files, or the empty string if the "#pragma hrdstop" construct is being used:

env[’PCHSTOP’] = ’StdAfx.h’

PDB

The Microsoft Visual C++ PDB file that will store debugging information for object files, shared
libraries, and programs. This variable is ignored by tools other than Microsoft Visual C++. When
this variable is defined SCons will add options to the compiler and linker command line to cause
them to generate external debugging information, and will also set up the dependencies for the PDB
file. Example:

env[’PDB’] = ’hello.pdb’

The Visual C++ compiler switch that SCons uses by default to generate PDB information is /Z7.
This works correctly with parallel (-j) builds because it embeds the debug information in the
intermediate object files, as opposed to sharing a single PDB file between multiple object files. This
is also the only way to get debug information embedded into a static library. Using the /Zi instead
may yield improved link-time performance, although parallel builds will no longer work. You can
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generate PDB files with the /Zi switch by overriding the default $CCPDBFLAGS variable; see the
entry for that variable for specific examples.

PDFCOM

A deprecated synonym for $DVIPDFCOM.

PDFLATEX

The pdflatex utility.

PDFLATEXCOM

The command line used to call the pdflatex utility.

PDFLATEXCOMSTR

The string displayed when calling the pdflatex utility. If this is not set, then $PDFLATEXCOM (the
command line) is displayed.

env = Environment(PDFLATEX;COMSTR = "Building $TARGET from LaTeX input $SOURCES")

PDFLATEXFLAGS

General options passed to the pdflatex utility.

PDFPREFIX

The prefix used for PDF file names.

PDFSUFFIX

The suffix used for PDF file names.

PDFTEX

The pdftex utility.

PDFTEXCOM

The command line used to call the pdftex utility.

PDFTEXCOMSTR

The string displayed when calling the pdftex utility. If this is not set, then $PDFTEXCOM (the
command line) is displayed.

env = Environment(PDFTEXCOMSTR = "Building $TARGET from TeX input $SOURCES")

PDFTEXFLAGS

General options passed to the pdftex utility.

PKGCHK

On Solaris systems, the package-checking program that will be used (along with $PKGINFO) to
look for installed versions of the Sun PRO C++ compiler. The default is /usr/sbin/pgkchk.
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PKGINFO

On Solaris systems, the package information program that will be used (along with $PKGCHK) to
look for installed versions of the Sun PRO C++ compiler. The default is pkginfo.

PLATFORM

The name of the platform used to create the Environment. If no platform is specified when the
Environment is created, scons autodetects the platform.

env = Environment(tools = [])
if env[’PLATFORM’] == ’cygwin’:

Tool(’mingw’)(env)
else:

Tool(’msvc’)(env)

PRINT_CMD_LINE_FUNC

A Python function used to print the command lines as they are executed (assuming command
printing is not disabled by the -q or -s options or their equivalents). The function should take four
arguments: s, the command being executed (a string), target, the target being built (file node, list,
or string name(s)), source, the source(s) used (file node, list, or string name(s)), and env, the
environment being used.

The function must do the printing itself. The default implementation, used if this variable is not set
or is None, is:

def print_cmd_line(s, target, source, env):
sys.stdout.write(s + "\n")

Here’s an example of a more interesting function:

def print_cmd_line(s, target, source, env):
sys.stdout.write("Building %s -> %s...\n" %
(’ and ’.join([str(x) for x in source]),
’ and ’.join([str(x) for x in target])))

env=Environment(PRINT_CMD_LINE_FUNC=print_cmd_line)
env.Program(’foo’, ’foo.c’)

This just prints "Building targetname from sourcename..." instead of the actual commands.
Such a function could also log the actual commands to a log file, for example.

PROGPREFIX

The prefix used for executable file names.

PROGSUFFIX

The suffix used for executable file names.

PSCOM

The command line used to convert TeX DVI files into a PostScript file.
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PSCOMSTR

The string displayed when a TeX DVI file is converted into a PostScript file. If this is not set, then
$PSCOM (the command line) is displayed.

PSPREFIX

The prefix used for PostScript file names.

PSSUFFIX

The prefix used for PostScript file names.

QT_AUTOSCAN

Turn off scanning for mocable files. Use the Moc Builder to explicitely specify files to run moc on.

QT_BINPATH

The path where the qt binaries are installed. The default value is ’$QTDIR/bin’.

QT_CPPPATH

The path where the qt header files are installed. The default value is ’$QTDIR/include’. Note: If you
set this variable to None, the tool won’t change the $CPPPATH construction variable.

QT_DEBUG

Prints lots of debugging information while scanning for moc files.

QT_LIB

Default value is ’qt’. You may want to set this to ’qt-mt’. Note: If you set this variable to None, the
tool won’t change the $LIBS variable.

QT_LIBPATH

The path where the qt libraries are installed. The default value is ’$QTDIR/lib’. Note: If you set this
variable to None, the tool won’t change the $LIBPATH construction variable.

QT_MOC

Default value is ’$QT_BINPATH/moc’.

QT_MOCCXXPREFIX

Default value is ”. Prefix for moc output files, when source is a cxx file.

QT_MOCCXXSUFFIX

Default value is ’.moc’. Suffix for moc output files, when source is a cxx file.

QT_MOCFROMCXXCOM

Command to generate a moc file from a cpp file.
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QT_MOCFROMCXXCOMSTR

The string displayed when generating a moc file from a cpp file. If this is not set, then
$QT_MOCFROMCXXCOM (the command line) is displayed.

QT_MOCFROMCXXFLAGS

Default value is ’-i’. These flags are passed to moc, when moccing a C++ file.

QT_MOCFROMHCOM

Command to generate a moc file from a header.

QT_MOCFROMHCOMSTR

The string displayed when generating a moc file from a cpp file. If this is not set, then
$QT_MOCFROMHCOM (the command line) is displayed.

QT_MOCFROMHFLAGS

Default value is ”. These flags are passed to moc, when moccing a header file.

QT_MOCHPREFIX

Default value is ’moc_’. Prefix for moc output files, when source is a header.

QT_MOCHSUFFIX

Default value is ’$CXXFILESUFFIX’. Suffix for moc output files, when source is a header.

QT_UIC

Default value is ’$QT_BINPATH/uic’.

QT_UICCOM

Command to generate header files from .ui files.

QT_UICCOMSTR

The string displayed when generating header files from .ui files. If this is not set, then
$QT_UICCOM (the command line) is displayed.

QT_UICDECLFLAGS

Default value is ”. These flags are passed to uic, when creating a a h file from a .ui file.

QT_UICDECLPREFIX

Default value is ”. Prefix for uic generated header files.

QT_UICDECLSUFFIX

Default value is ’.h’. Suffix for uic generated header files.

QT_UICIMPLFLAGS

Default value is ”. These flags are passed to uic, when creating a cxx file from a .ui file.
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QT_UICIMPLPREFIX

Default value is ’uic_’. Prefix for uic generated implementation files.

QT_UICIMPLSUFFIX

Default value is ’$CXXFILESUFFIX’. Suffix for uic generated implementation files.

QT_UISUFFIX

Default value is ’.ui’. Suffix of designer input files.

QTDIR

The qt tool tries to take this from os.environ. It also initializes all QT_* construction variables listed
below. (Note that all paths are constructed with python’s os.path.join() method, but are listed here
with the ’/’ separator for easier reading.) In addition, the construction environment variables
$CPPPATH, $LIBPATH and $LIBS may be modified and the variables PROGEMITTER,
SHLIBEMITTER and LIBEMITTER are modified. Because the build-performance is affected
when using this tool, you have to explicitly specify it at Environment creation:

Environment(tools=[’default’,’qt’])

The qt tool supports the following operations:

Automatic moc file generation from header files. You do not have to specify moc files explicitly, the
tool does it for you. However, there are a few preconditions to do so: Your header file must have the
same filebase as your implementation file and must stay in the same directory. It must have one of
the suffixes .h, .hpp, .H, .hxx, .hh. You can turn off automatic moc file generation by setting
QT_AUTOSCAN to 0. See also the corresponding builder method .B Moc()

Automatic moc file generation from cxx files. As stated in the qt documentation, include the moc file
at the end of the cxx file. Note that you have to include the file, which is generated by the
transformation ${QT_MOCCXXPREFIX}<basename>${QT_MOCCXXSUFFIX}, by default
<basename>.moc. A warning is generated after building the moc file, if you do not include the
correct file. If you are using VariantDir, you may need to specify duplicate=1. You can turn off
automatic moc file generation by setting QT_AUTOSCAN to 0. See also the corresponding Moc

builder method.

Automatic handling of .ui files. The implementation files generated from .ui files are handled much
the same as yacc or lex files. Each .ui file given as a source of Program, Library or SharedLibrary
will generate three files, the declaration file, the implementation file and a moc file. Because there
are also generated headers, you may need to specify duplicate=1 in calls to VariantDir. See also the
corresponding Uic builder method.

RANLIB

The archive indexer.
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RANLIBCOM

The command line used to index a static library archive.

RANLIBCOMSTR

The string displayed when a static library archive is indexed. If this is not set, then $RANLIBCOM
(the command line) is displayed.

env = Environment(RANLIBCOMSTR = "Indexing $TARGET")

RANLIBFLAGS

General options passed to the archive indexer.

RC

The resource compiler used to build a Microsoft Visual C++ resource file.

RCCOM

The command line used to build a Microsoft Visual C++ resource file.

RCCOMSTR

The string displayed when invoking the resource compiler to build a Microsoft Visual C++ resource
file. If this is not set, then $RCCOM (the command line) is displayed.

RCFLAGS

The flags passed to the resource compiler by the RES builder.

RCINCFLAGS

An automatically-generated construction variable containing the command-line options for
specifying directories to be searched by the resource compiler. The value of $RCINCFLAGS is
created by appending $RCINCPREFIX and $RCINCSUFFIX to the beginning and end of each
directory in $CPPPATH.

RCINCPREFIX

The prefix (flag) used to specify an include directory on the resource compiler command line. This
will be appended to the beginning of each directory in the $CPPPATH construction variable when
the $RCINCFLAGS variable is expanded.

RCINCSUFFIX

The suffix used to specify an include directory on the resource compiler command line. This will be
appended to the end of each directory in the $CPPPATH construction variable when the
$RCINCFLAGS variable is expanded.

RCS

The RCS executable. Note that this variable is not actually used for the command to fetch source
files from RCS; see the $RCS_CO construction variable, below.
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RCS_CO

The RCS "checkout" executable, used to fetch source files from RCS.

RCS_COCOM

The command line used to fetch (checkout) source files from RCS.

RCS_COCOMSTR

The string displayed when fetching a source file from RCS. If this is not set, then $RCS_COCOM
(the command line) is displayed.

RCS_COFLAGS

Options that are passed to the $RCS_CO command.

RDirs

A function that converts a string into a list of Dir instances by searching the repositories.

REGSVR

The program used on Windows systems to register a newly-built DLL library whenever the
SharedLibrary builder is passed a keyword argument of register=1.

REGSVRCOM

The command line used on Windows systems to register a newly-built DLL library whenever the
SharedLibrary builder is passed a keyword argument of register=1.

REGSVRCOMSTR

The string displayed when registering a newly-built DLL file. If this is not set, then
$REGSVRCOM (the command line) is displayed.

REGSVRFLAGS

Flags passed to the DLL registration program on Windows systems when a newly-built DLL library
is registered. By default, this includes the /s that prevents dialog boxes from popping up and
requiring user attention.

RMIC

The Java RMI stub compiler.

RMICCOM

The command line used to compile stub and skeleton class files from Java classes that contain RMI
implementations. Any options specified in the $RMICFLAGS construction variable are included on
this command line.

RMICCOMSTR

The string displayed when compiling stub and skeleton class files from Java classes that contain
RMI implementations. If this is not set, then $RMICCOM (the command line) is displayed.

env = Environment(RMICCOMSTR = "Generating stub/skeleton class files $TARGETS from $SOURCES")
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RMICFLAGS

General options passed to the Java RMI stub compiler.

_RPATH

An automatically-generated construction variable containing the rpath flags to be used when linking
a program with shared libraries. The value of $_RPATH is created by appending $RPATHPREFIX
and $RPATHSUFFIX to the beginning and end of each directory in $RPATH.

RPATH

A list of paths to search for shared libraries when running programs. Currently only used in the
GNU (gnulink), IRIX (sgilink) and Sun (sunlink) linkers. Ignored on platforms and toolchains that
don’t support it. Note that the paths added to RPATH are not transformed by scons in any way: if
you want an absolute path, you must make it absolute yourself.

RPATHPREFIX

The prefix used to specify a directory to be searched for shared libraries when running programs.
This will be appended to the beginning of each directory in the $RPATH construction variable when
the $_RPATH variable is automatically generated.

RPATHSUFFIX

The suffix used to specify a directory to be searched for shared libraries when running programs.
This will be appended to the end of each directory in the $RPATH construction variable when the
$_RPATH variable is automatically generated.

RPCGEN

The RPC protocol compiler.

RPCGENCLIENTFLAGS

Options passed to the RPC protocol compiler when generating client side stubs. These are in
addition to any flags specified in the $RPCGENFLAGS construction variable.

RPCGENFLAGS

General options passed to the RPC protocol compiler.

RPCGENHEADERFLAGS

Options passed to the RPC protocol compiler when generating a header file. These are in addition to
any flags specified in the $RPCGENFLAGS construction variable.

RPCGENSERVICEFLAGS

Options passed to the RPC protocol compiler when generating server side stubs. These are in
addition to any flags specified in the $RPCGENFLAGS construction variable.

RPCGENXDRFLAGS

Options passed to the RPC protocol compiler when generating XDR routines. These are in addition
to any flags specified in the $RPCGENFLAGS construction variable.
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SCANNERS

A list of the available implicit dependency scanners. New file scanners may be added by appending
to this list, although the more flexible approach is to associate scanners with a specific Builder. See
the sections "Builder Objects" and "Scanner Objects," below, for more information.

SCCS

The SCCS executable.

SCCSCOM

The command line used to fetch source files from SCCS.

SCCSCOMSTR

The string displayed when fetching a source file from a CVS repository. If this is not set, then
$SCCSCOM (the command line) is displayed.

SCCSFLAGS

General options that are passed to SCCS.

SCCSGETFLAGS

Options that are passed specifically to the SCCS "get" subcommand. This can be set, for example,
to -e to check out editable files from SCCS.

SCONS_HOME

The (optional) path to the SCons library directory, initialized from the external environment. If set,
this is used to construct a shorter and more efficient search path in the $MSVSSCONS command
line executed from Microsoft Visual Studio project files.

SHCC

The C compiler used for generating shared-library objects.

SHCCCOM

The command line used to compile a C source file to a shared-library object file. Any options
specified in the $SHCFLAGS, $SHCCFLAGS and $CPPFLAGS construction variables are
included on this command line.

SHCCCOMSTR

The string displayed when a C source file is compiled to a shared object file. If this is not set, then
$SHCCCOM (the command line) is displayed.

env = Environment(SHCCCOMSTR = "Compiling shared object $TARGET")

SHCCFLAGS

Options that are passed to the C and C++ compilers to generate shared-library objects.

SHCFLAGS

Options that are passed to the C compiler (only; not C++) to generate shared-library objects.
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SHCXX

The C++ compiler used for generating shared-library objects.

SHCXXCOM

The command line used to compile a C++ source file to a shared-library object file. Any options
specified in the $SHCXXFLAGS and $CPPFLAGS construction variables are included on this
command line.

SHCXXCOMSTR

The string displayed when a C++ source file is compiled to a shared object file. If this is not set,
then $SHCXXCOM (the command line) is displayed.

env = Environment(SHCXXCOMSTR = "Compiling shared object $TARGET")

SHCXXFLAGS

Options that are passed to the C++ compiler to generate shared-library objects.

SHELL

A string naming the shell program that will be passed to the $SPAWN function. See the $SPAWN
construction variable for more information.

SHF77

The Fortran 77 compiler used for generating shared-library objects. You should normally set the
$SHFORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You
only need to set $SHF77 if you need to use a specific compiler or compiler version for Fortran 77
files.

SHF77COM

The command line used to compile a Fortran 77 source file to a shared-library object file. You only
need to set $SHF77COM if you need to use a specific command line for Fortran 77 files. You
should normally set the $SHFORTRANCOM variable, which specifies the default command line
for all Fortran versions.

SHF77COMSTR

The string displayed when a Fortran 77 source file is compiled to a shared-library object file. If this
is not set, then $SHF77COM or $SHFORTRANCOM (the command line) is displayed.

SHF77FLAGS

Options that are passed to the Fortran 77 compiler to generated shared-library objects. You only
need to set $SHF77FLAGS if you need to define specific user options for Fortran 77 files. You
should normally set the $SHFORTRANFLAGS variable, which specifies the user-specified options
passed to the default Fortran compiler for all Fortran versions.

SHF77PPCOM

The command line used to compile a Fortran 77 source file to a shared-library object file after first
running the file through the C preprocessor. Any options specified in the $SHF77FLAGS and
$CPPFLAGS construction variables are included on this command line. You only need to set

181



Appendix A. Construction Variables

$SHF77PPCOM if you need to use a specific C-preprocessor command line for Fortran 77 files.
You should normally set the $SHFORTRANPPCOM variable, which specifies the default
C-preprocessor command line for all Fortran versions.

SHF77PPCOMSTR

The string displayed when a Fortran 77 source file is compiled to a shared-library object file after
first running the file through the C preprocessor. If this is not set, then $SHF77PPCOM or
$SHFORTRANPPCOM (the command line) is displayed.

SHF90

The Fortran 90 compiler used for generating shared-library objects. You should normally set the
$SHFORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You
only need to set $SHF90 if you need to use a specific compiler or compiler version for Fortran 90
files.

SHF90COM

The command line used to compile a Fortran 90 source file to a shared-library object file. You only
need to set $SHF90COM if you need to use a specific command line for Fortran 90 files. You
should normally set the $SHFORTRANCOM variable, which specifies the default command line
for all Fortran versions.

SHF90COMSTR

The string displayed when a Fortran 90 source file is compiled to a shared-library object file. If this
is not set, then $SHF90COM or $SHFORTRANCOM (the command line) is displayed.

SHF90FLAGS

Options that are passed to the Fortran 90 compiler to generated shared-library objects. You only
need to set $SHF90FLAGS if you need to define specific user options for Fortran 90 files. You
should normally set the $SHFORTRANFLAGS variable, which specifies the user-specified options
passed to the default Fortran compiler for all Fortran versions.

SHF90PPCOM

The command line used to compile a Fortran 90 source file to a shared-library object file after first
running the file through the C preprocessor. Any options specified in the $SHF90FLAGS and
$CPPFLAGS construction variables are included on this command line. You only need to set
$SHF90PPCOM if you need to use a specific C-preprocessor command line for Fortran 90 files.
You should normally set the $SHFORTRANPPCOM variable, which specifies the default
C-preprocessor command line for all Fortran versions.

SHF90PPCOMSTR

The string displayed when a Fortran 90 source file is compiled to a shared-library object file after
first running the file through the C preprocessor. If this is not set, then $SHF90PPCOM or
$SHFORTRANPPCOM (the command line) is displayed.

SHF95

The Fortran 95 compiler used for generating shared-library objects. You should normally set the
$SHFORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You
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only need to set $SHF95 if you need to use a specific compiler or compiler version for Fortran 95
files.

SHF95COM

The command line used to compile a Fortran 95 source file to a shared-library object file. You only
need to set $SHF95COM if you need to use a specific command line for Fortran 95 files. You
should normally set the $SHFORTRANCOM variable, which specifies the default command line
for all Fortran versions.

SHF95COMSTR

The string displayed when a Fortran 95 source file is compiled to a shared-library object file. If this
is not set, then $SHF95COM or $SHFORTRANCOM (the command line) is displayed.

SHF95FLAGS

Options that are passed to the Fortran 95 compiler to generated shared-library objects. You only
need to set $SHF95FLAGS if you need to define specific user options for Fortran 95 files. You
should normally set the $SHFORTRANFLAGS variable, which specifies the user-specified options
passed to the default Fortran compiler for all Fortran versions.

SHF95PPCOM

The command line used to compile a Fortran 95 source file to a shared-library object file after first
running the file through the C preprocessor. Any options specified in the $SHF95FLAGS and
$CPPFLAGS construction variables are included on this command line. You only need to set
$SHF95PPCOM if you need to use a specific C-preprocessor command line for Fortran 95 files.
You should normally set the $SHFORTRANPPCOM variable, which specifies the default
C-preprocessor command line for all Fortran versions.

SHF95PPCOMSTR

The string displayed when a Fortran 95 source file is compiled to a shared-library object file after
first running the file through the C preprocessor. If this is not set, then $SHF95PPCOM or
$SHFORTRANPPCOM (the command line) is displayed.

SHFORTRAN

The default Fortran compiler used for generating shared-library objects.

SHFORTRANCOM

The command line used to compile a Fortran source file to a shared-library object file.

SHFORTRANCOMSTR

The string displayed when a Fortran source file is compiled to a shared-library object file. If this is
not set, then $SHFORTRANCOM (the command line) is displayed.

SHFORTRANFLAGS

Options that are passed to the Fortran compiler to generate shared-library objects.
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SHFORTRANPPCOM

The command line used to compile a Fortran source file to a shared-library object file after first
running the file through the C preprocessor. Any options specified in the $SHFORTRANFLAGS
and $CPPFLAGS construction variables are included on this command line.

SHFORTRANPPCOMSTR

The string displayed when a Fortran source file is compiled to a shared-library object file after first
running the file throught the C preprocessor. If this is not set, then $SHFORTRANPPCOM (the
command line) is displayed.

SHLIBPREFIX

The prefix used for shared library file names.

SHLIBSUFFIX

The suffix used for shared library file names.

SHLINK

The linker for programs that use shared libraries.

SHLINKCOM

The command line used to link programs using shared libaries.

SHLINKCOMSTR

The string displayed when programs using shared libraries are linked. If this is not set, then
$SHLINKCOM (the command line) is displayed.

env = Environment(SHLINKCOMSTR = "Linking shared $TARGET")

SHLINKFLAGS

General user options passed to the linker for programs using shared libraries. Note that this variable
should not contain -l (or similar) options for linking with the libraries listed in $LIBS, nor -L (or
similar) include search path options that scons generates automatically from $LIBPATH. See
$_LIBFLAGS above, for the variable that expands to library-link options, and $_LIBDIRFLAGS
above, for the variable that expands to library search path options.

SHOBJPREFIX

The prefix used for shared object file names.

SHOBJSUFFIX

The suffix used for shared object file names.

SOURCE

A reserved variable name that may not be set or used in a construction environment. (See "Variable
Substitution," below.)
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SOURCE_URL

The URL (web address) of the location from which the project was retrieved. This is used to fill in
the Source: field in the controlling information for Ipkg and RPM packages.

SOURCES

A reserved variable name that may not be set or used in a construction environment. (See "Variable
Substitution," below.)

SPAWN

A command interpreter function that will be called to execute command line strings. The function
must expect the following arguments:

def spawn(shell, escape, cmd, args, env):

sh is a string naming the shell program to use. escape is a function that can be called to escape
shell special characters in the command line. cmd is the path to the command to be executed. args
is the arguments to the command. env is a dictionary of the environment variables in which the
command should be executed.

SUMMARY

A short summary of what the project is about. This is used to fill in the Summary: field in the
controlling information for Ipkg and RPM packages, and as the Description: field in MSI
packages.

SWIG

The scripting language wrapper and interface generator.

SWIGCFILESUFFIX

The suffix that will be used for intermediate C source files generated by the scripting language
wrapper and interface generator. The default value is _wrap$CFILESUFFIX. By default, this value
is used whenever the -c++ option is not specified as part of the $SWIGFLAGS construction
variable.

SWIGCOM

The command line used to call the scripting language wrapper and interface generator.

SWIGCOMSTR

The string displayed when calling the scripting language wrapper and interface generator. If this is
not set, then $SWIGCOM (the command line) is displayed.

SWIGCXXFILESUFFIX

The suffix that will be used for intermediate C++ source files generated by the scripting language
wrapper and interface generator. The default value is _wrap$CFILESUFFIX. By default, this value
is used whenever the -c++ option is specified as part of the $SWIGFLAGS construction variable.
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SWIGFLAGS

General options passed to the scripting language wrapper and interface generator. This is where you
should set -python, -perl5, -tcl, or whatever other options you want to specify to SWIG. If you
set the -c++ option in this variable, scons will, by default, generate a C++ intermediate source file
with the extension that is specified as the $CXXFILESUFFIX variable.

_SWIGINCFLAGS

An automatically-generated construction variable containing the SWIG command-line options for
specifying directories to be searched for included files. The value of $_SWIGINCFLAGS is created
by appending $SWIGINCPREFIX and $SWIGINCSUFFIX to the beginning and end of each
directory in $SWIGPATH.

SWIGINCPREFIX

The prefix used to specify an include directory on the SWIG command line. This will be appended
to the beginning of each directory in the $SWIGPATH construction variable when the
$_SWIGINCFLAGS variable is automatically generated.

SWIGINCSUFFIX

The suffix used to specify an include directory on the SWIG command line. This will be appended
to the end of each directory in the $SWIGPATH construction variable when the
$_SWIGINCFLAGS variable is automatically generated.

SWIGOUTDIR

Specifies the output directory in which the scripting language wrapper and interface generator
should place generated language-specific files. This will be used by SCons to identify the files that
will be generated by the swig call, and translated into the swig -outdir option on the command
line.

SWIGPATH

The list of directories that the scripting language wrapper and interface generate will search for
included files. The SWIG implicit dependency scanner will search these directories for include files.
The default is to use the same path specified as $CPPPATH.

Don’t explicitly put include directory arguments in SWIGFLAGS; the result will be non-portable
and the directories will not be searched by the dependency scanner. Note: directory names in
SWIGPATH will be looked-up relative to the SConscript directory when they are used in a
command. To force scons to look-up a directory relative to the root of the source tree use #:

env = Environment(SWIGPATH=’#/include’)

The directory look-up can also be forced using the Dir() function:

include = Dir(’include’)
env = Environment(SWIGPATH=include)

186



Appendix A. Construction Variables

The directory list will be added to command lines through the automatically-generated
$_SWIGINCFLAGS construction variable, which is constructed by appending the values of the
$SWIGINCPREFIX and $SWIGINCSUFFIX construction variables to the beginning and end of
each directory in $SWIGPATH. Any command lines you define that need the SWIGPATH directory
list should include $_SWIGINCFLAGS:

env = Environment(SWIGCOM="my_swig -o $TARGET $_SWIGINCFLAGS $SORUCES")

TAR

The tar archiver.

TARCOM

The command line used to call the tar archiver.

TARCOMSTR

The string displayed when archiving files using the tar archiver. If this is not set, then $TARCOM
(the command line) is displayed.

env = Environment(TARCOMSTR = "Archiving $TARGET")

TARFLAGS

General options passed to the tar archiver.

TARGET

A reserved variable name that may not be set or used in a construction environment. (See "Variable
Substitution," below.)

TARGETS

A reserved variable name that may not be set or used in a construction environment. (See "Variable
Substitution," below.)

TARSUFFIX

The suffix used for tar file names.

TEMPFILEPREFIX

The prefix for a temporary file used to execute lines longer than $MAXLINELENGTH. The default
is ’@’. This may be set for toolchains that use other values, such as ’-@’ for the diab compiler or
’-via’ for ARM toolchain.

TEX

The TeX formatter and typesetter.

TEXCOM

The command line used to call the TeX formatter and typesetter.

187



Appendix A. Construction Variables

TEXCOMSTR

The string displayed when calling the TeX formatter and typesetter. If this is not set, then
$TEXCOM (the command line) is displayed.

env = Environment(TEXCOMSTR = "Building $TARGET from TeX input $SOURCES")

TEXFLAGS

General options passed to the TeX formatter and typesetter.

TEXINPUTS

List of directories that the LaTeX programm will search for include directories. The LaTeX implicit
dependency scanner will search these directories for \include and \import files.

TOOLS

A list of the names of the Tool specifications that are part of this construction environment.

VENDOR

The person or organization who supply the packaged software. This is used to fill in the Vendor:
field in the controlling information for RPM packages, and the Manufacturer: field in the
controlling information for MSI packages.

VERSION

The version of the project, specified as a string.

WIN32_INSERT_DEF

A deprecated synonym for $WINDOWS_INSERT_DEF.

WIN32DEFPREFIX

A deprecated synonym for $WINDOWSDEFPREFIX.

WIN32DEFSUFFIX

A deprecated synonym for $WINDOWSDEFSUFFIX.

WIN32EXPPREFIX

A deprecated synonym for $WINDOWSEXPSUFFIX.

WIN32EXPSUFFIX

A deprecated synonym for $WINDOWSEXPSUFFIX.

WINDOWS_INSERT_DEF

When this is set to true, a library build of a Windows shared library (.dllfile) will also build a
corresponding .def file at the same time, if a .def file is not already listed as a build target. The
default is 0 (do not build a .def file).
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WINDOWS_INSERT_MANIFEST

When this is set to true, scons will be aware of the .manifest files generated by Microsoft Visua
C/C++ 8.

WINDOWSDEFPREFIX

The prefix used for Windows .deffile names.

WINDOWSDEFSUFFIX

The suffix used for Windows .def file names.

WINDOWSEXPPREFIX

The prefix used for Windows .exp file names.

WINDOWSEXPSUFFIX

The suffix used for Windows .exp file names.

WINDOWSPROGMANIFESTPREFIX

The prefix used for executable program .manifest files generated by Microsoft Visual C/C++.

WINDOWSPROGMANIFESTSUFFIX

The suffix used for executable program .manifest files generated by Microsoft Visual C/C++.

WINDOWSSHLIBMANIFESTPREFIX

The prefix used for shared library .manifest files generated by Microsoft Visual C/C++.

WINDOWSSHLIBMANIFESTSUFFIX

The suffix used for shared library .manifest files generated by Microsoft Visual C/C++.

X_IPK_DEPENDS

This is used to fill in the Depends: field in the controlling information for Ipkg packages.

X_IPK_DESCRIPTION

This is used to fill in the Description: field in the controlling information for Ipkg packages. The
default value is $SUMMARY\n$DESCRIPTION

X_IPK_MAINTAINER

This is used to fill in the Maintainer: field in the controlling information for Ipkg packages.

X_IPK_PRIORITY

This is used to fill in the Priority: field in the controlling information for Ipkg packages.

X_IPK_SECTION

This is used to fill in the Section: field in the controlling information for Ipkg packages.

189



Appendix A. Construction Variables

X_MSI_LANGUAGE

This is used to fill in the Language: attribute in the controlling information for MSI packages.

X_MSI_LICENSE_TEXT

The text of the software license in RTF format. Carriage return characters will be replaced with the
RTF equivalent \\par.

X_MSI_UPGRADE_CODE

TODO

X_RPM_AUTOREQPROV

This is used to fill in the AutoReqProv: field in the RPM .spec file.

X_RPM_BUILD

internal, but overridable

X_RPM_BUILDREQUIRES

This is used to fill in the BuildRequires: field in the RPM .spec file.

X_RPM_BUILDROOT

internal, but overridable

X_RPM_CLEAN

internal, but overridable

X_RPM_CONFLICTS

This is used to fill in the Conflicts: field in the RPM .spec file.

X_RPM_DEFATTR

This value is used as the default attributes for the files in the RPM package. The default value is
(-,root,root).

X_RPM_DISTRIBUTION

This is used to fill in the Distribution: field in the RPM .spec file.

X_RPM_EPOCH

This is used to fill in the Epoch: field in the controlling information for RPM packages.

X_RPM_EXCLUDEARCH

This is used to fill in the ExcludeArch: field in the RPM .spec file.

X_RPM_EXLUSIVEARCH

This is used to fill in the ExclusiveArch: field in the RPM .spec file.
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X_RPM_GROUP

This is used to fill in the Group: field in the RPM .spec file.

X_RPM_GROUP_lang

This is used to fill in the Group(lang): field in the RPM .spec file. Note that lang is not literal
and should be replaced by the appropriate language code.

X_RPM_ICON

This is used to fill in the Icon: field in the RPM .spec file.

X_RPM_INSTALL

internal, but overridable

X_RPM_PACKAGER

This is used to fill in the Packager: field in the RPM .spec file.

X_RPM_POSTINSTALL

This is used to fill in the %post: section in the RPM .spec file.

X_RPM_POSTUNINSTALL

This is used to fill in the %postun: section in the RPM .spec file.

X_RPM_PREFIX

This is used to fill in the Prefix: field in the RPM .spec file.

X_RPM_PREINSTALL

This is used to fill in the %pre: section in the RPM .spec file.

X_RPM_PREP

internal, but overridable

X_RPM_PREUNINSTALL

This is used to fill in the %preun: section in the RPM .spec file.

X_RPM_PROVIDES

This is used to fill in the Provides: field in the RPM .spec file.

X_RPM_REQUIRES

This is used to fill in the Requires: field in the RPM .spec file.

X_RPM_SERIAL

This is used to fill in the Serial: field in the RPM .spec file.

X_RPM_URL

This is used to fill in the Url: field in the RPM .spec file.
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YACC

The parser generator.

YACCCOM

The command line used to call the parser generator to generate a source file.

YACCCOMSTR

The string displayed when generating a source file using the parser generator. If this is not set, then
$YACCCOM (the command line) is displayed.

env = Environment(YACCCOMSTR = "Yacc’ing $TARGET from $SOURCES")

YACCFLAGS

General options passed to the parser generator. If $YACCFLAGS contains a -d option, SCons
assumes that the call will also create a .h file (if the yacc source file ends in a .y suffix) or a .hpp file
(if the yacc source file ends in a .yy suffix)

YACCHFILESUFFIX

The suffix of the C header file generated by the parser generator when the -d option is used. Note
that setting this variable does not cause the parser generator to generate a header file with the
specified suffix, it exists to allow you to specify what suffix the parser generator will use of its own
accord. The default value is .h.

YACCHXXFILESUFFIX

The suffix of the C++ header file generated by the parser generator when the -d option is used. Note
that setting this variable does not cause the parser generator to generate a header file with the
specified suffix, it exists to allow you to specify what suffix the parser generator will use of its own
accord. The default value is .hpp, except on Mac OS X, where the default is
${TARGET.suffix}.h. because the default bison parser generator just appends .h to the name of
the generated C++ file.

YACCVCGFILESUFFIX

The suffix of the file containing the VCG grammar automaton definition when the --graph= option
is used. Note that setting this variable does not cause the parser generator to generate a VCG file
with the specified suffix, it exists to allow you to specify what suffix the parser generator will use of
its own accord. The default value is .vcg.

ZIP

The zip compression and file packaging utility.

ZIPCOM

The command line used to call the zip utility, or the internal Python function used to create a zip
archive.

ZIPCOMPRESSION

The compression flag from the Python zipfile module used by the internal Python function to
control whether the zip archive is compressed or not. The default value is
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zipfile.ZIP_DEFLATED, which creates a compressed zip archive. This value has no effect when
using Python 1.5.2 or if the zipfile module is otherwise unavailable.

ZIPCOMSTR

The string displayed when archiving files using the zip utility. If this is not set, then $ZIPCOM (the
command line or internal Python function) is displayed.

env = Environment(ZIPCOMSTR = "Zipping $TARGET")

ZIPFLAGS

General options passed to the zip utility.

ZIPSUFFIX

The suffix used for zip file names.
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This appendix contains descriptions of all of the Builders that are potentially available "out of the box" in
this version of SCons.

CFile()

env.CFile()

Builds a C source file given a lex (.l) or yacc (.y) input file. The suffix specified by the
$CFILESUFFIX construction variable (.c by default) is automatically added to the target if it is not
already present. Example:

# builds foo.c
env.CFile(target = ’foo.c’, source = ’foo.l’)
# builds bar.c
env.CFile(target = ’bar’, source = ’bar.y’)

CXXFile()

env.CXXFile()

Builds a C++ source file given a lex (.ll) or yacc (.yy) input file. The suffix specified by the
$CXXFILESUFFIX construction variable (.cc by default) is automatically added to the target if it
is not already present. Example:

# builds foo.cc
env.CXXFile(target = ’foo.cc’, source = ’foo.ll’)
# builds bar.cc
env.CXXFile(target = ’bar’, source = ’bar.yy’)

DVI()

env.DVI()

Builds a .dvi file from a .tex, .ltx or .latex input file. If the source file suffix is .tex, scons
will examine the contents of the file; if the string \documentclass or \documentstyle is found,
the file is assumed to be a LaTeX file and the target is built by invoking the $LATEXCOM
command line; otherwise, the $TEXCOM command line is used. If the file is a LaTeX file, the DVI
builder method will also examine the contents of the .aux file and invoke the $BIBTEX command
line if the string bibdata is found, start $MAKEINDEX to generate an index if a .ind file is
found and will examine the contents .log file and re-run the $LATEXCOM command if the log file
says it is necessary.

The suffix .dvi (hard-coded within TeX itself) is automatically added to the target if it is not
already present. Examples:

# builds from aaa.tex
env.DVI(target = ’aaa.dvi’, source = ’aaa.tex’)
# builds bbb.dvi
env.DVI(target = ’bbb’, source = ’bbb.ltx’)
# builds from ccc.latex
env.DVI(target = ’ccc.dvi’, source = ’ccc.latex’)
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Install()

env.Install()

Installs one or more source files or directories in the specified target, which must be a directory. The
names of the specified source files or directories remain the same within the destination directory.

env.Install(’/usr/local/bin’, source = [’foo’, ’bar’])

InstallAs()

env.InstallAs()

Installs one or more source files or directories to specific names, allowing changing a file or
directory name as part of the installation. It is an error if the target and source arguments list
different numbers of files or directories.

env.InstallAs(target = ’/usr/local/bin/foo’,
source = ’foo_debug’)

env.InstallAs(target = [’../lib/libfoo.a’, ’../lib/libbar.a’],
source = [’libFOO.a’, ’libBAR.a’])

Jar()

env.Jar()

Builds a Java archive (.jar) file from the specified list of sources. Any directories in the source list
will be searched for .class files). Any .java files in the source list will be compiled to .class

files by calling the Java Builder.

If the $JARCHDIR value is set, the jar command will change to the specified directory using the -C
option. If $JARCHDIR is not set explicitly, SCons will use the top of any subdirectory tree in which
Java .class were built by the Java Builder.

If the contents any of the source files begin with the string Manifest-Version, the file is assumed
to be a manifest and is passed to the jar command with the m option set.

env.Jar(target = ’foo.jar’, source = ’classes’)

env.Jar(target = ’bar.jar’,
source = [’bar1.java’, ’bar2.java’])

Java()

env.Java()

Builds one or more Java class files. The sources may be any combination of explicit .java files, or
directory trees which will be scanned for .java files.

SCons will parse each source .java file to find the classes (including inner classes) defined within
that file, and from that figure out the target .class files that will be created. The class files will be
placed underneath the specified target directory.

SCons will also search each Java file for the Java package name, which it assumes can be found on a
line beginning with the string package in the first column; the resulting .class files will be placed
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in a directory reflecting the specified package name. For example, the file Foo.java defining a
single public Foo class and containing a package name of sub.dir will generate a corresponding
sub/dir/Foo.class class file.

Example:

env.Java(target = ’classes’, source = ’src’)
env.Java(target = ’classes’, source = [’src1’, ’src2’])
env.Java(target = ’classes’, source = [’File1.java’, ’File2.java’])

JavaH()

env.JavaH()

Builds C header and source files for implementing Java native methods. The target can be either a
directory in which the header files will be written, or a header file name which will contain all of the
definitions. The source can be the names of .class files, the names of .java files to be compiled
into .class files by calling the Java builder method, or the objects returned from the Java builder
method.

If the construction variable $JAVACLASSDIR is set, either in the environment or in the call to the
JavaH builder method itself, then the value of the variable will be stripped from the beginning of
any .class file names.

Examples:

# builds java_native.h
classes = env.Java(target = ’classdir’, source = ’src’)
env.JavaH(target = ’java_native.h’, source = classes)

# builds include/package_foo.h and include/package_bar.h
env.JavaH(target = ’include’,

source = [’package/foo.class’, ’package/bar.class’])

# builds export/foo.h and export/bar.h
env.JavaH(target = ’export’,

source = [’classes/foo.class’, ’classes/bar.class’],
JAVACLASSDIR = ’classes’)

Library()

env.Library()

A synonym for the StaticLibrary builder method.

LoadableModule()

env.LoadableModule()

On most systems, this is the same as SharedLibrary. On Mac OS X (Darwin) platforms, this
creates a loadable module bundle.
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M4()

env.M4()

Builds an output file from an M4 input file. This uses a default $M4FLAGS value of -E, which
considers all warnings to be fatal and stops on the first warning when using the GNU version of m4.
Example:

env.M4(target = ’foo.c’, source = ’foo.c.m4’)

Moc()

env.Moc()

Builds an output file from a moc input file. Moc input files are either header files or cxx files. This
builder is only available after using the tool ’qt’. See the $QTDIR variable for more information.
Example:

env.Moc(’foo.h’) # generates moc_foo.cc
env.Moc(’foo.cpp’) # generates foo.moc

MSVSProject()

env.MSVSProject()

Builds a Microsoft Visual Studio project file, and by default builds a solution file as well.

This builds a Visual Studio project file, based on the version of Visual Studio that is configured
(either the latest installed version, or the version specified by $MSVS_VERSION in the
Environment constructor). For Visual Studio 6, it will generate a .dsp file. For Visual Studio 7
(.NET) and later versions, it will generate a .vcproj file.

By default, this also generates a solution file for the specified project, a .dsw file for Visual Studio 6
or a .sln file for Visual Studio 7 (.NET). This behavior may be disabled by specifying
auto_build_solution=0 when you call MSVSProject, in which case you presumably want to
build the solution file(s) by calling the MSVSSolution Builder (see below).

It takes several lists of filenames to be placed into the project file. These are currently limited to
srcs, incs, localincs, resources, and misc. These are pretty self-explanatory, but it should
be noted that these lists are added to the $SOURCES construction variable as strings, NOT as
SCons File Nodes. This is because they represent file names to be added to the project file, not the
source files used to build the project file.

The above filename lists are all optional, although at least one must be specified for the resulting
project file to be non-empty.

In addition to the above lists of values, the following values may be specified:

target: The name of the target .dsp or .vcproj file. The correct suffix for the version of Visual
Studio must be used, but the $MSVSPROJECTSUFFIX construction variable will be defined to the
correct value (see example below).
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variant: The name of this particular variant. For Visual Studio 7 projects, this can also be a list of
variant names. These are typically things like "Debug" or "Release", but really can be anything you
want. For Visual Studio 7 projects, they may also specify a target platform separated from the
variant name by a | (vertical pipe) character: Debug|Xbox. The default target platform is Win32.
Multiple calls to MSVSProject with different variants are allowed; all variants will be added to the
project file with their appropriate build targets and sources.

buildtarget: An optional string, node, or list of strings or nodes (one per build variant), to tell the
Visual Studio debugger what output target to use in what build variant. The number of
buildtarget entries must match the number of variant entries.

runfile: The name of the file that Visual Studio 7 and later will run and debug. This appears as the
value of the Output field in the resutling Visual Studio project file. If this is not specified, the
default is the same as the specified buildtarget value.

Example usage:

barsrcs = [’bar.cpp’],
barincs = [’bar.h’],
barlocalincs = [’StdAfx.h’]
barresources = [’bar.rc’,’resource.h’]
barmisc = [’bar_readme.txt’]

dll = env.SharedLibrary(target = ’bar.dll’,
source = barsrcs)

env.MSVSProject(target = ’Bar’ + env[’MSVSPROJECTSUFFIX’],
srcs = barsrcs,
incs = barincs,
localincs = barlocalincs,
resources = barresources,
misc = barmisc,
buildtarget = dll,
variant = ’Release’)

MSVSSolution()

env.MSVSSolution()

Builds a Microsoft Visual Studio solution file.

This builds a Visual Studio solution file, based on the version of Visual Studio that is configured
(either the latest installed version, or the version specified by $MSVS_VERSION in the
construction environment). For Visual Studio 6, it will generate a .dsw file. For Visual Studio 7
(.NET), it will generate a .sln file.

The following values must be specified:
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target: The name of the target .dsw or .sln file. The correct suffix for the version of Visual Studio
must be used, but the value $MSVSSOLUTIONSUFFIX will be defined to the correct value (see
example below).

variant: The name of this particular variant, or a list of variant names (the latter is only supported
for MSVS 7 solutions). These are typically things like "Debug" or "Release", but really can be
anything you want. For MSVS 7 they may also specify target platform, like this "Debug|Xbox".
Default platform is Win32.

projects: A list of project file names, or Project nodes returned by calls to the MSVSProject
Builder, to be placed into the solution file. It should be noted that these file names are NOT added to
the $SOURCES environment variable in form of files, but rather as strings. This is because they
represent file names to be added to the solution file, not the source files used to build the solution
file.

(NOTE: Currently only one project is supported per solution.)

Example Usage:

env.MSVSSolution(target = ’Bar’ + env[’MSVSSOLUTIONSUFFIX’],
projects = [’bar’ + env[’MSVSPROJECTSUFFIX’]],
variant = ’Release’)

Object()

env.Object()

A synonym for the StaticObject builder method.

Package()

env.Package()

Builds software distribution packages. Packages consist of files to install and packaging
information. The former may be specified with the source parameter and may be left out, in which
case the FindInstalledFiles function will collect all files that have an Install or InstallAs
Builder attached. If the target, is not specified it will be deduced from additional information
given to this Builder.

The packaging information is specified with the help of construction variables documented below.
This information is called a tag to stress that some of them can also be attached to files with the Tag
function. The mandatory ones will complain if they were not specified. They vary depending on
chosen target packager.

The target packager may be selected with the "PACKAGETYPE" command line option or with the
$PACKAGETYPE construction variable. Currently the following packagers available:

* msi - Microsoft Installer * rpm - Redhat Package Manger * ipkg - Itsy Package Management
System * tarbz2 - compressed tar * targz - compressed tar * zip - zip file * src_tarbz2 - compressed
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tar source * src_targz - compressed tar source * src_zip - zip file source

An updated list is always available under the "package_type" option when running "scons --help"
on a project that has packaging activated.

env = Environment(tools=[’default’, ’packaging’])
env.Install(’/bin/’, ’my_program’)
env.Package( NAME = ’foo’,

VERSION = ’1.2.3’,
PACKAGEVERSION = 0,
PACKAGETYPE = ’rpm’,
LICENSE = ’gpl’,
SUMMARY = ’balalalalal’,
DESCRIPTION = ’this should be really really long’,
X_RPM_GROUP = ’Application/fu’,
SOURCE_URL = ’http://foo.org/foo-1.2.3.tar.gz’

)

PCH()

env.PCH()

Builds a Microsoft Visual C++ precompiled header. Calling this builder method returns a list of two
targets: the PCH as the first element, and the object file as the second element. Normally the object
file is ignored. This builder method is only provided when Microsoft Visual C++ is being used as
the compiler. The PCH builder method is generally used in conjuction with the PCH construction
variable to force object files to use the precompiled header:

env[’PCH’] = env.PCH(’StdAfx.cpp’)[0]

PDF()

env.PDF()

Builds a .pdf file from a .dvi input file (or, by extension, a .tex, .ltx, or .latex input file).
The suffix specified by the $PDFSUFFIX construction variable (.pdf by default) is added
automatically to the target if it is not already present. Example:

# builds from aaa.tex
env.PDF(target = ’aaa.pdf’, source = ’aaa.tex’)
# builds bbb.pdf from bbb.dvi
env.PDF(target = ’bbb’, source = ’bbb.dvi’)

PostScript()

env.PostScript()

Builds a .ps file from a .dvi input file (or, by extension, a .tex, .ltx, or .latex input file). The
suffix specified by the $PSSUFFIX construction variable (.ps by default) is added automatically to
the target if it is not already present. Example:

# builds from aaa.tex
env.PostScript(target = ’aaa.ps’, source = ’aaa.tex’)
# builds bbb.ps from bbb.dvi
env.PostScript(target = ’bbb’, source = ’bbb.dvi’)
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Program()

env.Program()

Builds an executable given one or more object files or C, C++, D, or Fortran source files. If any C,
C++, D or Fortran source files are specified, then they will be automatically compiled to object files
using the Object builder method; see that builder method’s description for a list of legal source file
suffixes and how they are interpreted. The target executable file prefix (specified by the
$PROGPREFIX construction variable; nothing by default) and suffix (specified by the
$PROGSUFFIX construction variable; by default, .exe on Windows systems, nothing on POSIX
systems) are automatically added to the target if not already present. Example:

env.Program(target = ’foo’, source = [’foo.o’, ’bar.c’, ’baz.f’])

RES()

env.RES()

Builds a Microsoft Visual C++ resource file. This builder method is only provided when Microsoft
Visual C++ or MinGW is being used as the compiler. The .res (or .o for MinGW) suffix is added
to the target name if no other suffix is given. The source file is scanned for implicit dependencies as
though it were a C file. Example:

env.RES(’resource.rc’)

RMIC()

env.RMIC()

Builds stub and skeleton class files for remote objects from Java .class files. The target is a
directory relative to which the stub and skeleton class files will be written. The source can be the
names of .class files, or the objects return from the Java builder method.

If the construction variable $JAVACLASSDIR is set, either in the environment or in the call to the
RMIC builder method itself, then the value of the variable will be stripped from the beginning of any
.class file names.

classes = env.Java(target = ’classdir’, source = ’src’)
env.RMIC(target = ’outdir1’, source = classes)

env.RMIC(target = ’outdir2’,
source = [’package/foo.class’, ’package/bar.class’])

env.RMIC(target = ’outdir3’,
source = [’classes/foo.class’, ’classes/bar.class’],
JAVACLASSDIR = ’classes’)

RPCGenClient()

env.RPCGenClient()

Generates an RPC client stub (_clnt.c) file from a specified RPC (.x) source file. Because rpcgen
only builds output files in the local directory, the command will be executed in the source file’s
directory by default.

# Builds src/rpcif_clnt.c
env.RPCGenClient(’src/rpcif.x’)
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RPCGenHeader()

env.RPCGenHeader()

Generates an RPC header (.h) file from a specified RPC (.x) source file. Because rpcgen only
builds output files in the local directory, the command will be executed in the source file’s directory
by default.

# Builds src/rpcif.h
env.RPCGenHeader(’src/rpcif.x’)

RPCGenService()

env.RPCGenService()

Generates an RPC server-skeleton (_svc.c) file from a specified RPC (.x) source file. Because
rpcgen only builds output files in the local directory, the command will be executed in the source
file’s directory by default.

# Builds src/rpcif_svc.c
env.RPCGenClient(’src/rpcif.x’)

RPCGenXDR()

env.RPCGenXDR()

Generates an RPC XDR routine (_xdr.c) file from a specified RPC (.x) source file. Because
rpcgen only builds output files in the local directory, the command will be executed in the source
file’s directory by default.

# Builds src/rpcif_xdr.c
env.RPCGenClient(’src/rpcif.x’)

SharedLibrary()

env.SharedLibrary()

Builds a shared library (.so on a POSIX system, .dll on Windows) given one or more object files
or C, C++, D or Fortran source files. If any source files are given, then they will be automatically
compiled to object files. The static library prefix and suffix (if any) are automatically added to the
target. The target library file prefix (specified by the $SHLIBPREFIX construction variable; by
default, lib on POSIX systems, nothing on Windows systems) and suffix (specified by the
$SHLIBSUFFIX construction variable; by default, .dll on Windows systems, .so on POSIX
systems) are automatically added to the target if not already present. Example:

env.SharedLibrary(target = ’bar’, source = [’bar.c’, ’foo.o’])

On Windows systems, the SharedLibrary builder method will always build an import (.lib)
library in addition to the shared (.dll) library, adding a .lib library with the same basename if
there is not already a .lib file explicitly listed in the targets.

Any object files listed in the source must have been built for a shared library (that is, using the
SharedObject builder method). scons will raise an error if there is any mismatch.

On Windows systems, specifying register=1 will cause the .dll to be registered after it is built
using REGSVR32. The command that is run ("regsvr32" by default) is determined by $REGSVR
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construction variable, and the flags passed are determined by $REGSVRFLAGS. By default,
$REGSVRFLAGS includes the /s option, to prevent dialogs from popping up and requiring user
attention when it is run. If you change $REGSVRFLAGS, be sure to include the /s option. For
example,

env.SharedLibrary(target = ’bar’,
source = [’bar.cxx’, ’foo.obj’],
register=1)

will register bar.dll as a COM object when it is done linking it.

SharedObject()

env.SharedObject()

Builds an object file for inclusion in a shared library. Source files must have one of the same set of
extensions specified above for the StaticObject builder method. On some platforms building a
shared object requires additional compiler option (e.g. -fPIC for gcc) in addition to those needed to
build a normal (static) object, but on some platforms there is no difference between a shared object
and a normal (static) one. When there is a difference, SCons will only allow shared objects to be
linked into a shared library, and will use a different suffix for shared objects. On platforms where
there is no difference, SCons will allow both normal (static) and shared objects to be linked into a
shared library, and will use the same suffix for shared and normal (static) objects. The target object
file prefix (specified by the $SHOBJPREFIX construction variable; by default, the same as
$OBJPREFIX) and suffix (specified by the $SHOBJSUFFIX construction variable) are
automatically added to the target if not already present. Examples:

env.SharedObject(target = ’ddd’, source = ’ddd.c’)
env.SharedObject(target = ’eee.o’, source = ’eee.cpp’)
env.SharedObject(target = ’fff.obj’, source = ’fff.for’)

Note that the source files will be scanned according to the suffix mappings in the
SourceFileScanner object. See the section "Scanner Objects," below, for a more information.

StaticLibrary()

env.StaticLibrary()

Builds a static library given one or more object files or C, C++, D or Fortran source files. If any
source files are given, then they will be automatically compiled to object files. The static library
prefix and suffix (if any) are automatically added to the target. The target library file prefix
(specified by the $LIBPREFIX construction variable; by default, lib on POSIX systems, nothing
on Windows systems) and suffix (specified by the $LIBSUFFIX construction variable; by default,
.lib on Windows systems, .a on POSIX systems) are automatically added to the target if not
already present. Example:

env.StaticLibrary(target = ’bar’, source = [’bar.c’, ’foo.o’])

Any object files listed in the source must have been built for a static library (that is, using the
StaticObject builder method). scons will raise an error if there is any mismatch.
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StaticObject()

env.StaticObject()

Builds a static object file from one or more C, C++, D, or Fortran source files. Source files must
have one of the following extensions:

.asm assembly language file

.ASM assembly language file

.c C file

.C Windows: C file
POSIX: C++ file

.cc C++ file

.cpp C++ file

.cxx C++ file

.cxx C++ file

.c++ C++ file

.C++ C++ file

.d D file

.f Fortran file

.F Windows: Fortran file
POSIX: Fortran file + C pre-processor

.for Fortran file

.FOR Fortran file

.fpp Fortran file + C pre-processor

.FPP Fortran file + C pre-processor

.m Object C file

.mm Object C++ file

.s assembly language file

.S Windows: assembly language file
POSIX: assembly language file + C pre-processor

.spp assembly language file + C pre-processor

.SPP assembly language file + C pre-processor

The target object file prefix (specified by the $OBJPREFIX construction variable; nothing by
default) and suffix (specified by the $OBJSUFFIX construction variable; .obj on Windows
systems, .o on POSIX systems) are automatically added to the target if not already present.
Examples:

env.StaticObject(target = ’aaa’, source = ’aaa.c’)
env.StaticObject(target = ’bbb.o’, source = ’bbb.c++’)
env.StaticObject(target = ’ccc.obj’, source = ’ccc.f’)

Note that the source files will be scanned according to the suffix mappings in
SourceFileScanner object. See the section "Scanner Objects," below, for a more information.
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Tar()

env.Tar()

Builds a tar archive of the specified files and/or directories. Unlike most builder methods, the Tar
builder method may be called multiple times for a given target; each additional call adds to the list
of entries that will be built into the archive. Any source directories will be scanned for changes to
any on-disk files, regardless of whether or not scons knows about them from other Builder or
function calls.

env.Tar(’src.tar’, ’src’)

# Create the stuff.tar file.
env.Tar(’stuff’, [’subdir1’, ’subdir2’])
# Also add "another" to the stuff.tar file.
env.Tar(’stuff’, ’another’)

# Set TARFLAGS to create a gzip-filtered archive.
env = Environment(TARFLAGS = ’-c -z’)
env.Tar(’foo.tar.gz’, ’foo’)

# Also set the suffix to .tgz.
env = Environment(TARFLAGS = ’-c -z’,

TARSUFFIX = ’.tgz’)
env.Tar(’foo’)

TypeLibrary()

env.TypeLibrary()

Builds a Windows type library (.tlb) file from an input IDL file (.idl). In addition, it will build
the associated inteface stub and proxy source files, naming them according to the base name of the
.idl file. For example,

env.TypeLibrary(source="foo.idl")

Will create foo.tlb, foo.h, foo_i.c, foo_p.c and foo_data.c files.

Uic()

env.Uic()

Builds a header file, an implementation file and a moc file from an ui file. and returns the
corresponding nodes in the above order. This builder is only available after using the tool ’qt’. Note:
you can specify .ui files directly as source files to the Program, Library and SharedLibrary

builders without using this builder. Using this builder lets you override the standard naming
conventions (be careful: prefixes are always prepended to names of built files; if you don’t want
prefixes, you may set them to “). See the $QTDIR variable for more information. Example:

env.Uic(’foo.ui’) # -> [’foo.h’, ’uic_foo.cc’, ’moc_foo.cc’]
env.Uic(target = Split(’include/foo.h gen/uicfoo.cc gen/mocfoo.cc’),

source = ’foo.ui’) # -> [’include/foo.h’, ’gen/uicfoo.cc’, ’gen/mocfoo.cc’]
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Zip()

env.Zip()

Builds a zip archive of the specified files and/or directories. Unlike most builder methods, the Zip
builder method may be called multiple times for a given target; each additional call adds to the list
of entries that will be built into the archive. Any source directories will be scanned for changes to
any on-disk files, regardless of whether or not scons knows about them from other Builder or
function calls.

env.Zip(’src.zip’, ’src’)

# Create the stuff.zip file.
env.Zip(’stuff’, [’subdir1’, ’subdir2’])
# Also add "another" to the stuff.tar file.
env.Zip(’stuff’, ’another’)
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This appendix contains descriptions of all of the Tools modules that are available "out of the box" in this
version of SCons.

386asm

Sets construction variables for the 386ASM assembler for the Phar Lap ETS embedded operating
system.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

aixc++

Sets construction variables for the IMB xlc / Visual Age C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXX, $SHOBJSUFFIX.

aixcc

Sets construction variables for the IBM xlc / Visual Age C compiler.

Sets: $CC, $CCVERSION, $SHCC.

aixf77

Sets construction variables for the IBM Visual Age f77 Fortran compiler.

Sets: $F77, $SHF77.

aixlink

Sets construction variables for the IBM Visual Age linker.

Sets: $LINKFLAGS, $SHLIBSUFFIX, $SHLINKFLAGS.

applelink

Sets construction variables for the Apple linker (similar to the GNU linker).
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Sets: $FRAMEWORKPATHPREFIX, $LDMODULECOM, $LDMODULEFLAGS,
$LDMODULEPREFIX, $LDMODULESUFFIX, $LINKCOM, $SHLINKCOM,
$SHLINKFLAGS, $_FRAMEWORKPATH, $_FRAMEWORKS.

Uses: $FRAMEWORKSFLAGS.

ar

Sets construction variables for the ar library archiver.

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX, $RANLIB, $RANLIBCOM,
$RANLIBFLAGS.

as

Sets construction variables for the as assembler.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

bcc32

Sets construction variables for the bcc32 compiler.

Sets: $CC, $CCCOM, $CCFLAGS, $CFILESUFFIX, $CFLAGS, $CPPDEFPREFIX,
$CPPDEFSUFFIX, $INCPREFIX, $INCSUFFIX, $SHCC, $SHCCCOM, $SHCCFLAGS,
$SHCFLAGS, $SHOBJSUFFIX.

Uses: $_CPPDEFFLAGS, $_CPPINCFLAGS.

BitKeeper

Sets construction variables for the BitKeeper source code control system.

Sets: $BITKEEPER, $BITKEEPERCOM, $BITKEEPERGET, $BITKEEPERGETFLAGS.

Uses: $BITKEEPERCOMSTR.

cc

Sets construction variables for generic POSIX C copmilers.
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Sets: $CC, $CCCOM, $CCFLAGS, $CFILESUFFIX, $CFLAGS, $CPPDEFPREFIX,
$CPPDEFSUFFIX, $FRAMEWORKPATH, $FRAMEWORKS, $INCPREFIX, $INCSUFFIX,
$SHCC, $SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHOBJSUFFIX.

Uses: $PLATFORM.

cvf

Sets construction variables for the Compaq Visual Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM, $FORTRANMODDIR, $FORTRANMODDIRPREFIX,
$FORTRANMODDIRSUFFIX, $FORTRANPPCOM, $OBJSUFFIX, $SHFORTRANCOM,
$SHFORTRANPPCOM.

Uses: $CPPFLAGS, $FORTRANFLAGS, $SHFORTRANFLAGS, $_CPPDEFFLAGS,
$_FORTRANINCFLAGS, $_FORTRANMODFLAG.

CVS

Sets construction variables for the CVS source code management system.

Sets: $CVS, $CVSCOFLAGS, $CVSCOM, $CVSFLAGS.

Uses: $CVSCOMSTR.

cXX

Sets construction variables for generic POSIX C++ compilers.

Sets: $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX, $CXXCOM, $CXXFILESUFFIX,
$CXXFLAGS, $INCPREFIX, $INCSUFFIX, $OBJSUFFIX, $SHCXX, $SHCXXCOM,
$SHCXXFLAGS, $SHOBJSUFFIX.

Uses: $CXXCOMSTR.

default

Sets variables by calling a default list of Tool modules for the platform on which SCons is running.

dmd

Sets construction variables for D language compilers (the Digital Mars D compiler, or GDC).
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dvi

Attaches the DVI builder to the construction environment.

dvipdf

Sets construction variables for the dvipdf utility.

Sets: $DVIPDF, $DVIPDFCOM, $DVIPDFFLAGS.

Uses: $DVIPDFCOMSTR.

dvips

Sets construction variables for the dvips utility.

Sets: $DVIPS, $DVIPSFLAGS, $PSCOM, $PSPREFIX, $PSSUFFIX.

Uses: $PSCOMSTR.

f77

Set construction variables for generic POSIX Fortran 77 compilers.

Sets: $F77, $F77COM, $F77FILESUFFIXES, $F77FLAGS, $F77PPCOM,
$F77PPFILESUFFIXES, $FORTRAN, $FORTRANCOM, $FORTRANFLAGS, $SHF77,
$SHF77COM, $SHF77FLAGS, $SHF77PPCOM, $SHFORTRAN, $SHFORTRANCOM,
$SHFORTRANFLAGS, $SHFORTRANPPCOM, $_F77INCFLAGS.

Uses: $F77COMSTR, $F77PPCOMSTR, $FORTRANCOMSTR, $FORTRANPPCOMSTR,
$SHF77COMSTR, $SHF77PPCOMSTR, $SHFORTRANCOMSTR, $SHFORTRANPPCOMSTR.

f90

Set construction variables for generic POSIX Fortran 90 compilers.

Sets: $F90, $F90COM, $F90FLAGS, $F90PPCOM, $SHF90, $SHF90COM, $SHF90FLAGS,
$SHF90PPCOM, $_F90INCFLAGS.

Uses: $F90COMSTR, $F90PPCOMSTR, $SHF90COMSTR, $SHF90PPCOMSTR.

f95

Set construction variables for generic POSIX Fortran 95 compilers.
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Sets: $F95, $F95COM, $F95FLAGS, $F95PPCOM, $SHF95, $SHF95COM, $SHF95FLAGS,
$SHF95PPCOM, $_F95INCFLAGS.

Uses: $F95COMSTR, $F95PPCOMSTR, $SHF95COMSTR, $SHF95PPCOMSTR.

fortran

Set construction variables for generic POSIX Fortran compilers.

Sets: $FORTRAN, $FORTRANCOM, $FORTRANFLAGS, $SHFORTRAN,
$SHFORTRANCOM, $SHFORTRANFLAGS, $SHFORTRANPPCOM.

Uses: $FORTRANCOMSTR, $FORTRANPPCOMSTR, $SHFORTRANCOMSTR,
$SHFORTRANPPCOMSTR.

g++

Set construction variables for the gXX C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXXFLAGS, $SHOBJSUFFIX.

g77

Set construction variables for the g77 Fortran compiler. Calls the f77 Tool module to set variables.

gas

Sets construction variables for the gas assembler. Calls the as module.

Sets: $AS.

gcc

Set construction variables for the gcc C compiler.

Sets: $CC, $CCVERSION, $SHCCFLAGS.

gnulink

Set construction variables for GNU linker/loader.

Sets: $RPATHPREFIX, $RPATHSUFFIX, $SHLINKFLAGS.
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gs

Set construction variables for Ghostscript.

Sets: $GS, $GSCOM, $GSFLAGS.

Uses: $GSCOMSTR.

hpc++

Set construction variables for the compilers aCC on HP/UX systems.

hpcc

Set construction variables for the aCC on HP/UX systems. Calls the cXX tool for additional
variables.

Sets: $CXX, $CXXVERSION, $SHCXXFLAGS.

hplink

Sets construction variables for the linker on HP/UX systems.

Sets: $LINKFLAGS, $SHLIBSUFFIX, $SHLINKFLAGS.

icc

Sets construction variables for the icc compiler on OS/2 systems.

Sets: $CC, $CCCOM, $CFILESUFFIX, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXXCOM,
$CXXFILESUFFIX, $INCPREFIX, $INCSUFFIX.

Uses: $CCFLAGS, $CFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

icl

Sets construction variables for the Intel C/C++ compiler. Calls the intelc Tool module to set its
variables.

ifl

Sets construction variables for the Intel Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM, $FORTRANPPCOM, $SHFORTRANCOM,
$SHFORTRANPPCOM.
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Uses: $CPPFLAGS, $FORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANINCFLAGS.

ifort

Sets construction variables for newer versions of the Intel Fortran compiler for Linux.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHF90FLAGS,
$SHF95, $SHF95FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

ilink

Sets construction variables for the ilink linker on OS/2 systems.

Sets: $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK,
$LINKCOM, $LINKFLAGS.

ilink32

Sets construction variables for the Borland ilink32 linker.

Sets: $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK,
$LINKCOM, $LINKFLAGS.

install

Sets construction variables for file and directory installation.

Sets: $INSTALL, $INSTALLSTR.

intelc

Sets construction variables for the Intel C/C++ compiler (Linux and Windows, version 7 and later).
Calls the gcc or msvc (on Linux and Windows, respectively) to set underlying variables.

Sets: $AR, $CC, $CXX, $INTEL_C_COMPILER_VERSION, $LINK.

jar

Sets construction variables for the jar utility.

Sets: $JAR, $JARCOM, $JARFLAGS, $JARSUFFIX.
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Uses: $JARCOMSTR.

javac

Sets construction variables for the javac compiler.

Sets: $JAVABOOTCLASSPATH, $JAVAC, $JAVACCOM, $JAVACFLAGS, $JAVACLASSPATH,
$JAVACLASSSUFFIX, $JAVASOURCEPATH, $JAVASUFFIX.

Uses: $JAVACCOMSTR.

javah

Sets construction variables for the javah tool.

Sets: $JAVACLASSSUFFIX, $JAVAH, $JAVAHCOM, $JAVAHFLAGS.

Uses: $JAVACLASSPATH, $JAVAHCOMSTR.

latex

Sets construction variables for the latex utility.

Sets: $LATEX, $LATEXCOM, $LATEXFLAGS.

Uses: $LATEXCOMSTR.

lex

Sets construction variables for the lex lexical analyser.

Sets: $LEX, $LEXCOM, $LEXFLAGS.

Uses: $LEXCOMSTR.

link

Sets construction variables for generic POSIX linkers.

Sets: $LDMODULE, $LDMODULECOM, $LDMODULEFLAGS, $LDMODULEPREFIX,
$LDMODULESUFFIX, $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX,
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$LIBLINKSUFFIX, $LINK, $LINKCOM, $LINKFLAGS, $SHLIBSUFFIX, $SHLINK,
$SHLINKCOM, $SHLINKFLAGS.

Uses: $LDMODULECOMSTR, $LINKCOMSTR, $SHLINKCOMSTR.

linkloc

Sets construction variables for the LinkLoc linker for the Phar Lap ETS embedded operating
system.

Sets: $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK,
$LINKCOM, $LINKFLAGS, $SHLINK, $SHLINKCOM, $SHLINKFLAGS.

Uses: $LINKCOMSTR, $SHLINKCOMSTR.

m4

Sets construction variables for the m4 macro processor.

Sets: $M4, $M4COM, $M4FLAGS.

Uses: $M4COMSTR.

masm

Sets construction variables for the Microsoft assembler.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $ASCOMSTR, $ASPPCOMSTR, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

midl

Sets construction variables for the Microsoft IDL compiler.

Sets: $MIDL, $MIDLCOM, $MIDLFLAGS.

Uses: $MIDLCOMSTR.
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mingw

Sets construction variables for MinGW (Minimal Gnu on Windows).

Sets: $AS, $CC, $CXX, $LDMODULECOM, $LIBPREFIX, $LIBSUFFIX, $OBJSUFFIX, $RC,
$RCCOM, $RCFLAGS, $RCINCFLAGS, $RCINCPREFIX, $RCINCSUFFIX, $SHCCFLAGS,
$SHCXXFLAGS, $SHLINKCOM, $SHLINKFLAGS, $SHOBJSUFFIX,
$WINDOWSDEFPREFIX, $WINDOWSDEFSUFFIX.

Uses: $RCCOMSTR, $SHLINKCOMSTR.

mslib

Sets construction variables for the Microsoft mslib library archiver.

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX.

Uses: $ARCOMSTR.

mslink

Sets construction variables for the Microsoft linker.

Sets: $LDMODULE, $LDMODULECOM, $LDMODULEFLAGS, $LDMODULEPREFIX,
$LDMODULESUFFIX, $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX,
$LIBLINKSUFFIX, $LINK, $LINKCOM, $LINKFLAGS, $REGSVR, $REGSVRCOM,
$REGSVRFLAGS, $SHLINK, $SHLINKCOM, $SHLINKFLAGS, $WIN32DEFPREFIX,
$WIN32DEFSUFFIX, $WIN32EXPPREFIX, $WIN32EXPSUFFIX, $WINDOWSDEFPREFIX,
$WINDOWSDEFSUFFIX, $WINDOWSEXPPREFIX, $WINDOWSEXPSUFFIX,
$WINDOWSPROGMANIFESTPREFIX, $WINDOWSPROGMANIFESTSUFFIX,
$WINDOWSSHLIBMANIFESTPREFIX, $WINDOWSSHLIBMANIFESTSUFFIX,
$WINDOWS_INSERT_DEF.

Uses: $LDMODULECOMSTR, $LINKCOMSTR, $MSVS_IGNORE_IDE_PATHS,
$REGSVRCOMSTR, $SHLINKCOMSTR.

msvc

Sets construction variables for the Microsoft Visual C/C++ compiler.

Sets: $BUILDERS, $CC, $CCCOM, $CCFLAGS, $CCPCHFLAGS, $CCPDBFLAGS,
$CFILESUFFIX, $CFLAGS, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX, $CXXCOM,
$CXXFILESUFFIX, $CXXFLAGS, $INCPREFIX, $INCSUFFIX, $OBJPREFIX, $OBJSUFFIX,
$PCHCOM, $PCHPDBFLAGS, $RC, $RCCOM, $RCFLAGS, $SHCC, $SHCCCOM,
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$SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM, $SHCXXFLAGS, $SHOBJPREFIX,
$SHOBJSUFFIX.

Uses: $CCCOMSTR, $CXXCOMSTR, $SHCCCOMSTR, $SHCXXCOMSTR.

msvs

Sets construction variables for Microsoft Visual Studio.

Sets: $MSVSBUILDCOM, $MSVSCLEANCOM, $MSVSENCODING, $MSVSPROJECTCOM,
$MSVSREBUILDCOM, $MSVSSCONS, $MSVSSCONSCOM, $MSVSSCONSCRIPT,
$MSVSSCONSFLAGS, $MSVSSOLUTIONCOM.

mwcc

Sets construction variables for the Metrowerks CodeWarrior compiler.

Sets: $CC, $CCCOM, $CFILESUFFIX, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX,
$CXXCOM, $CXXFILESUFFIX, $INCPREFIX, $INCSUFFIX, $MWCW_VERSION,
$MWCW_VERSIONS, $SHCC, $SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHCXX,
$SHCXXCOM, $SHCXXFLAGS.

Uses: $CCCOMSTR, $CXXCOMSTR, $SHCCCOMSTR, $SHCXXCOMSTR.

mwld

Sets construction variables for the Metrowerks CodeWarrior linker.

Sets: $AR, $ARCOM, $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX,
$LIBLINKSUFFIX, $LINK, $LINKCOM, $SHLINK, $SHLINKCOM, $SHLINKFLAGS.

nasm

Sets construction variables for the nasm Netwide Assembler.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $ASCOMSTR, $ASPPCOMSTR.

packaging

A framework for building binary and source packages.
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Packaging

Sets construction variables for the Package Builder.

pdf

Sets construction variables for the Portable Document Format builder.

Sets: $PDFPREFIX, $PDFSUFFIX.

pdflatex

Sets construction variables for the pdflatex utility.

Sets: $LATEXRETRIES, $PDFLATEX, $PDFLATEXCOM, $PDFLATEXFLAGS.

Uses: $PDFLATEXCOMSTR.

pdftex

Sets construction variables for the pdftex utility.

Sets: $LATEXRETRIES, $PDFLATEX, $PDFLATEXCOM, $PDFLATEXFLAGS, $PDFTEX,
$PDFTEXCOM, $PDFTEXFLAGS.

Uses: $PDFLATEXCOMSTR, $PDFTEXCOMSTR.

Perforce

Sets construction variables for interacting with the Perforce source code management system.

Sets: $P4, $P4COM, $P4FLAGS.

Uses: $P4COMSTR.

qt

Sets construction variables for building Qt applications.

Sets: $QTDIR, $QT_AUTOSCAN, $QT_BINPATH, $QT_CPPPATH, $QT_LIB, $QT_LIBPATH,
$QT_MOC, $QT_MOCCXXPREFIX, $QT_MOCCXXSUFFIX, $QT_MOCFROMCXXCOM,
$QT_MOCFROMCXXFLAGS, $QT_MOCFROMHCOM, $QT_MOCFROMHFLAGS,
$QT_MOCHPREFIX, $QT_MOCHSUFFIX, $QT_UIC, $QT_UICCOM, $QT_UICDECLFLAGS,

218



Appendix C. Tools

$QT_UICDECLPREFIX, $QT_UICDECLSUFFIX, $QT_UICIMPLFLAGS,
$QT_UICIMPLPREFIX, $QT_UICIMPLSUFFIX, $QT_UISUFFIX.

RCS

Sets construction variables for the interaction with the Revision Control System.

Sets: $RCS, $RCS_CO, $RCS_COCOM, $RCS_COFLAGS.

Uses: $RCS_COCOMSTR.

rmic

Sets construction variables for the rmic utility.

Sets: $JAVACLASSSUFFIX, $RMIC, $RMICCOM, $RMICFLAGS.

Uses: $RMICCOMSTR.

rpcgen

Sets construction variables for building with RPCGEN.

Sets: $RPCGEN, $RPCGENCLIENTFLAGS, $RPCGENFLAGS, $RPCGENHEADERFLAGS,
$RPCGENSERVICEFLAGS, $RPCGENXDRFLAGS.

SCCS

Sets construction variables for interacting with the Source Code Control System.

Sets: $SCCS, $SCCSCOM, $SCCSFLAGS, $SCCSGETFLAGS.

Uses: $SCCSCOMSTR.

sgiar

Sets construction variables for the SGI library archiver.

Sets: $AR, $ARCOMSTR, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX, $SHLINK,
$SHLINKFLAGS.

Uses: $ARCOMSTR, $SHLINKCOMSTR.
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sgic++

Sets construction variables for the SGI C++ compiler.

Sets: $CXX, $CXXFLAGS, $SHCXX, $SHOBJSUFFIX.

sgicc

Sets construction variables for the SGI C compiler.

Sets: $CXX, $SHOBJSUFFIX.

sgilink

Sets construction variables for the SGI linker.

Sets: $LINK, $RPATHPREFIX, $RPATHSUFFIX, $SHLINKFLAGS.

sunar

Sets construction variables for the Sun library archiver.

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX, $SHLINK, $SHLINKCOM,
$SHLINKFLAGS.

Uses: $ARCOMSTR, $SHLINKCOMSTR.

sunc++

Sets construction variables for the Sun C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXX, $SHCXXFLAGS, $SHOBJPREFIX, $SHOBJSUFFIX.

suncc

Sets construction variables for the Sun C compiler.

Sets: $CXX, $SHCCFLAGS, $SHOBJPREFIX, $SHOBJSUFFIX.
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sunlink

Sets construction variables for the Sun linker.

Sets: $RPATHPREFIX, $RPATHSUFFIX, $SHLINKFLAGS.

swig

Sets construction variables for the SWIG interface generator.

Sets: $SWIG, $SWIGCFILESUFFIX, $SWIGCOM, $SWIGCXXFILESUFFIX, $SWIGFLAGS,
$SWIGINCPREFIX, $SWIGINCSUFFIX, $SWIGPATH, $_SWIGINCFLAGS.

Uses: $SWIGCOMSTR.

tar

Sets construction variables for the tar archiver.

Sets: $TAR, $TARCOM, $TARFLAGS, $TARSUFFIX.

Uses: $TARCOMSTR.

tex

Sets construction variables for the TeX formatter and typesetter.

Sets: $BIBTEX, $BIBTEXCOM, $BIBTEXFLAGS, $LATEX, $LATEXCOM, $LATEXFLAGS,
$MAKEINDEX, $MAKEINDEXCOM, $MAKEINDEXFLAGS, $TEX, $TEXCOM,
$TEXFLAGS.

Uses: $BIBTEXCOMSTR, $LATEXCOMSTR, $MAKEINDEXCOMSTR, $TEXCOMSTR.

tlib

Sets construction variables for the Borlan tib library archiver.

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX.

Uses: $ARCOMSTR.
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yacc

Sets construction variables for the yacc parse generator.

Sets: $YACC, $YACCCOM, $YACCFLAGS, $YACCHFILESUFFIX, $YACCHXXFILESUFFIX,
$YACCVCGFILESUFFIX.

Uses: $YACCCOMSTR.

zip

Sets construction variables for the zip archiver.

Sets: $ZIP, $ZIPCOM, $ZIPCOMPRESSION, $ZIPFLAGS, $ZIPSUFFIX.

Uses: $ZIPCOMSTR.
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There is a common set of simple tasks that many build configurations rely on as they become more
complex. Most build tools have special purpose constructs for performing these tasks, but since
SConscript files are Python scripts, you can use more flexible built-in Python services to perform these
tasks. This appendix lists a number of these tasks and how to implement them in Python.

Example D-1. Wildcard globbing to create a list of filenames

import glob
files = glob.glob(wildcard)

Example D-2. Filename extension substitution

import os.path
filename = os.path.splitext(filename)[0]+extension

Example D-3. Appending a path prefix to a list of filenames

import os.path
filenames = [os.path.join(prefix, x) for x in filenames]

or in Python 1.5.2:
import os.path
new_filenames = []
for x in filenames:

new_filenames.append(os.path.join(prefix, x))

Example D-4. Substituting a path prefix with another one

if filename.find(old_prefix) == 0:
filename = filename.replace(old_prefix, new_prefix)

or in Python 1.5.2:
import string
if string.find(filename, old_prefix) == 0:

filename = string.replace(filename, old_prefix, new_prefix)

Example D-5. Filtering a filename list to exclude/retain only a specific set of extensions

import os.path
filenames = [x for x in filenames if os.path.splitext(x)[1] in extensions]

or in Python 1.5.2:
import os.path
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new_filenames = []
for x in filenames:

if os.path.splitext(x)[1] in extensions:
new_filenames.append(x)

Example D-6. The "backtick function": run a shell command and capture the output

import os
output = os.popen(command).read()
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