
SCons User Guide 0.93

Steven Knight

SCons User Guide 0.93
by Steven Knight

Revision 0.93.D001 (2003/10/23 07:52:22) Edition
Published 2003
Copyright © 2003 by Steven Knight

SCons User’s Guide Copyright (c) 2003 Steven Knight

Table of Contents
1. Preface ...1

SCons Principles ...1
Acknowledgements ...1
Contact ...2

2. Simple Builds ..3
The SConstruct File ..3
Making the Output Less Verbose...4
Compiling Multiple Source Files ...4
Keeping SConstruct Files Easy to Read ..5
Keyword Arguments ...6
Compiling Multiple Programs ...6
Sharing Source Files Between Multiple Programs ..7

3. Building and Linking with Libraries..9
Building Libraries...9
Linking with Libraries ...9
Finding Libraries: the LIBPATH Construction Variable...10

4. Dependencies ..11
Source File Signatures..11

MD5 Source File Signatures ..11
Source File Time Stamps..12

Target File Signatures...12
Build Signatures..12
File Contents..13

Implicit Dependencies: The CPPPATHConstruction Variable...............................13
Caching Implicit Dependencies ...15

The --implicit-deps-changed Option ..15
The --implicit-deps-unchanged Option..16

The Ignore Method ...16
The Depends Method...16

5. Construction Environments..19
Multiple Construction Environments ..19
Copying Construction Environments ..20
Fetching Values From a Construction Environment ..21
Modifying a Construction Environment ..22

Replacing Values in a Construction Environment22
Appending to the End of Values in a Construction Environment22
Appending to the Beginning of Values in a Construction Environment

22
6. Default Targets ..25
7. Providing Build Help...27
8. Installing Files in Other Directories ...29

Installing Multiple Files in a Directory ...29
Installing a File Under a Different Name..30
Installing Multiple Files Under Different Names..30

9. Preventing Removal of Targets ..33
10. Hierarchical Builds...35

SConscript Files ..35
Path Names Are Relative to the SConscript Directory.......................................35
Top-Level Path Names in Subsidiary SConscript Files36
Absolute Path Names ..36
Sharing Environments (and Other Variables) Between SConscript Files37

Exporting Variables ..37
Importing Variables..38
Returning Values From an SConscript File...38

iii

11. Separating Source and Build Directories...41
Specifying a Build Directory as Part of an SConscript Call41
Why SCons Duplicates Source Files in a Build Directory41
Telling SCons to Not Duplicate Source Files in the Build Directory...................42
The BuildDir Function ...42
Using BuildDir With an SConscript File ...43

12. Variant Builds ..45
13. Writing Your Own Builders ..47

Writing Builders That Execute External Commands ..47
Attaching a Builder to a Construction Environment ..47
Letting SCons Handle The File Suffixes ..48
Builders That Execute Python Functions..48
Builders That Create Actions Using a Generator ...49
Builders That Modify the Target or Source Lists Using an Emitter50

14. Not Writing a Builder: The CommandBuilder...53
15. Writing Scanners ...55

A Simple Scanner Example...55
16. Building From Code Repositories ...57

The Repository Method ..57
Finding source files in repositories ..57
Finding the SConstruct file in repositories ...58
Finding derived files in repositories..58
Guaranteeing local copies of files ..58

17. Caching Built Files ...61
Specifying the Shared Cache Directory...61
Keeping Build Output Consistent ...61
Not Retrieving Files From a Shared Cache...62
Populating a Shared Cache With Already-Built Files ...62

18. Alias Targets...65

iv

Chapter 1. Preface

Thank you for taking the time to read about SCons. SCons is a next-generation soft-
ware construction tool, or make tool--that is, a software utility for building software
(or other files) and keeping built software up-to-date whenever the underlying input
files change.

The most distinctive thing about SCons is that its configuration files are actually
scripts, written in the Python programming language. This is in contrast to most al-
ternative build tools, which typically invent a new language to configure the build.
SCons still has a learning curve, of course, because you have to know what func-
tions to call to set up your build properly, but the underlying syntax used should be
familiar to anyone who has ever looked at a Python script.

Paradoxically, using Python as the configuration file format makes SCons easier for
non-programmers to learn than the cryptic languages of other build tools, which are
usually invented by programmers for other programmers. This is in no small part
due to the consistency and readability that are built in to Python. It just so happens
that making a real, live scripting language the basis for the configuration files makes
it a snap for more accomplished programmers to do more complicated things with
builds, as necessary.

SCons Principles
There are a few overriding principles we try to live up to in designing and imple-
menting SCons:

Correctness

First and foremost, by default, SCons guarantees a correct build even if it means
sacrificing performance a little. We strive to guarantee the build is correct regard-
less of how the software being built is structured, how it may have been written,
or how unusual the tools are that build it.

Performance

Given that the build is correct, we try to make SCons build software as quickly
as possible. In particular, wherever we may have needed to slow down the de-
fault SCons behavior to guarantee a correct build, we also try to make it easy to
speed up SCons through optimization options that let you trade off guaranteed
correctness in all end cases for a speedier build in the usual cases.

Convenience

SCons tries to do as much for you out of the box as reasonable, including detect-
ing the right tools on your system and using them correctly to build the software.

In a nutshell, we try hard to make SCons just "do the right thing" and build software
correctly, with a minimum of hassles.

Acknowledgements
SCons would not exist without a lot of help from a lot of people, many of whom may
not even be aware that they helped or served as inspiration. So in no particular order,
and at the risk of leaving out someone:

First and foremost, SCons owes a tremendous debt to Bob Sidebotham, the original
author of the classic Perl-based Cons tool which Bob first released to the world back
around 1996. Bob’s work on Cons classic provided the underlying architecture and
model of specifying a build configuration using a real scripting language. My real-
world experience working on Cons informed many of the design decisions in SCons,

1

Chapter 1. Preface

including the improved parallel build support, making Builder objects easily defin-
able by users, and separating the build engine from the wrapping interface.

Greg Wilson was instrumental in getting SCons started as a real project when he
initiated the Software Carpentry design competition in February 2000. Without that
nudge, marrying the advantages of the Cons classic architecture with the readability
of Python might have just stayed no more than a nice idea.

The entire SCons team have been absolutely wonderful to work with, and SCons
would be nowhere near as useful a tool without the energy, enthusiasm and time
people have contributed over the past few years. The "core team" of Chad Austin,
Anthony Roach, Charles Crain, Steve Leblanc, Gary Oerbrunner, Greg Spencer and
Christoph Wiedemann have been great about reviewing my (and other) changes and
catching problems before they get in the code base. Of particular technical note: An-
thony’s outstanding and innovative work on the tasking engine has given SCons a
vastly superior parallel build model; Charles has been the master of the crucial Node
infrastructure; Christoph’s work on the Configure infrastructure has added crucial
Autoconf-like functionality; and Greg has provided excellent support for Microsoft
Visual Studio.

Special thanks to David Snopek for contributing his underlying "Autoscons" code
that formed the basis of Christoph’s work with the Configure functionality. David
was extremely generous in making this code available to SCons, given that he initially
released it under the GPL and SCons is released under a less-restrictive MIT-style
license.

Thanks to Peter Miller for his splendid change management system, Aegis , which
has provided the SCons project with a robust development methodology from day
one, and which showed me how you could integrate incremental regression tests
into a practical development cycle (years before eXtreme Programming arrived on
the scene).

And last, thanks to Guido van Rossum for his elegant scripting language, which is
the basis not only for the SCons implementation, but for the interface itself.

Contact
The best way to contact people involved with SCons, including the author, is through
the SCons mailing lists.

If you want to ask general questions about how to use SCons send email to
scons-users@lists.sourceforge.net .

If you want to contact the SCons development community directly, send email to
scons-devel@lists.sourceforge.net .

If you want to receive announcements about SCons, join the low-volume
scons-announce@lists.sourceforge.net mailing list.

2

Chapter 2. Simple Builds

Here’s the famous "Hello, World!" program in C:

int
main()
{

printf("Hello, world!\n");
}

And here’s how to build it using SCons. Enter the following into a file named
SConstruct :

Program(’hello.c’)

That’s it. Now run the scons command to build the program. On a POSIX-compliant
system like Linux or UNIX, you’ll see something like:

% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cc -c -o hello.o hello.c
cc -o hello hello.o
scons: done building targets.

On a Windows system with the Microsoft Visual C++ compiler, you’ll see something
like:

C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /nologo /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj
scons: done building targets.

First, notice that you only need to specify the name of the source file, and that SCons
deduces the names of the object and executable files correctly from the base of the
source file name.

Second, notice that the same input SConstruct file, without any changes, generates
the correct output file names on both systems: hello.o and hello on POSIX systems,
hello.obj and hello.exe on Windows systems. This is a simple example of how
SCons makes it extremely easy to write portable software builds.

(Note that we won’t provide duplicate side-by-side POSIX and Windows output for
all of the examples in this guide; just keep in mind that, unless otherwise specified,
any of the examples should work equally well on both types of systems.)

The SConstruct File
If you’re used to build systems like Make you’ve already figured out that the
SConstruct file is the SCons equivalent of a Makefile . That is, the SConstruct file
is the input file that SCons reads to control the build.

There is, however, an important difference between an SConstruct file and
a Makefile : the SConstruct file is actually a Python script. If you’re not

3

Chapter 2. Simple Builds

already familiar with Python, don’t worry. This User’s Guide will introduce you
step-by-step to the relatively small amount of Python you’ll need to know to be able
to use SCons effectively. And Python is very easy to learn.

One aspect of using Python as the scripting language is that you can put comments
in your SConstruct file using Python’s commenting convention; that is, everything
between a ’#’ and the end of the line will be ignored:

Arrange to build the "hello" program.
Program(’hello.c’) # "hello.c" is the source file.

You’ll see throughout the remainder of this Guide that being able to use the power of
a real scripting language can greatly simplify the solutions to complex requirements
of real-world builds.

Making the Output Less Verbose
You’ve already seen how SCons prints some messages about what it’s doing, sur-
rounding the actual commands used to build the software:

C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /nologo /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj
scons: done building targets.

These messages emphasize the order in which SCons does its work: the configura-
tion files (generically referred to as SConscript files) are read and executed first, and
only then are the target files built. Among other benefits, these messages help to dis-
tinguish between errors that occur while the configuration files are read, and errors
that occur while targets are being built.

The drawback, of course, is that these messages clutter the output. Fortunately,
they’re easily disabled by using the -Q option when invoking SCons:

C:\>scons -Q
cl /nologo /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj

Because we want this User’s Guide to focus on what SCons is actually doing, we’re
going use the -Q option to remove these messages from the output of all the remain-
ing examples in this Guide.

Compiling Multiple Source Files
You’ve just seen how to configure SCons to compile a program from a single source
file. It’s more common, of course, that you’ll need to build a program from many
input source files, not just one. To do this, you need to put the source files in a Python
list (enclosed in square brackets), like so:

Program([’prog.c’, ’file1.c’, ’file2.c’])

A build of the above example would look like:

4

Chapter 2. Simple Builds

% scons -Q
cc -c -o file1.o file1.c
cc -c -o file2.o file2.c
cc -c -o prog.o prog.c
cc -o prog prog.o file1.o file2.o

Notice that SCons deduces the output program name from the first source file speci-
fied in the list--that is, because the first source file was prog.c , SCons will name the
resulting program prog (or prog.exe on a Windows system). If you want to specify
a different program name, then you slide the list of source files over to the right to
make room for the output program file name. (SCons puts the output file name to the
left of the source file names so that the order mimics that of an assignment statement:
"program = source files".) This makes our example:

Program(’program’, [’main.c’, ’file1.c’, ’file2.c’])

On Linux, a build of this example would look like:

% scons -Q
cc -c -o file1.o file1.c
cc -c -o file2.o file2.c
cc -c -o main.o main.c
cc -o program main.o file1.o file2.o

Or on Windows:

C:\>scons -Q
cl /nologo /c file1.c /Fofile1.obj
cl /nologo /c file2.c /Fofile2.obj
cl /nologo /c main.c /Fomain.obj
link /nologo /OUT:program.exe main.obj file1.obj file2.obj

Keeping SConstruct Files Easy to Read
One drawback to the use of a Python list for source files is that each file name must be
enclosed in quotes (either single quotes or double quotes). This can get cumbersome
and difficult to read when the list of file names is long. Fortunately, SCons and Python
provide a number of ways to make sure that the SConstruct file stays easy to read.

To make long lists of file names easier to deal with, SCons provides a Split function
that takes a quoted list of file names, with the names separated by spaces or other
white-space characters, and turns it into a list of separate file names. Using the Split
function turns the previous example into:

Program(’program’, Split(’main.c file1.c file2.’))

(If you’re already familiar with Python, you’ll have realized that this is similar
to the split() method in the Python standard string module. Unlike the
string.split() method, however, the Split function does not require a string as
input and will wrap up a single non-string object in a list, or return its argument
untouched if it’s already a list. This comes in handy as a way to make sure arbitrary
values can be passed to SCons functions without having to check the type of the
variable by hand.)

5

Chapter 2. Simple Builds

Putting the call to the Split function inside the Program call can also be a little un-
wieldy. A more readable alternative is to assign the output from the Split call to a
variable name, and then use the variable when calling the Program function:

list = Split(’main.c file1.c file2.’)
Program(’program’, list)

Lastly, the Split function doesn’t care how much white space separates the file
names in the quoted string. This allows you to create lists of file names that span
multiple lines, which often makes for easier editing:

list = Split(’main.c
file1.c
file2.c’)

Program(’program’, list)

Keyword Arguments
SCons also allows you to identify the output file and input source files using Python
keyword arguments. The output file is known as the target, and the source file(s) are
known (logically enough) as the source. The Python syntax for this is:

list = Split(’main.c file1.c file2.’)
Program(target = ’program’, source = list)

Because the keywords explicitly identify what each argument is, you can actually
reverse the order if you prefer:

list = Split(’main.c file1.c file2.’)
Program(source = list, target = ’program’)

Whether or not you choose to use keyword arguments to identify the target and
source files, and the order in which you specify them when using keywords, are
purely personal choices; SCons functions the same regardless.

Compiling Multiple Programs
In order to compile multiple programs within the same SConstruct file, simply call
the Program method multiple times, once for each program you need to build:

Program(’foo.c’)
Program(’bar’, [’bar1.c’, ’bar2.c’])

SCons would then build the programs as follows:

% scons -Q
cc -c -o bar1.o bar1.c
cc -c -o bar2.o bar2.c
cc -o bar bar1.o bar2.o
cc -c -o foo.o foo.c
cc -o foo foo.o

6

Chapter 2. Simple Builds

Notice that SCons does not necessarily build the programs in the same order in which
you specify them in the SConstruct file. SCons does, however, recognize that the
individual object files must be built before the resulting program can be built. We’ll
discuss this in greater detail in the "Dependencies" section, below.

Sharing Source Files Between Multiple Programs
It’s common to re-use code by sharing source files between multiple programs. One
way to do this is to create a library from the common source files, which can then
be linked into resulting programs. (Creating libraries is discussed in section XXX,
below.)

A more straightforward, but perhaps less convenient, way to share source files be-
tween multiple programs is simply to include the common files in the lists of source
files for each program:

Program(Split(’foo.c common1.c common2.c’))
Program(’bar’, Split(’bar1.c bar2.c common1.c common2.c’))

SCons recognizes that the object files for the common1.c and common2.c source files
each only need to be built once, even though the resulting object files are each linked
in to both of the resulting executable programs:

% scons -Q
cc -c -o bar1.o bar1.c
cc -c -o bar2.o bar2.c
cc -c -o common1.o common1.c
cc -c -o common2.o common2.c
cc -o bar bar1.o bar2.o common1.o common2.o
cc -c -o foo.o foo.c
cc -o foo foo.o common1.o common2.o

If two or more programs share a lot of common source files, repeating the common
files in the list for each program can be a maintenance problem when you need to
change the list of common files. You can simplify this by creating a separate Python
list to hold the common file names, and concatenating it with other lists using the
Python + operator:

common = [’common1.c’, ’common2.c’]
foo_files = [’foo.c’] + common
bar_files = [’bar1.c’, ’bar2.c’] + common
Program(’foo’, foo_files)
Program(’bar’, bar_files)

This is functionally equivalent to the previous example.

7

Chapter 2. Simple Builds

8

Chapter 3. Building and Linking with Libraries

One of the more useful ways in which you can use multiple construction environ-
ments is to link programs with different sets of libraries.

Building Libraries
You build your own libraries by specifying Library instead of Program :

Library(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])

SCons uses the appropriate library prefix and suffix for your system. So on POSIX or
Linux systems, the above example would build as follows (although ranlib may not
be called on all systems):

% scons -Q
cc -c -o f1.o f1.c
cc -c -o f2.o f2.c
cc -c -o f3.o f3.c
ar r libfoo.a f1.o f2.o f3.o
ranlib libfoo.a

On a Windows system, a build of the above example would look like:

C:\>scons -Q
cl /nologo /c f1.c /Fof1.obj
cl /nologo /c f2.c /Fof2.obj
cl /nologo /c f3.c /Fof3.obj
lib /nologo /OUT:foo.lib f1.obj f2.obj f3.obj

The rules for the target name of the library are similar to those for programs: if you
don’t explicitly specify a target library name, SCons will deduce one from the name
of the first source file specified, and SCons will add an appropriate file prefix and
suffix if you leave them off.

Linking with Libraries
Usually, you build a library because you want to link it with one or more programs.
You link libraries with a program by specifying the libraries in the LIBS construction
variable, and by specifying the directory in which the library will be found in the
LIBPATH construction variable: env = Environment(LIBS = ’foo’, LIBPATH = ’.’)

Library(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])
Program(’prog.c’, LIBS=’foo’, LIBPATH=’.’)

Notice, of course, that you don’t need to specify a library prefix (like lib) or suffix
(like .a or .lib). SCons uses the correct prefix or suffix for the current system.

On a POSIX or Linux system, a build of the above example would look like:

% scons -Q
cc -c -o f1.o f1.c
cc -c -o f2.o f2.c
cc -c -o f3.o f3.c
ar r libfoo.a f1.o f2.o f3.o

9

Chapter 3. Building and Linking with Libraries

ranlib libfoo.a
cc -c -o prog.o prog.c
cc -o prog prog.o -L. -lfoo

On a Windows system, a build of the above example would look like:

C:\>scons -Q
cl /nologo /c f1.c /Fof1.obj
cl /nologo /c f2.c /Fof2.obj
cl /nologo /c f3.c /Fof3.obj
lib /nologo /OUT:foo.lib f1.obj f2.obj f3.obj
cl /nologo /c prog.c /Foprog.obj
link /nologo /OUT:prog.exe /LIBPATH:. foo.lib prog.obj

As usual, notice that SCons has taken care of constructing the correct command lines
to link with the specified library on each system.

Finding Libraries: the LIBPATH Construction Variable
By default, the linker will only look in certain system-defined directories for
libraries. SCons knows how to look for libraries in directories that you specify with
the LIBPATH construction variable. LIBPATH consists of a list of directory names, like
so:

Program(’prog.c’, LIBS = ’m’,
LIBPATH = [’/usr/lib’, ’/usr/local/lib’])

Using a Python list is preferred because it’s portable across systems. Alternatively,
you could put all of the directory names in a single string, separated by the system-
specific path separator character: a colon on POSIX systems:

LIBPATH = ’/usr/lib:/usr/local/lib’

or a semi-colon on Windows systems:

LIBPATH = ’C:\lib;D:\lib’

When the linker is executed, SCons will create appropriate flags so that the linker will
look for libraries in the same directories as SCons. So on a POSIX or Linux system, a
build of the above example would look like:

% scons -Q
cc -c -o prog.o prog.c
cc -o prog prog.o -L/usr/lib -L/usr/local/lib -lm

On a Windows system, a build of the above example would look like:

C:\>scons -Q
cl /nologo /c prog.c /Foprog.obj

link /nologo /OUT:prog.exe /LIBPATH:\usr\lib /LIBPATH:\usr\local\lib m.lib prog.obj

Note again that SCons has taken care of the system-specific details of creating the
right command-line options.

10

Chapter 4. Dependencies

So far we’ve seen how SCons handles one-time builds. But the real point of a build
tool like SCons is to rebuild only the necessary things when source files change--or,
put another way, SCons should not waste time rebuilding things that have already
been built. You can see this at work simply be re-invoking SCons after building our
simple hello example:

% scons -Q
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q
scons: ‘.’ is up to date.

The second time it is executed, SCons realizes that the hello program is up-to-date
with respect to the current hello.c source file, and avoids rebuilding it. You can see
this more clearly by naming the hello program explicitly on the command line:

% scons -Q hello
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.

Note that SCons reports "...is up to date" only for target files named explicitly
on the command line, to avoid cluttering the output.

Source File Signatures
The other side of avoiding unnecessary rebuilds is the fundamental build tool behav-
ior of rebuilding things when a source file changes, so that the built software is up to
date. SCons keeps track of this through a signature for each source file, and allows
you to configure whether you want to use the source file contents or the modification
time (timestamp) as the signature.

MD5 Source File Signatures
By default, SCons keeps track of whether a source file has changed based on the file’s
contents, not the modification time. This means that you may be surprised by the
default SCons behavior if you are used to the Make convention of forcing a rebuild by
updating the file’s modification time (using the touch command, for example):

% scons -Q hello
cc -c -o hello.o hello.c
cc -o hello hello.o
% touch hello.c
% scons -Q hello
scons: ‘hello’ is up to date.

Even though the file’s modification time has changed, SCons realizes that the contents
of the hello.c file have not changed, and therefore that the hello program need not
be rebuilt. This avoids unnecessary rebuilds when, for example, someone rewrites
the contents of a file without making a change. But if the contents of the file really do
change, then SCons detects the change and rebuilds the program as required:

% scons -Q hello

11

Chapter 4. Dependencies

cc -c -o hello.o hello.c
cc -o hello hello.o
% edit hello.c

[CHANGE THE CONTENTS OF hello.c]
% scons -Q hello
cc -c -o hello.o hello.c
cc -o hello hello.o

Note that you can, if you wish, specify this default behavior (MD5 signatures) explic-
itly using the SourceSignatures function as follows:

Program(’hello.c’)
SourceSignatures(’MD5’)

Source File Time Stamps
If you prefer, you can configure SCons to use the modification time of source files,
not the file contents, when deciding if something needs to be rebuilt. To do this, call
the SourceSignatures function as follows:

Program(’hello.c’)
SourceSignatures(’timestamp’)

This makes SCons act like Make when a file’s modification time is updated (using the
touch command, for example):

% scons -Q hello
cc -c -o hello.o hello.c
cc -o hello hello.o
% touch hello.c
% scons -Q hello
cc -c -o hello.o hello.c
cc -o hello hello.o

Target File Signatures
As you’ve just seen, SCons uses signatures to decide whether a target file is up to date
or must be rebuilt. When a target file depends on another target file, SCons allows
you to separately configure how the signatures of "intermediate" target files are used
when deciding if a dependent target file must be rebuilt.

Build Signatures
Modifying a source file will cause not only its direct target file to be rebuilt, but also
the target file(s) that depend on that direct target file. In our example, changing the
contents of the hello.c file causes the hello.o file to be rebuilt, which in turn causes
the hello program to be rebuilt:

% scons -Q hello
cc -c -o hello.o hello.c
cc -o hello hello.o
% edit hello.c

12

Chapter 4. Dependencies

[CHANGE THE CONTENTS OF hello.c]
% scons -Q hello
cc -c -o hello.o hello.c
cc -o hello hello.o

What’s not obvious, though, is that SCons internally handles the signature of the
target file(s) (hello.o in the above example) differently from the signature of the
source file (hello.c). By default, SCons tracks whether a target file must be rebuilt by
using a build signature that consists of the combined signatures of all the files that
go into making the target file. This is efficient because the accumulated signatures
actually give SCons all of the information it needs to decide if the target file is out of
date.

If you wish, you can specify this default behavior (build signatures) explicitly using
the TargetSignatures function:

Program(’hello.c’)
TargetSignatures(’build’)

File Contents
Sometimes a source file can be changed in such a way that the contents of the rebuilt
target file(s) will be exactly the same as the last time the file was built. If so, then
any other target files that depend on such a built-but-not-changed target file actually
need not be rebuilt. You can make SCons realize that it does not need to rebuild a de-
pendent target file in this situation using the TargetSignatures function as follows:

Program(’hello.c’)
TargetSignatures(’content’)

So if, for example, a user were to only change a comment in a C file, then the rebuilt
hello.o file would be exactly the same as the one previously built (assuming the
compiler doesn’t put any build-specific information in the object file). SCons would
then realize that it would not need to rebuild the hello program as follows:

% scons -Q hello
cc -c -o hello.o hello.c
cc -o hello hello.o
% edit hello.c
[CHANGE A COMMENT IN hello.c]

% scons -Q hello
cc -c -o hello.o hello.c
scons: ‘hello’ is up to date.

In essence, SCons has "short-circuited" any dependent builds when it realizes that
a target file has been rebuilt to exactly the same file as the last build. So config-
ured, SCons does take some extra processing time to scan the contents of the target
(hello.o) file, but this may save time if the rebuild that was avoided would have
been very time-consuming and expensive.

13

Chapter 4. Dependencies

Implicit Dependencies: The CPPPATHConstruction Variable
Now suppose that our "Hello, World!" program actually has a #include line to in-
clude the hello.h file in the compilation:

#include "hello.h"
int
main()
{

printf("Hello, %s!\n", string);
}

And, for completeness, the hello.h file looks like this:

#define string "world"

In this case, we want SCons to recognize that, if the contents of the hello.h file
change, the hello program must be recompiled. To do this, we need to modify the
SConstruct file like so:

Program(’hello.c’, CPPPATH = ’.’)

The CPPPATHvalue tells SCons to look in the current directory (’.’) for any files
included by C source files (.c or .h files). With this assignment in the SConstruct
file:

% scons -Q hello
cc -I. -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.
% edit hello.h

[CHANGE THE CONTENTS OF hello.h]
% scons -Q hello
cc -I. -c -o hello.o hello.c
cc -o hello hello.o

First, notice that SCons added the -I. argument from the CPPPATHvariable so that
the compilation would find the hello.h file in the local directory.

Second, realize that SCons knows that the hello program must be rebuilt because it
scans the contents of the hello.c file for the #include lines that indicate another file
is being included in the compilation. SCons records these as implicit dependencies of
the target file, Consequently, when the hello.h file changes, SCons realizes that the
hello.c file includes it, and rebuilds the resulting hello program that depends on
both the hello.c and hello.h files.

Like the LIBPATH variable, the CPPPATHvariable may be a list of directories, or a
string separated by the system-specific path separate character (’:’ on POSIX/Linux,
’;’ on Windows). Either way, SCons creates the right command-line options so that
the following example:

Program(’hello.c’, CPPPATH = [’include’, ’/home/project/inc’])

Will look like this on POSIX or Linux:

% scons -Q hello
cc -Iinclude -I/home/project/inc -c -o hello.o hello.c

14

Chapter 4. Dependencies

cc -o hello hello.o

And like this on Windows:

C:\>scons -Q hello.exe
cl /nologo /Iinclude /I\home\project\inc /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj

Caching Implicit Dependencies
Scanning each file for #include lines does take some extra processing time. When
you’re doing a full build of a large system, the scanning time is usually a very small
percentage of the overall time spent on the build. You’re most likely to notice the
scanning time, however, when you rebuild all or part of a large system: SCons will
likely take some extra time to "think about" what must be built before it issues the
first build command (or decides that everything is up to date and nothing must be
rebuilt).

In practice, having SCons scan files saves time relative to the amount of potential
time lost to tracking down subtle problems introduced by incorrect dependencies.
Nevertheless, the "waiting time" while SCons scans files can annoy individual de-
velopers waiting for their builds to finish. Consequently, SCons lets you cache the
implicit dependencies that its scanners find, for use by later builds. You can do this
by specifying the --implicit-cache option on the command line:

% scons -Q --implicit-cache hello
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.

If you don’t want to specify --implicit-cache on the command line each time, you
can make it the default behavior for your build by setting the implicit_cache option
in an SConscript file:

SetOption(’implicit_cache’, 1)

The --implicit-deps-changed Option
When using cached implicit dependencies, sometimes you want to "start fresh" and
have SCons re-scan the files for which it previously cached the dependencies. For
example, if you have recently installed a new version of external code that you use for
compilation, the external header files will have changed and the previously-cached
implicit dependencies will be out of date. You can update them by running SCons
with the --implicit-deps-changed option:

% scons -Q --implicit-deps-changed hello
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.

In this case, SCons will re-scan all of the implicit dependencies and cache updated
copies of the information.

15

Chapter 4. Dependencies

The --implicit-deps-unchanged Option
By default when caching dependencies, SCons notices when a file has been modified
and re-scans the file for any updated implicit dependency information. Sometimes,
however, you may want to force SCons to use the cached implicit dependencies, even
if the source files changed. This can speed up a build for example, when you have
changed your source files but know that you haven’t changed any #include lines. In
this case, you can use the --implicit-deps-unchanged option:

% scons -Q --implicit-deps-unchanged hello
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.

In this case, SCons will assume that the cached implicit dependencies are correct and
will not bother to re-scan changed files. For typical builds after small, incremental
changes to source files, the savings may not be very big, but sometimes every bit of
improved performance counts.

The Ignore Method
Sometimes it makes sense to not rebuild a program, even if a dependency file
changes. In this case, you would tell SCons specifically to ignore a dependency as
follows:

hello = Program(’hello.c’)
Ignore(hello, ’hello.h’)

% scons -Q hello
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.
% edit hello.h
[CHANGE THE CONTENTS OF hello.h]

% scons -Q hello
scons: ‘hello’ is up to date.

Now, the above example is a little contrived, because it’s hard to imagine a real-
world situation where you wouldn’t to rebuild hello if the hello.h file changed.
A more realistic example might be if the hello program is being built in a directory
that is shared between multiple systems that have different copies of the stdio.h
include file. In that case, SCons would notice the differences between the different
systems’ copies of stdio.h and would rebuild hello each time you change systems.
You could avoid these rebuilds as follows:

env = Environment()
hello = env.Program(’hello.c’)
env.Ignore(hello, ’/usr/include/stdio.h’)

16

Chapter 4. Dependencies

The Depends Method
On the other hand, sometimes a file depends on another file that is not detected by
an SCons scanner. For this situation, SCons allows you to specific explicitly that one
file depends on another file, and must be rebuilt whenever that file changes. This is
specified using the Depends method:

env = Environment()
hello = env.Program(’hello.c’)
env.Depends(hello, ’other_file’)

% scons -Q hello
cc -c hello.c -o hello.o
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.
% edit other_file

[CHANGE THE CONTENTS OF other_file]
% scons -Q hello
cc -c hello.c -o hello.o
cc -o hello hello.o

17

Chapter 4. Dependencies

18

Chapter 5. Construction Environments

It is rare that all of the software in a large, complicated system needs to be built the
same way. For example, different source files may need different options enabled
on the command line, or different executable programs need to be linked with dif-
ferent libraries. SCons accomodates these different build requirements by allowing
you to create and configure multiple construction environments that control how
the software is built. Technically, a construction environment is an object that has
a number of associated construction variables , each with a name and a value.
(A construction environment also has an attached set of Builder methods, about
which we’ll learn more later.)

A construction environment is created by the Environment method. When you
initialize a construction environment , you can set the values of the environment’s
construction variables to control how a program is built. For example:

env = Environment(CC = ’gcc’,
CCFLAGS = ’-O2’)

env.Program(’foo.c’)

This example, rather than using the default, explicitly specifies use of the GNU C
compiler gcc , and further specifies that the -O2 (optimization level two) flag should
be used when compiling the object file. So a run from this example would look like:

% scons -Q
gcc -O2 -c -o foo.o foo.c
gcc -o foo foo.o

Multiple Construction Environments

The real advantage of construction environments become apparent when you realize
that you can create as many different construction environments as you need, each
tailored to a different way to build some piece of software or other file. If, for example,
we need to build one program with the -O2 flag and another with the -g (debug) flag,
we would do this like so:

opt = Environment(CCFLAGS = ’-O2’)
dbg = Environment(CCFLAGS = ’-g’)

opt.Program(’foo’, ’foo.c’)

dbg.Program(’bar’, ’bar.c’)

% scons -Q
cc -g -c -o bar.o bar.c
cc -o bar bar.o
cc -O2 -c -o foo.o foo.c
cc -o foo foo.o

We can even use multiple construction environments to build multiple versions
of a single program. If you do this by simply trying to use the Program builder with
both environments, though, like this:

opt = Environment(CCFLAGS = ’-O2’)
dbg = Environment(CCFLAGS = ’-g’)

19

Chapter 5. Construction Environments

opt.Program(’foo’, ’foo.c’)

dbg.Program(’foo’, ’foo.c’)

Then SCons generates the following error:

% scons -Q

scons: *** Two different environments were specified for the same target: foo.o
File "SConstruct", line 6, in ?

This is because the two Program calls have each implicitly told SCons to generate an
object file named foo.o , one with a CCFLAGSvalue of -O2 and one with a CCFLAGS
value of -g . SCons can’t just decide that one of them should take precedence over the
other, so it generates the error. To avoid this problem, we must explicitly specify that
each environment compile foo.c to a separately-named object file using the Object
call, like so:

opt = Environment(CCFLAGS = ’-O2’)
dbg = Environment(CCFLAGS = ’-g’)

o = opt.Object(’foo-opt’, ’foo.c’)
opt.Program(o)

d = dbg.Object(’foo-dbg’, ’foo.c’)
dbg.Program(d)

Notice that each call to the Object builder returns a value, an internal SCons object
that represents the object file that will be built. We then use that object as input to the
Program builder. This avoids having to specify explicitly the object file name in mul-
tiple places, and makes for a compact, readable SConstruct file. Our SCons output
then looks like:

% scons -Q
cc -g -c -o foo-dbg.o foo.c
cc -o foo-dbg foo-dbg.o
cc -O2 -c -o foo-opt.o foo.c
cc -o foo-opt foo-opt.o

Copying Construction Environments

Sometimes you want more than one construction environment to share the same
values for one or more variables. Rather than always having to repeat all of the com-
mon variables when you create each construction environment , you can use the
Copy method to create a copy of a construction environment .

Like the Environment call that creates a construction environment , the Copy
method takes construction variable assignments, which will override the values
in the copied construction environment . For example, suppose we want to use
gcc to create three versions of a program, one optimized, one debug, and one with
neither. We could do this by creating a "base" construction environment that sets
CC to gcc , and then creating two copies, one which sets CCFLAGSfor optimization
and the other which sets CCFLAGSfor debugging:

env = Environment(CC = ’gcc’)

20

Chapter 5. Construction Environments

opt = env.Copy(CCFLAGS = ’-O2’)
dbg = env.Copy(CCFLAGS = ’-g’)

env.Program(’foo’, ’foo.c’)

o = opt.Object(’foo-opt’, ’foo.c’)
opt.Program(o)

d = dbg.Object(’foo-dbg’, ’foo.c’)
dbg.Program(d)

Then our output would look like:

% scons -Q
gcc -c -o foo.o foo.c
gcc -o foo foo.o
gcc -g -c -o foo-dbg.o foo.c
gcc -o foo-dbg foo-dbg.o
gcc -O2 -c -o foo-opt.o foo.c
gcc -o foo-opt foo-opt.o

Fetching Values From a Construction Environment

You can fetch individual construction variables using the normal syntax for accessing
individual named items in a Python dictionary:

env = Environment()
print "CC is:", env[’CC’]

This example SConstruct file doesn’t build anything, but because it’s actually a
Python script, it will print the value of CCfor us:

% scons -Q
CC is: cc
scons: ‘.’ is up to date.

A construction environment , however, is actually a Python object with associated
methods, etc. If you want to have direct access to only the dictionary of construction
variables, you can fetch this using the Dictionary method:

env = Environment(FOO = ’foo’, BAR = ’bar’)
dict = env.Dictionary()
for key in [’OBJSUFFIX’, ’LIBSUFFIX’, ’PROGSUFFIX’]:

print "key = %s, value = %s" % (key, dict[key])

This SConstruct file will print the specified dictionary items for us on POSIX systems
as follows:

% scons -Q
key = OBJSUFFIX, value = .o
key = LIBSUFFIX, value = .a
key = PROGSUFFIX, value =
scons: ‘.’ is up to date.

And on Win32:
21

Chapter 5. Construction Environments

C:\>scons -Q
key = OBJSUFFIX, value = .obj
key = LIBSUFFIX, value = .lib
key = PROGSUFFIX, value = .exe
scons: ‘.’ is up to date.

Modifying a Construction Environment

SCons provides various methods that support modifying existing values in a
construction environment .

Replacing Values in a Construction Environment

You can replace existing construction variable values using the Replace method:

env = Environment(CCFLAGS = ’-DDEFINE1’)
env.Program(’foo.c’)
env.Replace(CCFLAGS = ’-DDEFINE2’)
env.Program(’bar.c’)

The replaced value completely overwrites

% scons -Q
cc -DDEFINE2 -c -o bar.o bar.c
cc -o bar bar.o
cc -DDEFINE1 -c -o foo.o foo.c
cc -o foo foo.o

Appending to the End of Values in a Construction Environment

You can append a value to an existing construction variable using the Append
method:

env = Environment(CCFLAGS = ’-DMY_VALUE’)
env.Append(CCFLAGS = ’ -DLAST’)
env.Program(’foo.c’)

% scons -Q
cc -DMY_VALUE -DLAST -c -o foo.o foo.c
cc -o foo foo.o

Appending to the Beginning of Values in a Construction Environment

You can append a value to the beginning an existing construction variable using the
Prepend method:

env = Environment(CCFLAGS = ’-DMY_VALUE’)
env.Prepend(CCFLAGS = ’-DFIRST ’)
env.Program(’foo.c’)

22

Chapter 5. Construction Environments

% scons -Q
cc -DFIRST -DMY_VALUE -c -o foo.o foo.c
cc -o foo foo.o

23

Chapter 5. Construction Environments

24

Chapter 6. Default Targets

As mentioned previously, SCons will build every target in or below the current di-
rectory by default--that is, when you don’t explicitly specify one or more targets on
the command line. Sometimes, however, you may want to specify explicitly that only
certain programs should be built by default. You do this with the Default function:

env = Environment()
hello = env.Program(’hello.c’)
env.Program(’goodbye.c’)
Default(hello)

This SConstruct file knows how to build two programs, hello and goodbye , but
only builds the hello program by default:

% scons -Q
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q
scons: ‘hello’ is up to date.
% scons -Q goodbye
cc -c -o goodbye.o goodbye.c
cc -o goodbye goodbye.o

Note that, even when you use the Default function in your SConstruct file, you can
still explicitly specify the current directory (.) on the command line to tell SCons to
build everything in (or below) the current directory:

% scons -Q .
cc -c -o goodbye.o goodbye.c
cc -o goodbye goodbye.o
cc -c -o hello.o hello.c
cc -o hello hello.o

You can also call the Default function more than once, in which case each call adds
to the list of targets to be built by default:

env = Environment()
prog1 = env.Program(’prog1.c’)
Default(prog1)
prog2 = env.Program(’prog2.c’)
prog3 = env.Program(’prog3.c’)
Default(prog3)

Or you can specify more than one target in a single call to the Default function:

env = Environment()
prog1 = env.Program(’prog1.c’)
prog2 = env.Program(’prog2.c’)
prog3 = env.Program(’prog3.c’)
Default(prog1, prog3)

Either of these last two examples will build only the prog1 and prog3 programs by
default:

% scons -Q
cc -c -o prog1.o prog1.c

25

Chapter 6. Default Targets

cc -o prog1 prog1.o
cc -c -o prog3.o prog3.c
cc -o prog3 prog3.o
% scons -Q .
cc -c -o prog2.o prog2.c
cc -o prog2 prog2.o

Lastly, if for some reason you don’t want any targets built by default, you can use the
Python None variable:

env = Environment()
prog1 = env.Program(’prog1.c’)
prog2 = env.Program(’prog2.c’)
Default(None)

Which would produce build output like:

% scons -Q
scons: *** No targets specified and no Default() targets found. Stop.
% scons -Q .
cc -c -o prog1.o prog1.c
cc -o prog1 prog1.o
cc -c -o prog2.o prog2.c
cc -o prog2 prog2.o

26

Chapter 7. Providing Build Help

It’s often very useful to be able to give users some help that describes the specific
targets, build options, etc., that can be used for your build. SCons provides the Help
function to allow you to specify this help text:

Help("""
Type: ’scons program’ to build the production program,

’scons debug’ to build the debug version.
""")

(Note the above use of the Python triple-quote syntax, which comes in very handy
for specifying multi-line strings like help text.)

When the SConstruct or SConscript files contain such a call to the Help function,
the specified help text will be displayed in response to the SCons -h option:

% scons -h
scons: Reading SConscript files ...
scons: done reading SConscript files.

Type: ’scons program’ to build the production program,
’scons debug’ to build the debug version.

Use scons -H for help about command-line options.

If there is no Help text in the SConstruct or SConscript files, SCons will revert to
displaying its standard list that describes the SCons command-line options. This list
is also always displayed whenever the -H option is used.

27

Chapter 7. Providing Build Help

28

Chapter 8. Installing Files in Other Directories

Once a program is built, it is often appropriate to install it in another directory for
public use. You use the Install method to arrange for a program, or any other file,
to be copied into a destination directory:

env = Environment()
hello = env.Program(’hello.c’)
env.Install(’/usr/bin’, hello)

Note, however, that installing a file is still considered a type of file "build." This is
important when you remember that the default behavior of SCons is to build files in
or below the current directory. If, as in the example above, you are installing files in a
directory outside of the top-level SConstruct file’s directory tree, you must specify
that directory (or a higher directory, such as /) for it to install anything there:

% scons -Q
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q /usr/bin
Install file: "hello" as "/usr/bin/hello"

It can, however, be cumbersome to remember (and type) the specific destination di-
rectory in which the program (or any other file) should be installed. This is an area
where the Alias function comes in handy, allowing you, for example, to create a
pseudo-target named install that can expand to the specified destination directory:

env = Environment()
hello = env.Program(’hello.c’)
env.Install(’/usr/bin’, hello)
env.Alias(’install’, ’/usr/bin’)

This then yields the more natural ability to install the program in its destination as
follows:

% scons -Q
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q install
Install file: "hello" as "/usr/bin/hello"

Installing Multiple Files in a Directory
You can install multiple files into a directory simply by calling the Install function
multiple times:

env = Environment()
hello = env.Program(’hello.c’)
goodbye = env.Program(’goodbye.c’)
env.Install(’/usr/bin’, hello)
env.Install(’/usr/bin’, goodbye)
env.Alias(’install’, ’/usr/bin’)

Or, more succinctly, listing the multiple input files in a list (just like you can do with
any other builder):

29

Chapter 8. Installing Files in Other Directories

env = Environment()
hello = env.Program(’hello.c’)
goodbye = env.Program(’goodbye.c’)
env.Install(’/usr/bin’, [hello, goodbye])
env.Alias(’install’, ’/usr/bin’)

Either of these two examples yields:

% scons -Q install
cc -c -o goodbye.o goodbye.c
cc -o goodbye goodbye.o
Install file: "goodbye" as "/usr/bin/goodbye"
cc -c -o hello.o hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello"

Installing a File Under a Different Name
The Install method preserves the name of the file when it is copied into the desti-
nation directory. If you need to change the name of the file when you copy it, use the
InstallAs function:

env = Environment()
hello = env.Program(’hello.c’)
env.InstallAs(’/usr/bin/hello-new’, hello)
env.Alias(’install’, ’/usr/bin’)

This installs the hello program with the name hello-new as follows:

% scons -Q install
cc -c -o hello.o hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello-new"

Installing Multiple Files Under Different Names
Lastly, if you have multiple files that all need to be installed with different file names,
you can either call the InstallAs function multiple times, or as a shorthand, you can
supply same-length lists for the both the target and source arguments:

env = Environment()
hello = env.Program(’hello.c’)
goodbye = env.Program(’goodbye.c’)
env.InstallAs([’/usr/bin/hello-new’,

’/usr/bin/goodbye-new’],
[hello, goodbye])

env.Alias(’install’, ’/usr/bin’)

In this case, the InstallAs function loops through both lists simultaneously, and
copies each source file into its corresponding target file name:

% scons -Q install
cc -c -o goodbye.o goodbye.c
cc -o goodbye goodbye.o

30

Chapter 8. Installing Files in Other Directories

Install file: "goodbye" as "/usr/bin/goodbye-new"
cc -c -o hello.o hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello-new"

31

Chapter 8. Installing Files in Other Directories

32

Chapter 9. Preventing Removal of Targets

By default, SCons removes targets before building them. Sometimes, however, this is
not what you want. For example, you may want to update a library incrementally,
not by having it deleted and then rebuilt from all of the constituent object files. In
such cases, you can use the Precious method to prevent SCons from removing the
target before it is built:

env = Environment()
lib = env.Library(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])
env.Precious(lib)

Although the output doesn’t look any different, SCons does not, in fact, delete the
target library before rebuilding it:

% scons -Q
cc -c -o f1.o f1.c
cc -c -o f2.o f2.c
cc -c -o f3.o f3.c
ar r libfoo.a f1.o f2.o f3.o
ranlib libfoo.a

SCons will, however, still delete files marked as Precious when the -c option is used.

33

Chapter 9. Preventing Removal of Targets

34

Chapter 10. Hierarchical Builds

The source code for large software projects rarely stays in a single directory, but is
nearly always divided into a hierarchy of directories. Organizing a large software
build using SCons involves creating a hierarchy of build scripts using the SConscript
function.

SConscript Files
As we’ve already seen, the build script at the top of the tree is called SConstruct .
The top-level SConstruct file can use the SConscript function to include other sub-
sidiary scripts in the build. These subsidiary scripts can, in turn, use the SConscript
function to include still other scripts in the build. By convention, these subsidiary
scripts are usually named SConscript . For example, a top-level SConstruct file
might arrange for four subsidiary scripts to be included in the build as follows:

SConscript([’drivers/display/SConscript’,
’drivers/mouse/SConscript’,
’parser/SConscript’,
’utilities/SConscript’])

In this case, the SConstruct file lists all of the SConscript files in the build
explicitly. (Note, however, that not every directory in the tree necessarily has
an SConscript file.) Alternatively, the drivers subdirectory might contain an
intermediate SConscript file, in which case the SConscript call in the top-level
SConstruct file would look like:

SConscript([’drivers/SConscript’,
’parser/SConscript’,
’utilities/SConscript’])

And the subsidiary SConscript file in the drivers subdirectory would look like:

SConscript([’display/SConscript’,
’mouse/SConscript’])

Whether you list all of the SConscript files in the top-level SConstruct file, or place
a subsidiary SConscript file in intervening directories, or use some mix of the two
schemes, is up to you and the needs of your software.

Path Names Are Relative to the SConscript Directory
Subsidiary SConscript files make it easy to create a build hierarchy because all of
the file and directory names in a subsidiary SConscript files are interpreted rela-
tive to the directory in which the SConscript file lives. Typically, this allows the
SConscript file containing the instructions to build a target file to live in the same
directory as the source files from which the target will be built, making it easy to up-
date how the software is built whenever files are added or deleted (or other changes
are made).

For example, suppose we want to build two programs prog1 and prog2 in two sep-
arate directories with the same names as the programs. One typical way to do this
would be with a top-level SConstruct file like this:

SConscript([’prog1/SConscript’,
’prog2/SConscript’])

35

Chapter 10. Hierarchical Builds

And subsidiary SConscript files that look like this:

env = Environment()
env.Program(’prog1’, [’main.c’, ’foo1.c’, ’foo2.c’])

And this:

env = Environment()
env.Program(’prog2’, [’main.c’, ’bar1.c’, ’bar2.c’])

Then, when we run SCons in the top-level directory, our build looks like:

% scons -Q
cc -c -o prog1/foo1.o prog1/foo1.c
cc -c -o prog1/foo2.o prog1/foo2.c
cc -c -o prog1/main.o prog1/main.c
cc -o prog1/prog1 prog1/main.o prog1/foo1.o prog1/foo2.o
cc -c -o prog2/bar1.o prog2/bar1.c
cc -c -o prog2/bar2.o prog2/bar2.c
cc -c -o prog2/main.o prog2/main.c
cc -o prog2/prog2 prog2/main.o prog2/bar1.o prog2/bar2.o

Notice the following: First, you can have files with the same names in multiple di-
rectories, like main.c in the above example. Second, unlike standard recursive use of
Make, SCons stays in the top-level directory (where the SConstruct file lives) and
issues commands that use the path names from the top-level directory to the target
and source files within the hierarchy.

Top-Level Path Names in Subsidiary SConscript Files
If you need to use a file from another directory, it’s sometimes more convenient to
specify the path to a file in another directory from the top-level SConstruct directory,
even when you’re using that file in a subsidiary SConscript file in a subdirectory.
You can tell SCons to interpret a path name as relative to the top-level SConstruct
directory, not the local directory of the SConscript file, by appending a # (hash mark)
to the beginning of the path name:

env = Environment()
env.Program(’prog’, [’main.c’, ’#lib/foo1.c’, ’foo2.c’])

In this example, the lib directory is directly underneath the top-level SConstruct di-
rectory. If the above SConscript file is in a subdirectory named src/prog , the output
would look like:

% scons -Q
cc -c -o lib/foo1.o lib/foo1.c
cc -c -o src/prog/foo2.o src/prog/foo2.c
cc -c -o src/prog/main.o src/prog/main.c
cc -o src/prog/prog src/prog/main.o lib/foo1.o src/prog/foo2.o

(Notice that the lib/foo1.o object file is built in the same directory as its source
file. See section XXX, below, for information about how to build the object file in a
different subdirectory.)

36

Chapter 10. Hierarchical Builds

Absolute Path Names
Of course, you can always specify an absolute path name for a file--for example:

env = Environment()
env.Program(’prog’, [’main.c’, ’/usr/joe/lib/foo1.c’, ’foo2.c’])

Which, when executed, would yield:

% scons -Q
cc -c -o src/prog/foo2.o src/prog/foo2.c
cc -c -o src/prog/main.o src/prog/main.c
cc -c -o /usr/joe/lib/foo1.o /usr/joe/lib/foo1.c
cc -o src/prog/prog src/prog/main.o /usr/joe/lib/foo1.o src/prog/foo2.o

(As was the case with top-relative path names, notice that the /usr/joe/lib/foo1.o
object file is built in the same directory as its source file. See section XXX, below, for
information about how to build the object file in a different subdirectory.)

Sharing Environments (and Other Variables) Between SConscript
Files

In the previous example, each of the subsidiary SConscript files created its own con-
struction environment by calling Environment separately. This obviously works fine,
but if each program must be built with the same construction variables, it’s cumber-
some and error-prone to initialize separate construction environments in the same
way over and over in each subsidiary SConscript file.

SCons supports the ability to export variables from a parent SConscript file to its
subsidiary SConscript files, which allows you to share common initialized values
throughout your build hierarchy.

Exporting Variables
There are two ways to export a variable, such as a construction environment, from an
SConscript file, so that it may be used by other SConscript files. First, you can call
the Export function with a list of variables, or a string white-space separated variable
names. Each call to Export adds one or more variables to a global list of variables that
are available for import by other SConscript files.

env = Environment()
Export(’env’)

You may export more than one variable name at a time:

env = Environment()
debug = ARGUMENTS[’debug’]
Export(’env’, ’debug’)

Because white space is not legal in Python variable names, the Export function will
even automatically split a string into separate names for you:

Export(’env debug’)

Second, you can specify a list of variables to export as a second argument to the
SConscript function call:

37

Chapter 10. Hierarchical Builds

SConscript(’src/SConscript’, ’env’)

Or as the exports keyword argument:

SConscript(’src/SConscript’, exports=’env’)

These calls export the specified variables to only the listed SConscript files. You may,
however, specify more than one SConscript file in a list:

SConscript([’src1/SConscript’,
’src2/SConscript’], exports=’env’)

This is functionally equivalent to calling the SConscript function multiple times
with the same exports argument, one per SConscript file.

Importing Variables
Once a variable has been exported from a calling SConscript file, it may be used in
other SConscript files by calling the Import function:

Import(’env’)
env.Program(’prog’, [’prog.c’])

The Import call makes the env construction environment available to the
SConscript file, after which the variable can be used to build programs, libraries,
etc.

Like the Export function, the Import function can be used with multiple variable
names:

Import(’env’, ’debug’)
env = env.Copy(DEBUG = debug)
env.Program(’prog’, [’prog.c’])

And the Import function will similarly split a string along white-space into separate
variable names:

Import(’env debug’)
env = env.Copy(DEBUG = debug)
env.Program(’prog’, [’prog.c’])

Lastly, as a special case, you may import all of the variables that have been exported
by supplying an asterisk to the Import function:

Import(’*’)
env = env.Copy(DEBUG = debug)
env.Program(’prog’, [’prog.c’])

If you’re dealing with a lot of SConscript files, this can be a lot simpler than keeping
arbitrary lists of imported variables in each file.

38

Chapter 10. Hierarchical Builds

Returning Values From an SConscript File
Sometimes, you would like to be able to use information from a subsidiary
SConscript file in some way. For example, suppose that you want to create one
library from source files scattered throughout a number of subsidiary SConscript
files. You can do this by using the Return function to return values from the
subsidiary SConscript files to the calling file.

If, for example, we have two subdirectories foo and bar that should each contribute
a source file to a Library, what we’d like to be able to do is collect the object files from
the subsidiary SConscript calls like this:

env = Environment()
Export(’env’)
objs = []
for subdir in [’foo’, ’bar’]:

o = SConscript(’%s/SConscript’ % subdir)
objs.append(o)

env.Library(’prog’, objs)

We can do this by using the Return function in the foo/SConscript file like this:

Import(’env’)
obj = env.Object(’foo.c’)
Return(’obj’)

(The corresponding bar/SConscript file should be pretty obvious.) Then when we
run SCons, the object files from the subsidiary subdirectories are all correctly archived
in the desired library:

% scons -Q
cc -c -o bar/bar.o bar/bar.c
cc -c -o foo/foo.o foo/foo.c
ar r libprog.a foo/foo.o bar/bar.o
ranlib libprog.a

39

Chapter 10. Hierarchical Builds

40

Chapter 11. Separating Source and Build Directories

It’s often useful to keep any built files completely separate from the source files. This
is usually done by creating one or more separate build directories that are used to hold
the built objects files, libraries, and executable programs, etc. for a specific flavor of
build. SCons provides two ways to do this, one through the SConscript function that
we’ve already seen, and the second through a more flexible BuildDir function.

Specifying a Build Directory as Part of an SConscript Call
The most straightforward way to establish a build directory uses the fact that the
usual way to set up a build hierarchy is to have an SConscript file in the source
subdirectory. If you then pass a build_dir argument to the SConscript function
call:

SConscript(’src/SConscript’, build_dir=’build’)

SCons will then build all of the files in the build subdirectory:

% ls src
SConscript hello.c
% scons -Q
cc -c -o build/hello.o build/hello.c
cc -o build/hello build/hello.o
% ls build
SConscript hello hello.c hello.o

But wait a minute--what’s going on here? SCons created the object file
build/hello.o in the build subdirectory, as expected. But even though our
hello.c file lives in the src subdirectory, SCons has actually compiled a
build/hello.c file to create the object file.

What’s happened is that SCons has duplicated the hello.c file from the src subdi-
rectory to the build subdirectory, and built the program from there. The next section
explains why SCons does this.

Why SCons Duplicates Source Files in a Build Directory
SCons duplicates source files in build directories because it’s the most straightfor-
ward way to guarantee a correct build regardless of include-file directory paths, relative
references between files, or tool support for putting files in different locations, and the SCons
philosophy is to, by default, guarantee a correct build in all cases.

The most direct reason to duplicate source files in build directories is simply that
some tools (mostly older vesions) are written to only build their output files in the
same directory as the source files. In this case, the choices are either to build the
output file in the source directory and move it to the build directory, or to duplicate
the source files in the build directory.

Additionally, relative references between files can cause problems if we don’t just
duplicate the hierarchy of source files in the build directory. You can see this at work
in use of the C preprocessor #include mechanism with double quotes, not angle
brackets:

#include "file.h"

41

Chapter 11. Separating Source and Build Directories

The de facto standard behavior for most C compilers in this case is to first look in the
same directory as the source file that contains the #include line, then to look in the
directories in the preprocessor search path. Add to this that the SCons implementa-
tion of support for code repositories (described below) means not all of the files will
be found in the same directory hierarchy, and the simplest way to make sure that
the right include file is found is to duplicate the source files into the build directory,
which provides a correct build regardless of the original location(s) of the source files.

Although source-file duplication guarantees a correct build even in these end-cases,
it can usually be safely disabled. The next section describes how you can disable the
duplication of source files in the build directory.

Telling SCons to Not Duplicate Source Files in the Build Directory
In most cases and with most tool sets, SCons can place its target files in a build sub-
directory without duplicating the source files and everything will work just fine. You
can disable the default SCons behavior by specifying duplicate=0 when you call the
SConscript function:

SConscript(’src/SConscript’, build_dir=’build’, duplicate=0)

When this flag is specified, SCons uses the build directory like most people expect--
that is, the output files are placed in the build directory while the source files stay in
the source directory:

% ls src
SConscript
hello.c
% scons -Q
cc -c src/hello.c -o build/hello.o
cc -o build/hello build/hello.o
% ls build
hello
hello.o

The BuildDir Function
Use the BuildDir function to establish that target files should be built in a separate
directory from the source files:

BuildDir(’build’, ’src’)
env = Environment()
env.Program(’build/hello.c’)

Note that when you’re not using an SConscript file in the src subdirectory, you
must actually specify that the program must be built from the build/hello.c file
that SCons will duplicate in the build subdirectory.

When using the BuildDir function directly, SCons still duplicates the source files in
the build directory by default:

% ls src
hello.c
% scons -Q
cc -c -o build/hello.o build/hello.c
cc -o build/hello build/hello.o

42

Chapter 11. Separating Source and Build Directories

% ls build
hello hello.c hello.o

You can specify the same duplicate=0 argument that you can specify for an
SConscript call:

BuildDir(’build’, ’src’, duplicate=0)
env = Environment()
env.Program(’build/hello.c’)

In which case SCons will disable duplication of the source files:

% ls src
hello.c
% scons -Q
cc -c -o build/hello.o src/hello.c
cc -o build/hello build/hello.o
% ls build
hello hello.o

Using BuildDir With an SConscript File
Even when using the BuildDir function, it’s much more natural to use it with a
subsidiary SConscript file. For example, if the src/SConscript looks like this:

env = Environment()
env.Program(’hello.c’)

Then our SConstruct file could look like:

BuildDir(’build’, ’src’)
SConscript(’build/SConscript’)

Yielding the following output:

% ls src
SConscript hello.c
% scons -Q
cc -c -o build/hello.o build/hello.c
cc -o build/hello build/hello.o
% ls build
SConscript hello hello.c hello.o

Notice that this is completely equivalent to the use of SConscript that we learned
about in the previous section.

43

Chapter 11. Separating Source and Build Directories

44

Chapter 12. Variant Builds

The BuildDir function now gives us everything we need to show how easy it is to
create variant builds using SCons. Suppose, for example, that we want to build a
program for both Windows and Linux platforms, but that we want to build it in a
shared directory with separate side-by-side build directories for the Windows and
Linux versions of the program.

platform = ARGUMENTS.get(’OS’, Platform())

include = "#export/$PLATFORM/include"
lib = "#export/$PLATFORM/lib"
bin = "#export/$PLATFORM/bin"

env = Environment(PLATFORM = platform,
BINDIR = bin,
INCDIR = include,
LIBDIR = lib,
CPPPATH = [include],
LIBPATH = [lib],
LIBS = ’world’)

Export(’env’)

env.SConscript(’src/SConscript’, build_dir=’build/$PLATFORM’)

#
#BuildDir("#build/$PLATFORM", ’src’)
#SConscript("build/$PLATFORM/hello/SConscript")
#SConscript("build/$PLATFORM/world/SConscript")

This SConstruct file, when run on a Linux system, yields:

% scons -Q OS=linux
Install file: "build/linux/world/world.h" as "export/linux/include/world.h"
cc -Iexport/linux/include -c -o build/linux/hello/hello.o build/linux/hello/hello.c
cc -Iexport/linux/include -c -o build/linux/world/world.o build/linux/world/world.c
ar r build/linux/world/libworld.a build/linux/world/world.o
ranlib build/linux/world/libworld.a
Install file: "build/linux/world/libworld.a" as "export/linux/lib/libworld.a"
cc -o build/linux/hello/hello build/linux/hello/hello.o -Lexport/linux/lib -lworld
Install file: "build/linux/hello/hello" as "export/linux/bin/hello"

The same SConstruct file on Windows would build:

C:\>scons -Q OS=windows
Install file: "build/windows/world/world.h" as "export/windows/include/world.h"
cl /nologo /Iexport\windows\include /c build\windows\hello\hello.c /Fobuild\windows\hello\hello.obj
cl /nologo /Iexport\windows\include /c build\windows\world\world.c /Fobuild\windows\world\world.obj
lib /nologo /OUT:build\windows\world\world.lib build\windows\world\world.obj
Install file: "build/windows/world/world.lib" as "export/windows/lib/world.lib"
link /nologo /OUT:build\windows\hello\hello.exe /LIBPATH:export\windows\lib world.lib build\windows\hello\hello.obj
Install file: "build/windows/hello/hello.exe" as "export/windows/bin/hello.exe"

45

Chapter 12. Variant Builds

46

Chapter 13. Writing Your Own Builders

Although SCons provides many useful methods for building common software prod-
ucts: programs, libraries, documents. you frequently want to be able to build some
other type of file not supported directly by SCons Fortunately, SCons makes it very
easy to define your own Builder objects for any custom file types you want to build.
(In fact, the SCons interfaces for creating Builder objects are flexible enough and
easy enough to use that all of the the SCons built-in Builder objects are created the
mechanisms described in this section.)

Writing Builders That Execute External Commands
The simplest Builder to create is one that executes an external command. For ex-
ample, if we want to build an output file by running the contents of the input file
through a command named foobuild , creating that Builder might look like:

bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)

All the above line does is create a free-standing Builder object. The next section will
show us how to actually use it.

Attaching a Builder to a Construction Environment

A Builder object isn’t useful until it’s attached to a construction environment so
that we can call it to arrange for files to be built. This is done through the BUILDERS
construction variable in an environment. The BUILDERSvariable is a Python dic-
tionary that maps the names by which you want to call various Builder objects to
the objects themselves. For example, if we want to call the Builder we just defined
by the name Foo, our SConstruct file might look like:

bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)
env = Environment(BUILDERS = {’Foo’ : bld})

With the Builder so attached to our construction environment we can now actu-
ally call it like so:

env.Foo(’file.foo’, ’file.input’)

Then when we run SCons it looks like:

% scons -Q
foobuild < file.input > file.foo

Note, however, that the default BUILDERSvariable in a construction environment
comes with a default set of Builder objects already defined: Program , Library , etc.
And when we explicitly set the BUILDERSvariable when we create the construction
environment , the default Builder s are no longer part of the environment:

bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)
env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file.foo’, ’file.input’)
env.Program(’hello.c’)

% scons -Q
AttributeError: SConsEnvironment instance has no attribute ’Program’:

47

Chapter 13. Writing Your Own Builders

To be able use both our own defined Builder objects and the default Builder ob-
jects in the same construction environment , you can either add to the BUILDERS
variable using the Append function:

env = Environment()
bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)
env.Append(BUILDERS = {’Foo’ : bld})
env.Foo(’file.foo’, ’file.input’)
env.Program(’hello.c’)

Or you can explicitly set the appropriately-named key in the BUILDERSdictionary:

env = Environment()
bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)
env[’BUILDERS’][’Foo’] = bld
env.Foo(’file.foo’, ’file.input’)
env.Program(’hello.c’)

Either way, the same construction environment can then use both the newly-
defined Foo Builder and the default Program Builder :

% scons -Q
foobuild < file.input > file.foo
cc -c -o hello.o hello.c
cc -o hello hello.o

Letting SCons Handle The File Suffixes
By supplying additional information when you create a Builder , you can let SCons
add appropriate file suffixes to the target and/or the source file. For example, rather
than having to specify explicitly that you want the Foo Builder to build the
file.foo target file from the file.input source file, you can give the .foo and
.input suffixes to the Builder , making for more compact and readable calls to the
Foo Builder :

bld = Builder(action = ’foobuild < $SOURCE > $TARGET’,
suffix = ’.foo’,
src_suffix = ’.input’)

env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file1’)
env.Foo(’file2’)

% scons -Q
foobuild < file1.input > file1.foo
foobuild < file2.input > file2.foo

You can also supply a prefix keyword argument if it’s appropriate to have SCons
append a prefix to the beginning of target file names.

48

Chapter 13. Writing Your Own Builders

Builders That Execute Python Functions
In SCons, you don’t have to call an external command to build a file. You can, instead,
define a Python function that a Builder object can invoke to build your target file (or
files). Such a builder function definition looks like:

def build_function(target, source, env):
Code to build "target" from "source"
return None

The arguments of a builder function are:

target

A list of Node objects representing the target or targets to be built by this builder
function. The file names of these target(s) may be extracted using the Python str
funcion.

source

A list of Node objects representing the sources to be used by this builder func-
tion to build the targets. The file names of these source(s) may be extracted using
the Python str funcion.

env

The construction environment used for building the target(s). The builder
function may use any of the environment’s construction variables in any way to
affect how it builds the targets.

The builder function must return a 0 or None value if the target(s) are built success-
fully. The builder function may raise an exception or return any non-zero value to
indicate that the build is unsuccessful,

Once you’ve defined the Python function that will build your target file, defining a
Builder object for it is as simple as specifying the name of the function, instead of an
external command, as the Builder ’s action argument:

def build_function(target, source, env):
Code to build "target" from "source"
return None

bld = Builder(action = build_function,
suffix = ’.foo’,
src_suffix = ’.input’)

env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file’)

And notice that the output changes slightly, reflecting the fact that a Python function,
not an external command, is now called to build the target file:

% scons -Q
build_function("file.foo", "file.input")

Builders That Create Actions Using a Generator

SCons Builder objects can create an action "on the fly" by using a function called a
generator . This provides a great deal of flexibility to construct just the right list of
commands to build your target. A generator looks like:

def generate_actions(source, target, env, for_signature):

49

Chapter 13. Writing Your Own Builders

return ’foobuild < %s > %s’ % (target[0], source[0])

The arguments of a generator are:

source

A list of Node objects representing the sources to be built by the command or
other action generated by this function. The file names of these source(s) may be
extracted using the Python str funcion.

target

A list of Node objects representing the target or targets to be built by the com-
mand or other action generated by this function. The file names of these target(s)
may be extracted using the Python str funcion.

env

The construction environment used for building the target(s). The generator
may use any of the environment’s construction variables in any way to deter-
mine what command or other action to return.

for_signature

A flag that specifies whether the generator is being called to contribute to a build
signature, as opposed to actually executing the command.

The generator must return a command string or other action that will be used to
build the specified target(s) from the specified source(s).

Once you’ve defined a generator , you create a Builder to use it by specifying the
generator keyword argument instead of action .

def generate_actions(source, target, env, for_signature):
return ’foobuild < %s > %s’ % (source[0], target[0])

bld = Builder(generator = generate_actions,
suffix = ’.foo’,
src_suffix = ’.input’)

env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file’)

% scons -Q
foobuild < file.input > file.foo

Note that it’s illegal to specify both an action and a generator for a Builder .

Builders That Modify the Target or Source Lists Using an Emitter

SCons supports the ability for a Builder to modify the lists of target(s) from the spec-
ified source(s).

def modify_targets(target, source, env):
target.append(’new_target’)
source.append(’new_source’)
return target, source

bld = Builder(action = ’foobuild $TARGETS - $SOURCES’,
suffix = ’.foo’,
src_suffix = ’.input’,
emitter = modify_targets)

env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file’)

50

Chapter 13. Writing Your Own Builders

% scons -Q
foobuild file.foo new_target - file.input new_source

bld = Builder(action = ’XXX’,
suffix = ’.foo’,
src_suffix = ’.input’,
emitter = ’MY_EMITTER’)

def modify1(target, source, env):
return target, source

def modify2(target, source, env):
return target, source

env1 = Environment(BUILDERS = {’Foo’ : bld},
MY_EMITTER = modify1)

env2 = Environment(BUILDERS = {’Foo’ : bld},
MY_EMITTER = modify2)

env1.Foo(’file1’)
env2.Foo(’file2’)

51

Chapter 13. Writing Your Own Builders

52

Chapter 14. Not Writing a Builder: The CommandBuilder

Creating a Builder and attaching it to a construction environment allows for a lot
of flexibility when you want to re-use actions to build multiple files of the same type.
This can, however, be cumbersome if you only need to execute one specific command
to build a single file (or group of files). For these situations, SCons supports a Command
Builder that arranges for a specific action to be executed to build a specific file or
files. This looks a lot like the other builders (like Program , Object , etc.), but takes as
an additional argument the command to be executed to build the file:

env = Environment()
env.Command(’foo.out’, ’foo.in’, "sed ’s/x/y/’ < $SOURCE > $TARGET")

% scons -Q
sed ’s/x/y/’ < foo.in > foo.out

This is often more convenient than creating a Builder object and adding it to the
BUILDERSvariable of a construction environment

Note that the action you

env = Environment()
def build(target, source, env):

Whatever it takes to build
return None

env.Command(’foo.out’, ’foo.in’, build)

% scons -Q
build("foo.out", "foo.in")

53

Chapter 14. Not Writing a Builder: The CommandBuilder

54

Chapter 15. Writing Scanners

SCons has built-in scanners that know how to look in C, Fortran and IDL source files
for information about other files that targets built from those files depend on--for
example, in the case of files that use the C preprocessor, the .h files that are specified
using #include lines in the source. You can use the same mechanisms that SCons
uses to create its built-in scanners to write scanners of your own for file types that
SCons does not know how to scan "out of the box."

A Simple Scanner Example
Suppose, for example, that we want to create a simple scanner for .foo files. A .foo
file contains some text that will be processed, and can include other files on lines that
begin with include followed by a file name:

include filename.foo

Scanning a file will be handled by a Python function that you must supply. Here is
a function that will use the Python re module to scan for the include lines in our
example:

import re

include_re = re.compile(r’^include\\s+(\\S+)$’, re.M)

def kfile_scan(node, env, path, arg):
contents = node.get_contents()
return include_re.findall(contents)

The scanner function must accept the four specified arguments and return a list of
implicit dependencies. Presumably, these would be dependencies found from exam-
ining the contents of the file, although the function can perform any manipulation at
all to generate the list of dependencies.

node

An SCons node object representing the file being scanned. The path name to the
file can be used by converting the node to a string using the str() function, or an
internal SCons get_contents() object method can be used to fetch the contents.

env

The construction environment in effect for this scan. The scanner function may
choose to use construction variables from this environment to affect its behavior.

path

A list of directories that form the search path for included files for this scanner.
This is how SCons handles the CPPPATHand LIBPATH variables.

arg

An optional argument that you can choose to have passed to this scanner func-
tion by various scanner instances.

A Scanner object is created using the Scanner function, which typically takes an
skeys argument to associate the type of file suffix with this scanner. The Scanner
object must then be associated with the SCANNERSconstruction variable of a con-
struction environment, typically by using the Append method:

kscan = Scanner(function = kfile_scan,

55

Chapter 15. Writing Scanners

skeys = [’.k’])
env.Append(SCANNERS = kscan)

When we put it all together, it looks like:

import re

include_re = re.compile(r’^include\\s+(\\S+)$’, re.M)

def kfile_scan(node, env, path):
contents = node.get_contents()
includes = include_re.findall(contents)
return includes

kscan = Scanner(function = kfile_scan,
skeys = [’.k’])

env = Environment(ENV = {’PATH’ : ’/usr/local/bin’})
env.Append(SCANNERS = kscan)

env.Command(’foo’, ’foo.k’, ’kprocess < $SOURCES > $TARGET’)

56

Chapter 16. Building From Code Repositories

Often, a software project will have one or more central repositories, directory trees
that contain source code, or derived files, or both. You can eliminate additional un-
necessary rebuilds of files by having SCons use files from one or more code reposito-
ries to build files in your local build tree.

The Repository Method
It’s often useful to allow multiple programmers working on a project to build soft-
ware from source files and/or derived files that are stored in a centrally-accessible
repository, a directory copy of the source code tree. (Note that this is not the sort
of repository maintained by a source code management system like BitKeeper, CVS,
or Subversion. For information about using SCons with these systems, see the sec-
tion, "Fetching Files From Source Code Management Systems," below.) You use the
Repository method to tell SCons to search one or more central code repositories (in
order) for any source files and derived files that are not present in the local build tree:

env = Environment()
env.Program(’hello.c’)
Repository(’/usr/repository1’, ’/usr/repository2’)

Multiple calls to the Repository method will simply add repositories to the global
list that SCons maintains, with the exception that SCons will automatically eliminate
the current directory and any non-existent directories from the list.

Finding source files in repositories
The above example specifies that SCons will first search for files under the
/usr/repository1 tree and next under the /usr/repository2 tree. SCons expects
that any files it searches for will be found in the same position relative to the
top-level directory. In the above example, if the hello.c file is not found in the local
build tree, SCons will search first for a /usr/repository1/hello.c file and then for
a /usr/repository1/hello.c file to use in its place.

So given the SConstruct file above, if the hello.c file exists in the local build direc-
tory, SCons will rebuild the hello program as normal:

% scons -Q
cc -c -o hello.o hello.c
cc -o hello hello.o

If, however, there is no local hello.c file, but one exists in /usr/repository1 , SCons
will recompile the hello program from the source file it finds in the repository:

% scons -Q
cc -c -o hello.o hello.c
cc -o hello hello.o
gcc -c /usr/repository1/hello.c -o hello.o
gcc -o hello hello.o

And similarly, if there is no local hello.c file and no /usr/repository1/hello.c ,
but one exists in /usr/repository2 :

% scons -Q
cc -c -o hello.o hello.c

57

Chapter 16. Building From Code Repositories

cc -o hello hello.o

Finding the SConstruct file in repositories
SCons will also search in repositories for the SConstruct file and any specified
SConscript files. This poses a problem, though: how can SCons search a repository
tree for an SConstruct file if the SConstruct file itself contains the information
about the pathname of the repository? To solve this problem, SCons allows you to
specify repository directories on the command line using the -Y option:

% scons -Q -Y /usr/repository1 -Y /usr/repository2

When looking for source or derived files, SCons will first search the repositories
specified on the command line, and then search the repositories specified in the
SConstruct or SConscript files.

Finding derived files in repositories
If a repository contains not only source files, but also derived files (such as object files,
libraries, or executables), SCons will perform its normal MD5 signature calculation to
decide if a derived file in a repository is up-to-date, or the derived file must be rebuilt
in the local build directory. For the SCons signature calculation to work correctly, a
repository tree must contain the .sconsign files that SCons uses to keep track of
signature information.

Usually, this would be done by a build integrator who would run SCons in the repos-
itory to create all of its derived files and .sconsign files, or who would SCons in a
separate build directory and copying the resulting tree to the desired repository:

% cd /usr/repository1
% scons -Q
cc -c -o file1.o file1.c
cc -c -o file2.o file2.c
cc -c -o hello.o hello.c
cc -o hello hello.o file1.o file2.o

(Note that this is safe even if the SConstruct file lists /usr/repository1 as a repos-
itory, because SCons will remove the current build directory from its repository list
for that invocation.)

Now, with the repository populated, we only need to create the one local source file
we’re interested in working with at the moment, and use the -Y option to tell SCons
to fetch any other files it needs from the repository:

% cd $HOME/build
% edit hello.c
% scons -Q -Y /usr/repository1
cc -c -o hello.o hello.c
cc -o hello hello.o /usr/repository1/file1.o /usr/repository1/file2.o

Notice that SCons realizes that it does not need to rebuild local copies file1.o and
file2.o files, but instead uses the already-compiled files from the repository.

58

Chapter 16. Building From Code Repositories

Guaranteeing local copies of files
If the repository tree contains the complete results of a build, and we try to build from
the repository without any files in our local tree, something moderately surprising
happens:

% mkdir $HOME/build2
% cd $HOME/build2
% scons -Q -Y /usr/all/repository hello
scons: ‘hello’ is up-to-date.

Why does SCons say that the hello program is up-to-date when there is no hello
program in the local build directory? Because the repository (not the local directory)
contains the up-to-date hello program, and SCons correctly determines that nothing
needs to be done to rebuild that up-to-date copy of the file.

There are, however, many times when you want to ensure that a local copy of a file
always exists. A packaging or testing script, for example, may assume that certain
generated files exist locally. To tell SCons to make a copy of any up-to-date repository
file in the local build directory, use the Local function:

env = Environment()
hello = env.Program(’hello.c’)
Local(hello)

If we then run the same command, SCons will make a local copy of the program from
the repository copy, and tell you that it is doing so:

% scons -Y /usr/all/repository hello
Local copy of hello from /usr/all/repository/hello
scons: ‘hello’ is up-to-date.

(Notice that, because the act of making the local copy is not considered a "build" of
the hello file, SCons still reports that it is up-to-date.)

59

Chapter 16. Building From Code Repositories

60

Chapter 17. Caching Built Files

On multi-developer software projects, you can sometimes speed up every devel-
oper’s builds a lot by allowing them to share the derived files that they build. SCons
makes this easy, as well as reliable.

Specifying the Shared Cache Directory
To enable sharing of derived files, use the CacheDir function in any SConscript file:

CacheDir(’/usr/local/build_cache’)

Note that the directory you specify must already exist and be readable and writable
by all developers who will be sharing derived files. It should also be in some central
location that all builds will be able to access. In environments where developers are
using separate systems (like individual workstations) for builds, this directory would
typically be on a shared or NFS-mounted file system.

Here’s what happens: When a build has a CacheDir specified, every time a file is
built, it is stored in the shared cache directory along with its MD5 build signature.
On subsequent builds, before an action is invoked to build a file, SCons will check
the shared cache directory to see if a file with the exact same build signature already
exists. If so, the derived file will not be built locally, but will be copied into the local
build directory from the shared cache directory, like so:

% scons -Q
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q
Retrieved ‘hello.o’ from cache
Retrieved ‘hello’ from cache

Keeping Build Output Consistent
One potential drawback to using a shared cache is that your build output can be
inconsistent from invocation to invocation, because any given file may be rebuilt one
time and retrieved from the shared cache the next time. This can make analyzing
build output more difficult, especially for automated scripts that expect consistent
output each time.

If, however, you use the --cache-show option, SCons will print the command line
that it would have executed to build the file, even when it is retrieving the file from
the shared cache. This makes the build output consistent every time the build is run:

% scons -Q
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q --cache-show
cc -c -o hello.o hello.c
cc -o hello hello.o

61

Chapter 17. Caching Built Files

The trade-off, of course, is that you no longer know whether or not SCons has re-
trieved a derived file from cache or has rebuilt it locally.

Not Retrieving Files From a Shared Cache
Retrieving an already-built file from the shared cache is usually a significant time-
savings over rebuilding the file, but how much of a savings (or even whether it saves
time at all) can depend a great deal on your system or network configuration. For
example, retrieving cached files from a busy server over a busy network might end
up being slower than rebuilding the files locally.

In these cases, you can specify the --cache-disable command-line option to tell
SCons to not retrieve already-built files from the shared cache directory:

% scons -Q
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q
Retrieved ‘hello.o’ from cache
Retrieved ‘hello’ from cache
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q --cache-disable
cc -c -o hello.o hello.c
cc -o hello hello.o

Populating a Shared Cache With Already-Built Files
Sometimes, you may have one or more derived files already built in your local build
tree that you wish to make available to other people doing builds. For example, you
may find it more effective to perform integration builds with the cache disabled (per
the previous section) and only populate the shared cache directory with the built files
after the integration build has completed successfully. This way, the cache will only
get filled up with derived files that are part of a complete, successful build not with
files that might be later overwritten while you debug integration problems.

In this case, you can use the the --cache-force option to tell SCons to put all derived
files in the cache, even if the files had already been built by a previous invocation:

% scons -Q --cache-disable
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q --cache-disable
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q --cache-force
scons: ‘.’ is up to date.
% scons -Q -c
Removed hello.o
Removed hello

62

Chapter 17. Caching Built Files

% scons -Q
Retrieved ‘hello.o’ from cache
Retrieved ‘hello’ from cache

Notice how the above sample run demonstrates that the --cache-disable option
avoids putting the built hello.o and hello files in the cache, but after using the
--cache-force option, the files have been put in the cache for the next invocation to
retrieve.

63

Chapter 17. Caching Built Files

64

Chapter 18. Alias Targets

We’ve already seen how you can use the Alias function to create a target named
install :

env = Environment()
hello = env.Program(’hello.c’)
env.Install(’/usr/bin’, hello)
env.Alias(’install’, ’/usr/bin’)

You can then use this alias on the command line to tell SCons more naturally that you
want to install files:

% scons -Q install
cc -c -o hello.o hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello"

Like other Builder methods, though, the Alias method returns an object represent-
ing the alias being built. You can then use this object as input to anothother Builder .
This is especially useful if you use such an object as input to another call to the Alias
Builder , allowing you to create a hierarchy of nested aliases:

env = Environment()
p = env.Program(’foo.c’)
l = env.Library(’bar.c’)
env.Install(’/usr/bin’, p)
env.Install(’/usr/lib’, l)
ib = env.Alias(’install-bin’, ’/usr/bin’)
il = env.Alias(’install-lib’, ’/usr/lib’)
env.Alias(’install’, [ib, il])

This example defines separate install , install-bin , and install-lib aliases, al-
lowing you finer control over what gets installed:

% scons -Q install-bin
cc -c -o foo.o foo.c
cc -o foo foo.o
Install file: "foo" as "/usr/bin/foo"
% scons -Q install-lib
cc -c -o bar.o bar.c
ar r libbar.a bar.o
ranlib libbar.a
Install file: "libbar.a" as "/usr/lib/libbar.a"
% scons -Q -c /
Removed foo.o
Removed foo
Removed /usr/bin/foo
Removed bar.o
Removed libbar.a
Removed /usr/lib/libbar.a
% scons -Q install
cc -c -o foo.o foo.c
cc -o foo foo.o
Install file: "foo" as "/usr/bin/foo"
cc -c -o bar.o bar.c
ar r libbar.a bar.o
ranlib libbar.a

65

Chapter 18. Alias Targets

Install file: "libbar.a" as "/usr/lib/libbar.a"

66

	SCons User Guide 0.93
	Table of Contents
	Chapter 1. Preface
	SCons Principles
	Acknowledgements
	Contact
	Chapter 2. Simple Builds
	The SConstruct File
	Making the Output Less Verbose
	Compiling Multiple Source Files
	Keeping SConstruct Files Easy to Read
	Keyword Arguments
	Compiling Multiple Programs
	Sharing Source Files Between Multiple Programs
	Chapter 3. Building and Linking with Libraries
	Building Libraries
	Linking with Libraries
	Finding Libraries: the LIBPATH Construction Variable
	Chapter 4. Dependencies
	Source File Signatures
	MD5 Source File Signatures
	Source File Time Stamps

	Target File Signatures
	Build Signatures
	File Contents

	Implicit Dependencies: The CPPPATH Construction Variable
	Caching Implicit Dependencies
	The implicitdepschanged Option
	The implicitdepsunchanged Option

	The Ignore Method
	The Depends Method
	Chapter 5. Construction Environments
	Multiple Construction Environments
	Copying Construction Environments
	Fetching Values From a Construction Environment
	Modifying a Construction Environment
	Replacing Values in a Construction Environment
	Appending to the End of Values in a Construction Environment
	Appending to the Beginning of Values in a Construction Environment

	Chapter 6. Default Targets
	Chapter 7. Providing Build Help
	Chapter 8. Installing Files in Other Directories
	Installing Multiple Files in a Directory
	Installing a File Under a Different Name
	Installing Multiple Files Under Different Names
	Chapter 9. Preventing Removal of Targets
	Chapter 10. Hierarchical Builds
	SConscript Files
	Path Names Are Relative to the SConscript Directory
	TopLevel Path Names in Subsidiary SConscript Files
	Absolute Path Names
	Sharing Environments (and Other Variables) Between SConscript Files
	Exporting Variables
	Importing Variables
	Returning Values From an SConscript File

	Chapter 11. Separating Source and Build Directories
	Specifying a Build Directory as Part of an SConscript Call
	Why SCons Duplicates Source Files in a Build Directory
	Telling SCons to Not Duplicate Source Files in the Build Directory
	The BuildDir Function
	Using BuildDir With an SConscript File
	Chapter 12. Variant Builds
	Chapter 13. Writing Your Own Builders
	Writing Builders That Execute External Commands
	Attaching a Builder to a Construction Environment
	Letting SCons Handle The File Suffixes
	Builders That Execute Python Functions
	Builders That Create Actions Using a Generator
	Builders That Modify the Target or Source Lists Using an Emitter
	Chapter 14. Not Writing a Builder: The Command Builder
	Chapter 15. Writing Scanners
	A Simple Scanner Example
	Chapter 16. Building From Code Repositories
	The Repository Method
	Finding source files in repositories
	Finding the SConstruct file in repositories
	Finding derived files in repositories
	Guaranteeing local copies of files
	Chapter 17. Caching Built Files
	Specifying the Shared Cache Directory
	Keeping Build Output Consistent
	Not Retrieving Files From a Shared Cache
	Populating a Shared Cache With AlreadyBuilt Files
	Chapter 18. Alias Targets

