Content-type: text/html
Manpage of SCONS
SCONS
Section: User Commands (1)
Updated: June 2003
Index
Return to Main Contents
NAME
scons - a software construction tool
SYNOPSIS
scons
[
options...
]
[
name=val...
]
[
targets...
]
DESCRIPTION
The
scons
utility builds software (or other files) by determining which
component pieces must be rebuilt and executing the necessary commands to
rebuild them.
By default,
scons
searches for a file named
SConstruct,
Sconstruct,
or
sconstruct
(in that order) in the current directory and reads its
configuration from the first file found.
An alternate file name may be
specified via the
-f
option.
The
SConstruct
file can specify subsidiary
configuration files using the
SConscript()
function.
By convention,
these subsidiary files are named
SConscript,
although any name may be used.
(Because of this naming convention,
the term "SConscript files"
is sometimes used to refer
generically to all
scons
configuration files,
regardless of actual file name.)
The configuration files
specify the target files to be built, and
(optionally) the rules to build those targets. Reasonable default
rules exist for building common software components (executable
programs, object files, libraries), so that for most software
projects, only the target and input files need be specified.
scons
reads and executes the SConscript files as Python scripts,
so you may use normal Python scripting capabilities
(such as flow control, data manipulation, and imported Python libraries)
to handle complicated build situations.
scons,
however, reads and executes all of the SConscript files
before
it begins building any targets.
To make this obvious,
scons
prints the following messages about what it is doing:
-
$ scons foo.out
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cp foo.in foo.out
scons: done building targets.
$
The status messages
(everything except the line that reads "cp foo.in foo.out")
may be suppressed using the
-Q
option.
scons
does not automatically propagate
the external environment used to execute
scons
to the commands used to build target files.
This is so that builds will be guaranteed
repeatable regardless of the environment
variables set at the time
scons
is invoked.
This also means that if the compiler or other commands
that you want to use to build your target files
are not in standard system locations,
scons
will not find them unless
you explicitly set the PATH
to include those locations.
Whenever you create an
scons
construction environment,
you can propagate the value of PATH
from your external environment as follows:
-
import os
env = Environment(ENV = {'PATH' : os.environ['PATH']})
scons
can scan known input files automatically for dependency
information (for example, #include statements
in C or C++ files) and will rebuild dependent files appropriately
whenever any "included" input file changes.
scons
supports the
ability to define new scanners for unknown input file types.
scons
knows how to fetch files automatically from
SCCS or RCS subdirectories
using SCCS, RCS or BitKeeper.
scons
is normally executed in a top-level directory containing a
SConstruct
file, optionally specifying
as command-line arguments
the target file or files to be built.
By default, the command
-
scons
will build all target files in or below the current directory.
Explicit default targets
(to be built when no targets are specified on the command line)
may be defined the SConscript file(s)
using the
Default()
function, described below.
Even when
Default()
targets are specified in the SConscript file(s),
all target files in or below the current directory
may be built by explicitly specifying
the current directory (.)
as a command-line target:
-
scons .
Building all target files,
including any files outside of the current directory,
may be specified by supplying a command-line target
of the root directory (on POSIX systems):
-
scons /
or the path name(s) of the volume(s) in which all the targets
should be built (on Windows systems):
-
scons C:\ D:\
To build only specific targets,
supply them as command-line arguments:
-
scons foo bar
in which case only the specified targets will be built
(along with any derived files on which they depend).
Specifying "cleanup" targets in SConscript files is not
necessary. The
-c
flag removes all files
necessary to build the specified target:
-
scons -c .
to remove all target files, or:
-
scons -c build export
to remove target files under build and export.
Additional files or directories to remove can be specified using the
Clean() function.
A subset of a hierarchical tree may be built by
remaining at the top-level directory (where the
SConstruct
file lives) and specifying the subdirectory as the target to be
built:
-
scons src/subdir
or by changing directory and invoking scons with the
-u
option, which traverses up the directory
hierarchy until it finds the
SConstruct
file, and then builds
targets relatively to the current subdirectory:
-
cd src/subdir
scons -u .
scons
supports building multiple targets in parallel via a
-j
option that takes, as its argument, the number
of simultaneous tasks that may be spawned:
-
scons -j 4
builds four targets in parallel, for example.
scons
can maintain a cache of target (derived) files that can
be shared between multiple builds. When caching is enabled in a
SConscript file, any target files built by
scons
will be copied
to the cache. If an up-to-date target file is found in the cache, it
will be retrieved from the cache instead of being rebuilt locally.
Caching behavior may be disabled and controlled in other ways by the
--cache-force,
--cache-disable,
and
--cache-show
command-line options. The
--random
option is useful to prevent multiple builds
from trying to update the cache simultaneously.
Values of variables to be passed to the SConscript file(s)
may be specified on the command line:
-
scons debug=1 .
These variables are available in SConscript files
through the ARGUMENTS dictionary,
and can be used in the SConscript file(s) to modify
the build in any way:
-
if ARGUMENTS.get('debug', 0):
env = Environment(CCFLAGS = '-g')
else:
env = Environment()
scons
requires Python version 1.5.2 or later.
There should be no other dependencies or requirements to run
scons.
By default,
scons
knows how to search for available programming tools
on various systems.
On WIN32 systems,
scons
searches in order for the
Microsoft Visual C++ tools,
the MinGW tool chain,
the Intel compiler tools,
and the PharLap ETS compiler.
On OS/2 systems,
scons
searches in order for the
OS/2 compiler,
the GCC tool chain,
and the Microsoft Visual C++ tools,
On SGI IRIX, IBM AIX, Hewlett Packard HP-UX, and Sun Solaris systems,
scons
searches for the native compiler tools
(MIPSpro, Visual Age, aCC, and Forte tools respectively)
and the GCC tool chain.
On all other platforms,
including POSIX (Linux and UNIX) platforms,
scons
searches in order
for the GCC tool chain,
the Microsoft Visual C++ tools,
and the Intel compiler tools.
You may, of course, override these default values
by appropriate configuration of
Environment construction variables.
OPTIONS
In general,
scons
supports the same command-line options as GNU
make,
and many of those supported by
cons.
- -b
-
Ignored for compatibility with non-GNU versions of
make.
- -c, --clean, --remove
-
Clean up by removing all target files for which a construction
command is specified.
Also remove any files or directories associated to the construction command
using the Clean() function.
- --cache-disable, --no-cache
-
Disable the derived-file caching specified by
CacheDir().
scons
will neither retrieve files from the cache
nor copy files to the cache.
- --cache-force, --cache-populate
-
When using
CacheDir(),
populate a cache by copying any already-existing, up-to-date
derived files to the cache,
in addition to files built by this invocation.
This is useful to populate a new cache with
all the current derived files,
or to add to the cache any derived files
recently built with caching disabled via the
--cache-disable
option.
- --cache-show
-
When using
CacheDir()
and retrieving a derived file from the cache,
show the command
that would have been executed to build the file,
instead of the usual report,
"Retrieved `file' from cache."
This will produce consistent output for build logs,
regardless of whether a target
file was rebuilt or retrieved from the cache.
- -C directory, --directory=directory
-
Change to the specified
directory
before searching for the
SConstruct,
Sconstruct,
or
sconstruct
file, or doing anything
else. Multiple
-C
options are interpreted
relative to the previous one, and the right-most
-C
option wins. (This option is nearly
equivalent to
-f directory/SConstruct,
except that it will search for
SConstruct,
Sconstruct,
or
sconstruct
in the specified directory.)
- -D
-
Works exactly the same way as the
-u
option except for the way default targets are handled.
When this option is used and no targets are specified on the command line,
all default targets are built, whether or not they are below the current
directory.
- --debug=type
-
Debug the build process.
type
specifies what type of debugging:
- --debug=pdb
-
Re-run SCons under the control of the
pdb
Python debugger.
The
--debug=pdb
argument will be stripped from the command-line,
but all other arguments will be passed in-order
to the SCons invocation run by the debugger.
- --debug=tree
-
Print the dependency tree
after each top-level target is built. This prints out the complete
dependency tree including implicit dependencies and ignored
dependencies.
- --debug=dtree
-
Print the dependency tree
after each top-level target is built. This prints out only derived files.
- --debug=time
-
Prints various time profiling information: the time spent
executing each build command, the total build time, the total time spent
executing build commands, the total time spent executing SConstruct and
SConscript files, and the total time spent executing SCons itself.
- --debug=includes
-
Print the include tree after each top-level target is built.
This is generally used to find out what files are included by the sources
of a given derived file:
-
$ scons --debug=includes foo.o
- -e, --environment-overrides
-
Variables from the execution environment override construction
variables from the SConscript files.
- -f file, --file=file, --makefile=file, --sconstruct=file
-
Use
file
as the initial SConscript file.
- -h, --help
-
Print a local help message for this build, if one is defined in
the SConscript file(s), plus a line that describes the
-H
option for command-line option help. If no local help message
is defined, prints the standard help message about command-line
options. Exits after displaying the appropriate message.
- -H, --help-options
-
Print the standard help message about command-line options and
exit.
- -i, --ignore-errors
-
Ignore all errors from commands executed to rebuild files.
- -I directory, --include-dir=directory
-
Specifies a
directory
to search for
imported Python modules. If several
-I
options
are used, the directories are searched in the order specified.
- --implicit-cache
-
Cache implicit dependencies. This can cause
scons
to miss changes in the implicit dependencies in cases where a new implicit
dependency is added earlier in the implicit dependency search path
(e.g. CPPPATH) than a current implicit dependency with the same name.
- --implicit-deps-changed
-
Force SCons to ignore the cached implicit dependencies. This causes the
implicit dependencies to be rescanned and recached. This implies
--implicit-cache.
- --implicit-deps-unchanged
-
Force SCons to ignore changes in the implicit dependencies.
This causes cached implicit dependencies to always be used.
This implies
--implicit-cache.
- -j N, --jobs=N
-
Specifies the number of jobs (commands) to run simultaneously.
If there is more than one
-j
option, the last one is effective.
- -k, --keep-going
-
Continue as much as possible after an error. The target that
failed and those that depend on it will not be remade, but other
targets specified on the command line will still be processed.
- -m
-
Ignored for compatibility with non-GNU versions of
make.
- --max-drift=SECONDS
-
Set the maximum expected drift in the modification time of files to
SECONDS.
This value determines how old a file must be before its content signature
is cached. The default value is 2 days, which means a file must have a
modification time of at least two days ago in order to have its content
signature cached. A negative value means to never cache the content
signature and to ignore the cached value if there already is one. A value
of 0 means to always cache the signature, no matter how old the file is.
- -n, --just-print, --dry-run, --recon
-
No execute. Print the commands that would be executed to build
any out-of-date target files, but do not execute the commands.
- --profile=file
-
Run SCons under the Python profiler
and save the results in the specified
file.
The results may be analyzed using the Python
pstats module.
- -q, --question
-
Do not run any commands, or print anything. Just return an exit
status that is zero if the specified targets are already up to
date, non-zero otherwise.
- -Q
-
Quiets SCons status messages about
reading SConscript files,
building targets
and entering directories.
Commands that are executed
to rebuild target files are still printed.
- --random
-
Build dependencies in a random order. This is useful when
building multiple trees simultaneously with caching enabled,
to prevent multiple builds from simultaneously trying to build
or retrieve the same target files.
- -s, --silent, --quiet
-
Silent. Do not print commands that are executed to rebuild
target files.
Also suppresses SCons status messages.
- -S, --no-keep-going, --stop
-
Ignored for compatibility with GNU
make.
- -t, --touch
-
Ignored for compatibility with GNU
make.
(Touching a file to make it
appear up-to-date is unnecessary when using
scons.)
- -u, --up, --search-up
-
Walks up the directory structure until an
SConstruct ,
Sconstruct
or
sconstruct
file is found, and uses that
as the top of the directory tree.
If no targets are specified on the command line,
only targets at or below the
current directory will be built.
- -U
-
Works exactly the same way as the
-u
option except for the way default targets are handled.
When this option is used and no targets are specified on the command line,
all default targets that are defined in the SConscript(s) in the current
directory are built, regardless of what directory the resultant targets end
up in.
- -v, --version
-
Print the
scons
version, copyright information,
list of authors, and any other relevant information.
Then exit.
- -w, --print-directory
-
Print a message containing the working directory before and
after other processing.
- --warn=type, --warn=no-type
-
Enable or disable warnings.
type
specifies the type of warnings to be enabled or disabled:
- --warn=all, --warn=no-all
-
Enables or disables all warnings.
- --warn=dependency, --warn=no-dependency
-
Enables or disables warnings about dependencies.
These warnings are disabled by default.
- --warn=deprecated, --warn=no-deprecated
-
Enables or disables warnings about use of deprecated features.
These warnings are enabled by default.
- --no-print-directory
-
Turn off -w, even if it was turned on implicitly.
- -Y repository, --repository=repository
-
Search the specified repository for any input and target
files not found in the local directory hierarchy. Multiple
-Y
options may specified, in which case the
repositories are searched in the order specified.
CONFIGURATION FILE REFERENCE
Construction Environments
A construction environment is the basic means by which the SConscript
files communicate build information to
scons.
A new construction environment is created using the
Environment
function:
-
env = Environment()
By default, a new construction environment is
initialized with a set of builder methods
and construction variables that are appropriate
for the current platform.
An optional platform keyword argument may be
used to specify that an environment should
be initialized for a different platform:
-
env = Environment(platform = 'cygwin')
env = Environment(platform = 'os2')
env = Environment(platform = 'posix')
env = Environment(platform = 'win32')
Specifying a platform initializes the appropriate
construction variables in the environment
to use and generate file names with prefixes
and suffixes appropriate for the platform.
Note that the
win32
platform adds the
SYSTEMROOT
variable from the user's external environment
to the construction environment's
ENV
dictionary.
This is so that any executed commands
that use sockets to connect with other systems
(such as fetching source files from
external CVS repository specifications like
:pserver:anonymous@cvs.sourceforge.net:/cvsroot/scons)
will work on Win32 systems.
The platform argument may be function or callable object,
in which case the Environment() method
will call the specified argument to update
the new construction environment:
-
def my_platform(env):
env['VAR'] = 'xyzzy'
env = Environment(platform = my_platform)
Additionally, a specific set of tools
with which to initialize the environment
may specified as an optional keyword argument:
-
env = Environment(tools = ['msvc', 'lex'])
The elements of the tools list may also
be functions or callable objects,
in which case the Environment() method
will call the specified elements
to update the new construction environment:
-
def my_tool(env):
env['XYZZY'] = 'xyzzy'
env = Environment(tools = [my_tool])
The tool definition (i.e. my_tool()) can use the PLATFORM variable from
the environment it receives to customize the tool for different platforms.
If no tool list is specified, then SCons will auto-detect the installed
tools using the PATH variable in the ENV construction variable and the
platform name when the Environment is constructed. Changing the PATH
variable after the Environment is constructed will not cause the tools to
be redetected.
SCons supports the following tool specifications out of the box:
-
386asm
ar
dvipdf
dvips
g++
g77
gs
icc
icl
ifl
ilink
gas
gcc
gnulink
jar
javac
javah
latex
lex
linkloc
m4
masm
midl
mingw
mslib
mslink
msvc
msvs
nasm
pdflatex
pdftex
qt
rmic
sgiar
sgicc
sgilink
sunar
suncc
sunlink
swig
tar
tex
yacc
zip
Additionally, there is a "tool" named
default
which configures the
environment with a default set of tools for the current platform.
On posix and cygwin platforms
the GNU tools (e.g. gcc) are preferred by SCons,
on win32 the Microsoft tools (e.g. msvc)
followed by MinGW are preferred by SCons,
and in OS/2 the IBM tools (e.g. icc) are preferred by SCons.
Builder Methods
Build rules are specified by calling a construction
environment's builder methods.
The arguments to the builder methods are
target
(a list of target files)
and
source
(a list of source files).
Because long lists of file names
can lead to a lot of quoting,
scons
supplies a
Split()
function that splits a single string
into a list, separated on
strings of white-space characters.
(This is similar to the
string.split() method
from the standard Python library.)
Like all Python arguments,
the target and source arguments to a builder
can be specified either with or without
the "target" and "source" keywords.
When the keywords are omitted,
the target is first,
followed by the source.
The following are equivalent examples of calling the Program builder:
-
env.Program('bar', ['bar.c', 'foo.c'])
env.Program('bar', Split('bar.c foo.c'))
env.Program(source = ['bar.c', 'foo.c'], target = 'bar')
env.Program(target = 'bar', Split('bar.c foo.c'))
env.Program('bar', source = string.split('bar.c foo.c'))
When the target shares the same base name
as the source and only the suffix varies,
and if the builder has a suffix defined for the target file type,
then the target argument may be omitted completely,
and
scons
will deduce the target file name from
the source file name.
The following examples all build the
executable program
bar
(on POSIX systems)
or
bar.exe
(on Windows systems)
from the bar.c source file:
-
env.Program(target = 'bar', source = 'bar.c')
env.Program('bar', source = 'bar.c')
env.Program(source = 'bar.c')
env.Program('bar.c')
It is possible to override or add construction variables when calling a
builder by passing additional keyword arguments. These overridden or added
variables will only be in effect when building the target, so they will not
affect other parts of the build. For example, if you want to add additional
libraries for just one program:
-
env.Program('hello', 'hello.c', LIBS=['gl', 'glut'])
or generate a shared library with a nonstandard suffix:
-
env.SharedLibrary('word', 'word.cpp', SHLIBSUFFIX='.ocx')
All Builders return a Node or a list of Nodes,
representing the target or targets that will be built.
A list of Nodes is returned if there is more than one target,
and a single Node is returned if there is only one target.
A
Node
is an internal SCons object
which represents
build targets or sources.
The returned Node(s)
can be passed to other builder methods as source(s)
or passed into to any SCons function or method
where a filename would normally be accepted.
For example, if it were necessary
to add a specific
-D
flag when compiling one specific object file:
-
bar_obj = env.StaticObject('bar.c', CCFLAGS='-DBAR')
env.Program(source = ['foo.c', bar_obj, 'main.c'])
Using a Node in this way
makes for a more portable build
by avoiding having to specify
a platform-specific object suffix
when calling the Program() builder.
The path name for a Node's file may be used
by passing the Node to the Python-builtin
str()
function:
-
bar_obj = env.StaticObject('bar.c', CCFLAGS='-DBAR')
print "The path to bar_obj is:", str(bar_obj)
scons
provides the following builders:
- StaticObject
-
Builds a static object file
from one or more C, C++, or Fortran source files.
Source files must have one of the following extensions:
-
.asm assembly language file
.ASM assembly language file
.c C file
.C WIN32: C file
POSIX: C++ file
.cc C++ file
.cpp C++ file
.cxx C++ file
.cxx C++ file
.c++ C++ file
.C++ C++ file
.f Fortran file
.F WIN32: Fortran file
POSIX: Fortran file + C pre-processor
.for Fortran file
.FOR Fortran file
.fpp Fortran file + C pre-processor
.FPP Fortran file + C pre-processor
.s assembly language file
.S WIN32: assembly language file
POSIX: assembly language file + C pre-processor
.spp assembly language file + C pre-processor
.SPP assembly language file + C pre-processor
-
The target object file prefix
(specified by the $OBJPREFIX construction variable; nothing by default)
and suffix
(specified by the $OBJSUFFIX construction variable;
.obj on Windows systems, .o on POSIX systems)
are automatically added to the target if not already present.
Examples:
-
env.StaticObject(target = 'aaa', source = 'aaa.c')
env.StaticObject(target = 'bbb.o', source = 'bbb.c++')
env.StaticObject(target = 'ccc.obj', source = 'ccc.f')
- SharedObject
-
Builds an object file for
inclusion in a shared library.
Source files must have one of the same set of extensions
specified above for the
StaticObject
builder. On some platforms building a shared object requires additional
compiler options (e.g. -fPIC for gcc) in addition to those needed to build a
normal (static) object, but on some platforms there is no difference between a
shared object and a normal (static) one. When there is a difference, SCons
will only allow shared objects to be linked into a shared library, and will
use a different suffix for shared objects. On platforms where there is no
difference, SCons will allow both normal (static)
and shared objects to be linked into a
shared library, and will use the same suffix for shared and normal
(static) objects.
The target object file prefix
(specified by the $SHOBJPREFIX construction variable;
by default, the same as $OBJPREFIX)
and suffix
(specified by the $SHOBJSUFFIX construction variable)
are automatically added to the target if not already present.
Examples:
-
env.SharedObject(target = 'ddd', source = 'ddd.c')
env.SharedObject(target = 'eee.o', source = 'eee.cpp')
env.SharedObject(target = 'fff.obj', source = 'fff.for')
- Object
-
A synonym for the
StaticObject
builder.
- PCH
-
Builds a Microsoft Visual C++ precompiled header. Calling this builder
returns a list of two targets: the PCH as the first element, and the object
file as the second element. Normally the object file is ignored. This builder is only
provided when Microsoft Visual C++ is being used as the compiler.
The PCH builder is generally used in
conjuction with the PCH construction variable to force object files to use
the precompiled header:
-
env['PCH'] = env.PCH('StdAfx.cpp')[0]
- Program
-
Builds an executable given one or more object files or C, C++
or Fortran source files.
If any C, C++ or Fortran source files are specified,
then they will be automatically
compiled to object files using the
Object
builder;
see that builder's description for
a list of legal source file suffixes
and how they are interpreted.
The target executable file prefix
(specified by the $PROGPREFIX construction variable; nothing by default)
and suffix
(specified by the $PROGSUFFIX construction variable;
by default, .exe on Windows systems, nothing on POSIX systems)
are automatically added to the target if not already present.
Example:
-
env.Program(target = 'foo', source = ['foo.o', 'bar.c', 'baz.f'])
- MSVSProject
-
Builds Microsoft Visual Studio project files.
This builds a Visual Studio project file, based on the version of
Visual Studio that is configured (either the latest installed version,
or the version set by
MSVS_VERSION
in the Environment constructor).
For VS 6, it will generate
.dsp
and
.dsw
files, for VS 7, it will
generate
.vcproj
and
.sln
files.
It takes several lists of filenames to be placed into the project
file, currently these are limited to
srcs, incs, localincs, resources,
and
misc.
These are pretty self explanatory, but it
should be noted that the 'srcs' list is NOT added to the $SOURCES
environment variable. This is because it represents a list of files
to be added to the project file, not the source used to build the
project file (in this case, the 'source' is the SConscript file used
to call MSVSProject).
In addition to these values (which are all optional, although not
specifying any of them results in an empty project file), the
following values must be specified:
target: The name of the target .dsp or .vcproj file. The correct
suffix for the version of Visual Studio must be used, but the value
env['MSVSPROJECTSUFFIX']
will be defined to the correct value (see example below).
variant: The name of this particular variant. These are typically
things like "Debug" or "Release", but really can be anything you want.
Multiple calls to MSVSProject with different variants are allowed: all
variants will be added to the project file with their appropriate
build targets and sources.
buildtarget: A list of SCons.Node.FS objects which is returned from
the command which builds the target. This is used to tell SCons what
to build when the 'build' button is pressed inside of the IDE.
Example Usage:
-
barsrcs = ['bar.cpp'],
barincs = ['bar.h'],
barlocalincs = ['StdAfx.h']
barresources = ['bar.rc','resource.h']
barmisc = ['bar_readme.txt']
dll = local.SharedLibrary(target = 'bar.dll',
source = barsrcs)
local.MSVSProject(target = 'Bar' + env['MSVSPROJECTSUFFIX'],
srcs = barsrcs,
incs = barincs,
localincs = barlocalincs,
resources = barresources,
misc = barmisc,
buildtarget = dll,
variant = 'Release')
- RES
-
Builds a Microsoft Visual C++ resource file.
This builder is only provided
when Microsoft Visual C++ or MinGW is being used as the compiler. The
.res
(or
.o
for MinGW) suffix is added to the target name if no other suffix is given. The source
file is scanned for implicit dependencies as though it were a C file. Example:
-
env.RES('resource.rc')
- StaticLibrary
-
Builds a static library given one or more object files
or C, C++ or Fortran source files.
If any source files are given,
then they will be automatically
compiled to object files.
The static library prefix and suffix (if any)
are automatically added to the target.
The target library file prefix
(specified by the $LIBPREFIX construction variable;
by default, lib on POSIX systems, nothing on Windows systems)
and suffix
(specified by the $LIBSUFFIX construction variable;
by default, .lib on Windows systems, .a on POSIX systems)
are automatically added to the target if not already present.
Example:
-
env.StaticLibrary(target = 'bar', source = ['bar.c', 'foo.o'])
-
Any object files listed in the
source
must have been built for a static library
(that is, using the
StaticObject
builder).
scons
will raise an error if there is any mismatch.
- SharedLibrary
-
Builds a shared library
(.so on a POSIX system, .dll on WIN32)
given one or more object files
or C, C++ or Fortran source files.
If any source files are given,
then they will be automatically
compiled to object files.
The static library prefix and suffix (if any)
are automatically added to the target.
The target library file prefix
(specified by the $SHLIBPREFIX construction variable;
by default, lib on POSIX systems, nothing on Windows systems)
and suffix
(specified by the $SHLIBSUFFIX construction variable;
by default, .dll on Windows systems, .so on POSIX systems)
are automatically added to the target if not already present.
Example:
-
env.SharedLibrary(target = 'bar', source = ['bar.c', 'foo.o'])
-
On WIN32 systems, the
SharedLibrary
builder will always build an import (.lib) library
in addition to the shared (.dll) library,
adding a .lib library with the same basename
if there is not already a .lib file explicitly
listed in the targets.
Any object files listed in the
source
must have been built for a shared library
(that is, using the
SharedObject
builder).
scons
will raise an error if there is any mismatch.
-
On WIN32 systems, specifying "register=1" will cause the dll to be
registered after it is built using REGSVR32. The command that is run
("regsvr32" by default) is determined by $REGSVR construction
variable, and the flags passed are determined by $REGSVRFLAGS. By
default, $REGSVRFLAGS includes "/s", to prevent dialogs from popping
up and requiring user attention when it is run. If you change
$REGSVRFLAGS, be sure to include "/s". For example,
-
env.SharedLibrary(target = 'bar',
source = ['bar.cxx', 'foo.obj'],
register=1)
-
will register "bar.dll" as a COM object when it is done linking it.
- Library
-
A synonym for the
StaticLibrary
builder.
- CFile
-
Builds a C source file given a lex (.l) or yacc (.y) input file.
The suffix specified by the $CFILESUFFIX construction variable
(.c by default)
is automatically added to the target
if it is not already present. Example:
-
# builds foo.c
env.CFile(target = 'foo.c', source = 'foo.l')
# builds bar.c
env.CFile(target = 'bar', source = 'bar.y')
- CXXFile
-
Builds a C++ source file given a lex (.ll), yacc (.yy)
or uic (.ui) input file.
The suffix specified by the $CXXFILESUFFIX construction variable
(.cc by default)
is automatically added to the target
if it is not already present. Example:
-
# builds foo.cc
env.CXXFile(target = 'foo.cc', source = 'foo.ll')
# builds bar.cc
env.CXXFile(target = 'bar', source = 'bar.yy')
- M4
-
Builds an output file from an M4 input file.
This uses a default $M4FLAGS value of
-E,
which considers all warnings to be fatal
and stops on the first warning
when using the GNU version of m4.
Example:
-
env.M4(target = 'foo.c', source = 'foo.c.m4')
- Jar
-
Builds a Java archive (.jar) file
from a source tree of .class files.
-
env.Jar(target = 'foo.jar', source = 'classes')
- Java
-
Builds one or more Java class files
from a source tree of .java files.
The class files will be placed underneath
the specified target directory.
SCons will parse each source .java file
to find the classes
(including inner classes)
defined within that file,
and from that figure out the
target .class files that will be created.
SCons will also search each Java file
for the Java package name,
which it assumes can be found on a line
beginning with the string
package
in the first column;
the resulting .class files
will be placed in a directory reflecting
the specified package name.
For example,
the file
Foo.java
defining a single public
Foo
class and
containing a package name of
sub.dir
will generate a corresponding
sub/dir/Foo.class
class file.
Example:
-
env.Java(target = 'classes', source = 'src')
- JavaH
-
Builds C header and source files for
implementing Java native methods.
The target can be either a directory
in which the header files will be written,
or a header file name which
will contain all of the definitions.
The source can be either the names of .class files,
or the objects returned from the
Java
builder.
If the construction variable
JAVACLASSDIR
is set, either in the environment
or in the call to the
JavaH
builder itself,
then the value of the variable
will be stripped from the
beginning of any .class file names.
Examples:
-
# builds java_native.h
classes = env.Java(target = 'classdir', source = 'src')
env.JavaH(target = 'java_native.h', source = classes)
# builds include/package_foo.h and include/package_bar.h
env.JavaH(target = 'include',
source = ['package/foo.class', 'package/bar.class'])
# builds export/foo.h and export/bar.h
env.JavaH(target = 'export',
source = ['classes/foo.class', 'classes/bar.class'],
JAVACLASSDIR = 'classes')
- RMIC
-
Builds stub and skeleton class files
for remote objects
from Java .class files.
The target is a directory
relative to which the stub
and skeleton class files will be written.
The source can be the names of .class files,
or the objects return from the
Java
builder.
If the construction variable
JAVACLASSDIR
is set, either in the environment
or in the call to the
RMIC
builder itself,
then the value of the variable
will be stripped from the
beginning of any .class file names.
-
classes = env.Java(target = 'classdir', source = 'src')
env.RMIC(target = 'outdir1', source = classes)
env.RMIC(target = 'outdir2',
source = ['package/foo.class', 'package/bar.class'])
env.RMIC(target = 'outdir3',
source = ['classes/foo.class', 'classes/bar.class'],
JAVACLASSDIR = 'classes')
- TypeLibrary
-
Builds a Windows type library (.tlb) file from and input IDL file
(.idl). In addition, it will build the associated inteface stub and
proxy source files. It names them according to the base name of the .idl file.
-
For example,
-
env.TypeLibrary(source="foo.idl")
-
Will create foo.tlb, foo.h, foo_i.c, foo_p.c, and foo_data.c.
- DVI
-
Builds a .dvi file from a .tex, .ltx or .latex input file.
The suffix .dvi
(hard-coded within TeX itself)
is automatically added to the target
if it is not already present. Example:
-
# builds from aaa.tex
env.DVI(target = 'aaa.dvi', source = 'aaa.tex')
# builds bbb.dvi
env.DVI(target = 'bbb', source = 'bbb.ltx')
# builds from ccc.latex
env.DVI(target = 'ccc.dvi', source = 'ccc.latex')
- PDF
-
Builds a .pdf file from a .dvi input file
(or, by extension, a .tex, .ltx, or .latex input file).
The suffix specified by the $PDFSUFFIX construction variable
(.pdf by default)
is added automatically to the target
if it is not already present. Example:
-
# builds from aaa.tex
env.PDF(target = 'aaa.pdf', source = 'aaa.tex')
# builds bbb.pdf from bbb.dvi
env.PDF(target = 'bbb', source = 'bbb.dvi')
- PostScript
-
Builds a .ps file from a .dvi input file
(or, by extension, a .tex, .ltx, or .latex input file).
The suffix specified by the $PSSUFFIX construction variable
(.ps by default)
is added automatically to the target
if it is not already present. Example:
-
# builds from aaa.tex
env.PostScript(target = 'aaa.ps', source = 'aaa.tex')
# builds bbb.ps from bbb.dvi
env.PostScript(target = 'bbb', source = 'bbb.dvi')
- Tar
-
Builds a tar archive of the specified files
and/or directories.
Unlike most builders,
the
Tar
builder may be called multiple times
for a given target;
each additional call
adds to the list of entries
that will be built into the archive.
-
env.Tar('src.tar', 'src')
# Create the stuff.tar file.
env.Tar('stuff', ['subdir1', 'subdir2'])
# Also add "another" to the stuff.tar file.
env.Tar('stuff', 'another')
# Set TARFLAGS to create a gzip-filtered archive.
env = Environment(TARFLAGS = '-c -z')
env.Tar('foo.tar.gz', 'foo')
# Also set the suffix to .tgz.
env = Environment(TARFLAGS = '-c -z',
TARSUFFIX = '.tgz')
env.Tar('foo')
- Zip
-
Builds a zip archive of the specified files
and/or directories.
Unlike most builders,
the
Zip
builder may be called multiple times
for a given target;
each additional call
adds to the list of entries
that will be built into the archive.
-
env.Zip('src.zip', 'src')
# Create the stuff.zip file.
env.Zip('stuff', ['subdir1', 'subdir2'])
# Also add "another" to the stuff.tar file.
env.Zip('stuff', 'another')
scons
automatically scans
C source files, C++ source files,
Fortran source files with
.F
(POSIX systems only),
.fpp,
or
.FPP
file extensions,
and assembly language files with
.S
(POSIX systems only),
.spp,
or
.SPP
files extensions
for C preprocessor dependencies,
so the dependencies do not need to be specified explicitly.
In addition, all builder
targets automatically depend on their sources.
An explicit dependency can
be specified using the
Depends
method of a construction environment (see below).
Other Construction Environment Methods
Additional construction environment methods include:
- Alias(alias, targets)
-
Creates a phony target that
expands to one or more other targets.
Returns the Node object representing the alias,
which exists outside of any file system.
This Node object, or the alias name,
may be used as a dependency of any other target,
including another alias. Alias can be called multiple times for the same
alias to add additional targets to the alias. There is also an Alias
global function for creating or referencing an alias independently of
any construction environment.
-
env.Alias('install', ['/usr/local/bin', '/usr/local/lib'])
env.Alias('install', ['/usr/local/man'])
- Append(key=val, [...])
-
Appends the specified keyword arguments
to the end of construction variables in the environment.
If the Environment does not have
the specified construction variable,
it is simply added to the environment.
If the values of the construction variable
and the keyword argument are the same type,
then the two values will be simply added together.
Otherwise, the construction variable
and the value of the keyword argument
are both coerced to lists,
and the lists are added together.
(See also the Prepend method, below.)
-
env.Append(CCFLAGS = ' -g', FOO = ['foo.yyy'])
- PrependENVPath(name, newpath, [envname, sep])
-
This appends new path elements to the given path in the
specified external environment
(ENV
by default).
This will only add
any particular path once (leaving the first one it encounters and
ignoring the rest, to preserve path order),
and to help assure this,
will normalize all paths (using
os.path.normpath
and
os.path.normcase).
This can also handle the
case where the given old path variable is a list instead of a
string, in which case a list will be returned instead of a string.
Example:
-
print 'before:',env['ENV']['INCLUDE']
include_path = '/foo/bar:/foo'
env.PrependENVPath('INCLUDE', include_path)
print 'after:',env['ENV']['INCLUDE']
yields:
before: /biz:/foo
after: /foo/bar:/foo:/biz
- AppendENVPath(name, newpath, [envname, sep])
-
This appends new path elements to the given path in the
specified external environment
(ENV
by default).
This will only add
any particular path once (leaving the last one it encounters and
ignoring the rest, to preserve path order),
and to help assure this,
will normalize all paths (using
os.path.normpath
and
os.path.normcase).
This can also handle the
case where the given old path variable is a list instead of a
string, in which case a list will be returned instead of a string.
Example:
-
print 'before:',env['ENV']['INCLUDE']
include_path = '/foo/bar:/foo'
env.PrependENVPath('INCLUDE', include_path)
print 'after:',env['ENV']['INCLUDE']
yields:
before: /foo:/biz
after: /biz:/foo/bar:/foo
- BitKeeper()
-
A factory function that
returns a Builder object
to be used to fetch source files
using BitKeeper.
The returned Builder
is intended to be passed to the
SourceCode
function.
-
env.SourceCode('.', env.BitKeeper())
- Command(target, source, commands)
-
Executes a specific action
(or list of actions)
to build a target file or files.
This is more convenient
than defining a separate Builder object
for a single special-case build.
Note that an action can be an external command,
specified as a string,
or a callable Python object;
see "Action Objects," below.
Examples:
-
env.Command('foo.out', 'foo.in',
"$FOO_BUILD < $SOURCES > $TARGET")
env.Command('bar.out', 'bar.in',
["rm -f $TARGET",
"$BAR_BUILD < $SOURCES > $TARGET"])
def rename(env, target, source):
import os
os.rename('.tmp', str(target[0]))
env.Command('baz.out', 'baz.in',
["$BAZ_BUILD < $SOURCES > .tmp",
rename ])
- Copy([key=val, ...])
-
Return a separate copy of a construction environment.
If there are any keyword arguments specified,
they are added to the returned copy,
overwriting any existing values
for the keywords.
-
env2 = env.Copy()
env3 = env.Copy(CCFLAGS = '-g')
Additionally, a list of tools may be specified, as in the Environment
constructor:
-
def MyTool(env): env['FOO'] = 'bar'
env4 = env.Copy(tools = ['msvc', MyTool])
- CVS(repository, module)
-
A factory function that
returns a Builder object
to be used to fetch source files
from the specified
CVS
repository.
The returned Builder
is intended to be passed to the
SourceCode
function.
The optional specified
module
will be added to the beginning
of all repository path names;
this can be used, in essence,
to strip initial directory names
from the repository path names,
so that you only have to
replicate part of the repository
directory hierarchy in your
local build directory:
-
# Will fetch foo/bar/src.c
# from /usr/local/CVSROOT/foo/bar/src.c.
env.SourceCode('.', env.CVS('/usr/local/CVSROOT'))
# Will fetch bar/src.c
# from /usr/local/CVSROOT/foo/bar/src.c.
env.SourceCode('.', env.CVS('/usr/local/CVSROOT', 'foo'))
# Will fetch src.c
# from /usr/local/CVSROOT/foo/bar/src.c.
env.SourceCode('.', env.CVS('/usr/local/CVSROOT', 'foo/bar'))
- Depends(target, dependency)
-
Specifies an explicit dependency;
the target file(s) will be rebuilt
whenever the dependency file(s) has changed.
This should only be necessary
for cases where the dependency
is not caught by a Scanner
for the file.
-
env.Depends('foo', 'other-input-file-for-foo')
- Dictionary([vars])
-
Returns a dictionary object
containing copies of all of the
construction variables in the environment.
If there are any variable names specified,
only the specified construction
variables are returned in the dictionary.
-
dict = env.Dictionary()
cc_dict = env.Dictionary('CC', 'CCFLAGS', 'CCCOM')
- Ignore(target, dependency)
-
The specified dependency file(s)
will be ignored when deciding if
the target file(s) need to be rebuilt.
-
env.Ignore('foo', 'foo.c')
env.Ignore('bar', ['bar1.h', 'bar2.h'])
- Install(dir, source)
-
Installs one or more files in a destination directory.
The file names remain the same.
-
env.Install(dir = '/usr/local/bin', source = ['foo', 'bar'])
- InstallAs(target, source)
-
Installs one or more files as specific file names,
allowing changing a file name as part of the
installation.
It is an error if the target and source
list different numbers of files.
-
env.InstallAs(target = '/usr/local/bin/foo',
source = 'foo_debug')
env.InstallAs(target = ['../lib/libfoo.a', '../lib/libbar.a'],
source = ['libFOO.a', 'libBAR.a'])
- Perforce()
-
A factory function that
returns a Builder object
to be used to fetch source files
from the Perforce source code management system.
The returned Builder
is intended to be passed to the
SourceCode
function:
-
env.SourceCode('.', env.Perforce())
-
Perforce uses a number of external
environment variables for its operation.
Consequently, this function adds the
following variables from the user's external environment
to the construction environment's
ENV dictionary:
P4CHARSET,
P4CLIENT,
P4LANGUAGE,
P4PASSWD,
P4PORT,
P4USER,
SYSTEMROOT,
USER,
and
USERNAME.
- AlwaysBuild(target, ...)
-
Marks each given
target
so that it is always assumed to be out of date,
and will always be rebuilt if needed.
Note, however, that
AlwaysBuild()
does not add its target(s) to the default target list,
so the targets will only be built
if they are specified on the command line,
or are a dependent of a target specified on the command line--but
they will
always
be built if so specified.
Multiple targets can be passed in to a single call to
AlwaysBuild().
- Precious(target, ...)
-
Marks each given
target
as precious so it is not deleted before it is rebuilt. Normally
scons
deletes a target before building it.
Multiple targets can be passed in to a single call to
Precious().
- Prepend(key=val, [...])
-
Appends the specified keyword arguments
to the beginning of construction variables in the environment.
If the Environment does not have
the specified construction variable,
it is simply added to the environment.
If the values of the construction variable
and the keyword argument are the same type,
then the two values will be simply added together.
Otherwise, the construction variable
and the value of the keyword argument
are both coerced to lists,
and the lists are added together.
(See also the Append method, above.)
-
env.Prepend(CCFLAGS = '-g ', FOO = ['foo.yyy'])
- RCS()
-
A factory function that
returns a Builder object
to be used to fetch source files
from RCS.
The returned Builder
is intended to be passed to the
SourceCode
function:
-
env.SourceCode('.', env.RCS())
-
Note that
scons
will fetch source files
from RCS subdirectories automatically,
so configuring RCS
as demonstrated in the above example
should only be necessary if
you are fetching from
RCS,v
files in the same
directory as the source files,
or if you need to explicitly specify RCS
for a specific subdirectory.
- Replace(key=val, [...])
-
Replaces construction variables in the Environment
with the specified keyword arguments.
-
env.Replace(CCFLAGS = '-g', FOO = 'foo.xxx')
- SCCS()
-
A factory function that
returns a Builder object
to be used to fetch source files
from SCCS.
The returned Builder
is intended to be passed to the
SourceCode
function:
-
env.SourceCode('.', env.SCCS())
-
Note that
scons
will fetch source files
from SCCS subdirectories automatically,
so configuring SCCS
as demonstrated in the above example
should only be necessary if
you are fetching from
s.SCCS
files in the same
directory as the source files,
or if you need to explicitly specify SCCS
for a specific subdirectory.
- SideEffect(side_effect, target)
-
Declares
side_effect
as a side effect of building
target.
Both
side_effect
and
target
can be a list, a file name, or a node.
A side effect is a target that is created
as a side effect of building other targets.
For example, a Windows PDB
file is created as a side effect of building the .obj
files for a static library.
If a target is a side effect of multiple build commands,
scons
will ensure that only one set of commands
is executed at a time.
Consequently, you only need to use this method
for side-effect targets that are built as a result of
multiple build commands.
- SourceCode(entries, builder)
-
Arrange for non-existent source files to
be fetched from a source code management system
using the specified
builder.
The specified
entries
may be a Node, string or list of both,
and may represent either individual
source files or directories in which
source files can be found.
For any non-existent source files,
scons
will search up the directory tree
and use the first
SourceCode
builder it finds.
The specified
builder
may be
None,
in which case
scons
will not use a builder to fetch
source files for the specified
entries,
even if a
SourceCode
builder has been specified
for a directory higher up the tree.
scons
will, by default,
fetch files from SCCS or RCS subdirectories
without explicit configuration.
This takes some extra processing time
to search for the necessary
source code management files on disk.
You can avoid these extra searches
and speed up your build a little
by disabling these searches as follows:
-
env.SourceCode('.', None)
-
Note that if the specified
builder
is one you create by hand,
it must have an associated
construction environment to use
when fetching a source file.
scons
provides a set of canned factory
functions that return appropriate
Builders for various popular
source code management systems.
Canonical examples of invocation include:
-
env.SourceCode('.', env.BitKeeper('/usr/local/BKsources'))
env.SourceCode('src', env.CVS('/usr/local/CVSROOT'))
env.SourceCode('/', env.RCS())
env.SourceCode(['f1.c', 'f2.c'], env.SCCS())
env.SourceCode('no_source.c', None)
Construction Variables
A construction environment has an associated dictionary of
construction variables
that are used by built-in or user-supplied build rules.
Construction variables must follow the same rules for
Python identifiers:
the initial character must be an underscore or letter,
followed by any number of underscores, letters, or digits.
A number of useful construction variables are automatically defined by
scons for each supported platform, and additional construction variables
can be defined by the user. The following is a list of the automatically
defined construction variables:
- AR
-
The static library archiver.
- ARCOM
-
The command line used to generate a static library from object files.
- ARFLAGS
-
General options passed to the static library archiver.
- AS
-
The assembler.
- ASCOM
-
The command line used to generate an object file
from an assembly-language source file.
- ASFLAGS
-
General options passed to the assembler.
- ASPPCOM
-
The command line used to assemble an assembly-language
source file into an object file
after first running the file through the C preprocessor.
Any options specified in the $ASFLAGS and $CPPFLAGS construction variables
are included on this command line.
- BITKEEPER
-
The BitKeeper executable.
- BITKEEPERCOM
-
The command line for
fetching source files using BitKEeper.
- BITKEEPERGET
-
The command ($BITKEEPER) and subcommand
for fetching source files using BitKeeper.
- BITKEEPERGETFLAGS
-
Options that are passed to the BitKeeper
get
subcommand.
- BUILDERS
-
A dictionary mapping the names of the builders
available through this environment
to underlying Builder objects.
Builders named
Alias, CFile, CXXFile, DVI, Library, Object, PDF, PostScript, and Program
are available by default.
If you initialize this variable when an
Environment is created:
-
env = Environment(BUILDERS = {'NewBuilder' : foo})
-
the default Builders will no longer be available.
To use a new Builder object in addition to the default Builders,
add your new Builder object like this:
-
env = Environment()
env.Append(BUILDERS = {'NewBuilder' : foo})
-
or this:
-
env = Environment()
env['BUILDERS]['NewBuilder'] = foo
- CC
-
The C compiler.
- CCCOM
-
The command line used to compile a C source file to a (static) object file.
Any options specified in the $CCFLAGS and $CPPFLAGS construction variables
are included on this command line.
- CCFLAGS
-
General options that are passed to the C compiler.
- CFILESUFFIX
-
The suffix for C source files.
This is used by the internal CFile builder
when generating C files from Lex (.l) or YACC (.y) input files.
The default suffix, of course, is
.c
(lower case).
On case-insensitive systems (like Win32),
SCons also treats
.C
(upper case) files
as C files.
- _concat
-
A function used to produce variables like $_CPPINCFLAGS. It takes five
arguments: a prefix to concatenate onto each element, a list of
elements, a suffix to concatenate onto each element, an environment
for variable interpolation, and an optional function that will be
called to transform the list before concatenation.
-
env['_CPPINCFLAGS'] = '$( ${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs)} $)',
- CPPDEFINES
-
A platform independent specification of C preprocessor definitions.
The definitions will be added to command lines
through the automatically-generated
$_CPPDEFFLAGS construction variable (see below),
which is constructed according to
the type of value of $CPPDEFINES:
-
If $CPPDEFINES is a string,
the values of the
$CPPDEFPREFIX and $CPPDEFSUFFIX
construction variables
will be added to the beginning and end.
-
# Will add -Dxyz to POSIX compiler command lines,
# and /Dxyz to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES='xyz')
-
If $CPPDEFINES is a list,
the values of the
$CPPDEFPREFIX and $CPPDEFSUFFIX
construction variables
will be appended to the beginning and end
of each element in the list.
If any element is a list or tuple,
then the first item is the name being
defined and the second item is its value:
-
# Will add -DB=2 -DA to POSIX compiler command lines,
# and /DB=2 /DA to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES=[('B', 2), 'A'])
-
If $CPPDEFINES is a dictionary,
the values of the
$CPPDEFPREFIX and $CPPDEFSUFFIX
construction variables
will be appended to the beginning and end
of each item from the dictionary.
The key of each dictionary item
is a name being defined
to the dictionary item's corresponding value;
if the value is
None,
then the name is defined without an explicit value.
Note that the resulting flags are sorted by keyword
to ensure that the order of the options on the
command line is consistent each time
scons
is run.
-
# Will add -DA -DB=2 to POSIX compiler command lines,
# and /DA /DB=2 to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES={'B':2, 'A':None})
- _CPPDEFFLAGS
-
An automatically-generated construction variable
containing the C preprocessor command-line options
to define values.
The value of $_CPPDEFFLAGS is created
by appending $CPPDEFPREFIX and $CPPDEFSUFFIX
to the beginning and end
of each directory in $CPPDEFINES.
- CPPDEFPREFIX
-
The prefix used to specify preprocessor definitions
on the C compiler command line.
This will be appended to the beginning of each definition
in the $CPPDEFINES construction variable
when the $_CPPDEFFLAGS variable is automatically generated.
- CPPDEFSUFFIX
-
The suffix used to specify preprocessor definitions
on the C compiler command line.
This will be appended to the end of each definition
in the $CPPDEFINES construction variable
when the $_CPPDEFFLAGS variable is automatically generated.
- CPPFLAGS
-
User-specified C preprocessor options.
These will be included in any command that uses the C preprocessor,
including not just compilation of C and C++ source files
via the $CCCOM, $SHCCCOM, $CXXCOM and $SHCXXCOM command lines,
but also the $F77PPCOM and $SHF77PPCOM command lines
used to compile a Fortran source file,
and the $ASPPCOM command line
used to assemble an assembly language source file,
after first running each file through the C preprocessor.
Note that this variable does
not
contain
-I
(or similar) include search path options
that scons generates automatically from $CPPPATH.
See
_CPPINCFLAGS,
below,
for the variable that expands to those options.
- _CPPINCFLAGS
-
An automatically-generated construction variable
containing the C preprocessor command-line options
for specifying directories to be searched for include files.
The value of $_CPPINCFLAGS is created
by appending $INCPREFIX and $INCSUFFIX
to the beginning and end
of each directory in $CPPPATH.
- CPPPATH
-
The list of directories that the C preprocessor will search for include
directories. The C/C++ implicit dependency scanner will search these
directories for include files. Don't explicitly put include directory
arguments in CCFLAGS or CXXFLAGS because the result will be non-portable
and the directories will not be searched by the dependency scanner. Note:
directory names in CPPPATH will be looked-up relative to the SConscript
directory when they are used in a command. To force
scons
to look-up a directory relative to the root of the source tree use #:
-
env = Environment(CPPPATH='#/include')
-
The directory look-up can also be forced using the
Dir()
function:
-
include = Dir('include')
env = Environment(CPPPATH=include)
-
The directory list will be added to command lines
through the automatically-generated
$_CPPINCFLAGS
construction variable,
which is constructed by
appending the values of the
$INCPREFIX and $INCSUFFIX
construction variables
to the beginning and end
of each directory in $CPPPATH.
Any command lines you define that need
the CPPPATH directory list should
include $_CPPINCFLAGS:
-
env = Environment(CCCOM="my_compiler $_CPPINCFLAGS -c -o $TARGET $SOURCE")
- CVS
-
The CVS executable.
- CVSCOFLAGS
-
Options that are passed to the CVS checkout subcommand.
- CVSCOM
-
The command line used to
fetch source files from a CVS repository.
- CVSFLAGS
-
General options that are passed to CVS.
By default, this is set to
"-d $CVSREPOSITORY"
to specify from where the files must be fetched.
- CVSREPOSITORY
-
The path to the CVS repository.
This is referenced in the default
$CVSFLAGS value.
- CXX
-
The C++ compiler.
- CXXFILESUFFIX
-
The suffix for C++ source files.
This is used by the internal CXXFile builder
when generating C++ files from Lex (.ll) or YACC (.yy) input files.
The default suffix is
.cc.
SCons also treats files with the suffixes
.cpp,
.cxx,
.c++,
and
.C++
as C++ files.
On case-sensitive systems (Linux, UNIX, and other POSIX-alikes),
SCons also treats
.C
(upper case) files
as C++ files.
- CXXCOM
-
The command line used to compile a C++ source file to an object file.
Any options specified in the $CXXFLAGS and $CPPFLAGS construction variables
are included on this command line.
- CXXFLAGS
-
General options that are passed to the C++ compiler.
- Dir
-
A function that converts a file name into a Dir instance relative to the
target being built.
- DVIPDF
-
The TeX DVI file to PDF file converter.
- DVIPDFFLAGS
-
General options passed to the TeX DVI file to PDF file converter.
- DVIPDFCOM
-
The command line used to convert TeX DVI files into a PDF file.
- DVIPS
-
The TeX DVI file to PostScript converter.
- DVIPSFLAGS
-
General options passed to the TeX DVI file to PostScript converter.
- ENV
-
A dictionary of environment variables
to use when invoking commands.
Note that, by default,
scons
does
not
propagate the environment in force when you
execute
scons
to the commands used to build target files.
This is so that builds will be guaranteed
repeatable regardless of the environment
variables set at the time
scons
is invoked.
If you want to propagate your
environment variables
to the commands executed
to build target files,
you must do so explicitly:
-
import os
env = Environment(ENV = os.environ)
-
Note that you can choose only to propagate
certain environment variables.
A common example is
the system
PATH
environment variable,
so that
scons
uses the same utilities
as the invoking shell (or other process):
-
import os
env = Environment(ENV = {'PATH' : os.environ['PATH']})
- ESCAPE
-
A function that will be called to escape shell special characters in
command lines. The function should take one argument: the command line
string to escape; and should return the escaped command line.
- F77
-
The Fortran compiler.
- F77COM
-
The command line used to compile a Fortran source file to an object file.
- F77FLAGS
-
General user-specified options that are passed to the Fortran compiler.
Note that this variable does
not
contain
-I
(or similar) include search path options
that scons generates automatically from $F77PATH.
See
_F77INCFLAGS,
below,
for the variable that expands to those options.
- _F77INCFLAGS
-
An automatically-generated construction variable
containing the Fortran compiler command-line options
for specifying directories to be searched for include files.
The value of $_F77INCFLAGS is created
by appending $INCPREFIX and $INCSUFFIX
to the beginning and end
of each directory in $F77PATH.
- F77PATH
-
The list of directories that the Fortran compiler will search for include
directories. The Fortran implicit dependency scanner will search these
directories for include files. Don't explicitly put include directory
arguments in F77FLAGS because the result will be non-portable
and the directories will not be searched by the dependency scanner. Note:
directory names in F77PATH will be looked-up relative to the SConscript
directory when they are used in a command. To force
scons
to look-up a directory relative to the root of the source tree use #:
-
env = Environment(F77PATH='#/include')
-
The directory look-up can also be forced using the
Dir()
function:
-
include = Dir('include')
env = Environment(F77PATH=include)
-
The directory list will be added to command lines
through the automatically-generated
$_F77INCFLAGS
construction variable,
which is constructed by
appending the values of the
$INCPREFIX and $INCSUFFIX
construction variables
to the beginning and end
of each directory in $F77PATH.
Any command lines you define that need
the F77PATH directory list should
include $_F77INCFLAGS:
-
env = Environment(F77COM="my_compiler $_F77INCFLAGS -c -o $TARGET $SOURCE")
- F77PPCOM
-
The command line used to compile a Fortran source file to an object file
after first running the file through the C preprocessor.
Any options specified in the $F77FLAGS and $CPPFLAGS construction variables
are included on this command line.
- File
-
A function that converts a file name into a File instance relative to the
target being built.
- GS
-
The Ghostscript program used to convert PostScript to PDF files.
- GSFLAGS
-
General options passed to the Ghostscript program
when converting PostScript to PDF files.
- GSCOM
-
The Ghostscript command line used to convert PostScript to PDF files.
- INCPREFIX
-
The prefix used to specify an include directory on the C compiler command
line.
This will be appended to the beginning of each directory
in the $CPPPATH and $F77PATH construction variables
when the $_CPPINCFLAGS and $_F77INCFLAGS
variables are automatically generated.
- INCSUFFIX
-
The suffix used to specify an include directory on the C compiler command
line.
This will be appended to the end of each directory
in the $CPPPATH and $F77PATH construction variables
when the $_CPPINCFLAGS and $_F77INCFLAGS
variables are automatically generated.
- INSTALL
-
A function to be called to install a file into a
destination file name.
The default function copies the file into the destination
(and sets the destination file's mode and permission bits
to match the source file's).
The function takes the following arguments:
-
def install(dest, source, env):
-
dest
is the path name of the destination file.
source
is the path name of the source file.
env
is the construction environment
(a dictionary of construction values)
in force for this file installation.
- JAR
-
The Java archive tool.
- JARCOM
-
The command line used to call the Java archive tool.
- JARFLAGS
-
General options passed to the Java archive tool.
By default this is set to
cf
to create the necessary
jar
file.
- JARSUFFIX
-
The suffix for Java archives:
.jar
by default.
- JAVAC
-
The Java compiler.
- JAVACCOM
-
The command line used to compile a directory tree containing
Java source files to
corresponding Java class files.
Any options specified in the $JAVACFLAGS construction variable
are included on this command line.
- JAVACFLAGS
-
General options that are passed to the Java compiler.
- JAVACLASSDIR
-
The directory in which Java class files may be found.
This is stripped from the beginning of any Java .class
file names supplied to the
JavaH
builder.
- JAVACLASSSUFFIX
-
The suffix for Java class files;
.class
by default.
- JAVAH
-
The Java generator for C header and stub files.
- JAVAHCOM
-
The command line used to generate C header and stub files
from Java classes.
Any options specified in the $JAVAHFLAGS construction variable
are included on this command line.
- JAVAHFLAGS
-
General options passed to the C header and stub file generator
for Java classes.
- JAVASUFFIX
-
The suffix for Java files;
.java
by default.
- LATEX
-
The LaTeX structured formatter and typesetter.
- LATEXCOM
-
The command line used to call the LaTeX structured formatter and typesetter.
- LATEXFLAGS
-
General options passed to the LaTeX structured formatter and typesetter.
- LEX
-
The lexical analyzer generator.
- LEXFLAGS
-
General options passed to the lexical analyzer generator.
- LEXCOM
-
The command line used to call the lexical analyzer generator
to generate a source file.
- _LIBDIRFLAGS
-
An automatically-generated construction variable
containing the linker command-line options
for specifying directories to be searched for library.
The value of $_LIBDIRFLAGS is created
by appending $LIBDIRPREFIX and $LIBDIRSUFFIX
to the beginning and end
of each directory in $LIBPATH.
- LIBDIRPREFIX
-
The prefix used to specify a library directory on the linker command line.
This will be appended to the beginning of each directory
in the $LIBPATH construction variable
when the $_LIBDIRFLAGS variable is automatically generated.
- LIBDIRSUFFIX
-
The suffix used to specify a library directory on the linker command line.
This will be appended to the end of each directory
in the $LIBPATH construction variable
when the $_LIBDIRFLAGS variable is automatically generated.
- _LIBFLAGS
-
An automatically-generated construction variable
containing the linker command-line options
for specifying libraries to be linked with the resulting target.
The value of $_LIBFLAGS is created
by appending $LIBLINKPREFIX and $LIBLINKSUFFIX
to the beginning and end
of each directory in $LIBS.
- LIBLINKPREFIX
-
The prefix used to specify a library to link on the linker command line.
This will be appended to the beginning of each library
in the $LIBS construction variable
when the $_LIBFLAGS variable is automatically generated.
- LIBLINKSUFFIX
-
The suffix used to specify a library to link on the linker command line.
This will be appended to the end of each library
in the $LIBS construction variable
when the $_LIBFLAGS variable is automatically generated.
- LIBPATH
-
The list of directories that will be searched for libraries.
The implicit dependency scanner will search these
directories for include files. Don't explicitly put include directory
arguments in $LINKFLAGS or $SHLINKFLAGS
because the result will be non-portable
and the directories will not be searched by the dependency scanner. Note:
directory names in LIBPATH will be looked-up relative to the SConscript
directory when they are used in a command. To force
scons
to look-up a directory relative to the root of the source tree use #:
-
env = Environment(LIBPATH='#/libs')
-
The directory look-up can also be forced using the
Dir()
function:
-
libs = Dir('libs')
env = Environment(LIBPATH=libs)
-
The directory list will be added to command lines
through the automatically-generated
$_LIBDIRFLAGS
construction variable,
which is constructed by
appending the values of the
$LIBDIRPREFIX and $LIBDIRSUFFIX
construction variables
to the beginning and end
of each directory in $LIBPATH.
Any command lines you define that need
the LIBPATH directory list should
include $_LIBDIRFLAGS:
-
env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")
- LIBPREFIX
-
The prefix used for (static) library file names.
- LIBPREFIXES
-
An array of legal prefixes for library file names.
- LIBS
-
A list of one or more libraries
that will be linked with
any executable programs
created by this environment.
-
The library list will be added to command lines
through the automatically-generated
$_LIBFLAGS
construction variable,
which is constructed by
appending the values of the
$LIBLINKPREFIX and $LIBLINKSUFFIX
construction variables
to the beginning and end
of each directory in $LIBS.
Any command lines you define that need
the LIBS library list should
include $_LIBFLAGS:
-
env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")
- LIBSUFFIX
-
The suffix used for (static) library file names.
- LIBSUFFIXES
-
An array of legal suffixes for library file names.
- LINK
-
The linker.
- LINKFLAGS
-
General user options passed to the linker.
Note that this variable should
not
contain
-l
(or similar) options for linking with the libraries listed in $LIBS,
nor
-L
(or similar) library search path options
that scons generates automatically from $LIBPATH.
See
_LIBFLAGS,
above,
for the variable that expands to library-link options,
and
_LIBDIRFLAGS,
above,
for the variable that expands to library search path options.
- LINKCOM
-
The command line used to link object files into an executable.
- M4
-
The M4 macro preprocessor.
- M4FLAGS
-
General options passed to the M4 macro preprocessor.
- M4COM
-
The command line used to pass files through the macro preprocessor.
- MAXLINELENGTH
-
The maximum number of characters allowed on an external command line.
On Win32 systems,
link lines longer than this many characters
are linke via a temporary file name.
- MSVS
-
When the Microsoft Visual Studio tools are initialized, they set up
this dictionary with the following keys:
VERSION:
the version of MSVS being used (can be set via
MSVS_VERSION)
VERSIONS:
the available versions of MSVS installed
VCINSTALLDIR:
installed directory of Visual C++
VSINSTALLDIR:
installed directory of Visual Studio
FRAMEWORKDIR:
installed directory of the .NET framework
FRAMEWORKVERSIONS:
list of installed versions of the .NET framework, sorted latest to oldest.
FRAMEWORKVERSION:
latest installed version of the .NET framework
FRAMEWORKSDKDIR:
installed location of the .NET SDK.
PLATFORMSDKDIR:
installed location of the Platform SDK.
PLATFORMSDK_MODULES:
dictionary of installed Platform SDK modules,
where the dictionary keys are keywords for the various modules, and
the values are 2-tuples where the first is the release date, and the
second is the version number.
If a value isn't set, it wasn't available in the registry.
- MSVS_IGNORE_IDE_PATHS
-
Tells the MS Visual Studio tools to use minimal INCLUDE, LIB, and PATH settings,
instead of the settings from the IDE.
For Visual Studio, SCons will (by default) automatically determine
where MSVS is installed, and use the LIB, INCLUDE, and PATH variables
set by the IDE. You can override this behavior by setting these
variables after Environment initialization, or by setting
MSVS_IGNORE_IDE_PATHS = 1
in the Environment initialization.
Specifying this will not leave these unset, but will set them to a
minimal set of paths needed to run the tools successfully.
-
For VS6, the mininimal set is:
INCLUDE:'<VSDir>\VC98\ATL\include;<VSDir>\VC98\MFC\include;<VSDir>\VC98\include'
LIB:'<VSDir>\VC98\MFC\lib;<VSDir>\VC98\lib'
PATH:'<VSDir>\Common\MSDev98\bin;<VSDir>\VC98\bin'
For VS7, it is:
INCLUDE:'<VSDir>\Vc7\atlmfc\include;<VSDir>\Vc7\include'
LIB:'<VSDir>\Vc7\atlmfc\lib;<VSDir>\Vc7\lib'
PATH:'<VSDir>\Common7\Tools\bin;<VSDir>\Common7\Tools;<VSDir>\Vc7\bin'
-
Where '<VSDir>' is the installed location of Visual Studio.
- MSVS_VERSION
-
Sets the preferred version of MSVS to use.
SCons will (by default) select the latest version of MSVS
installed on your machine. So, if you have version 6 and version 7
(MSVS .NET) installed, it will prefer version 7. You can override this by
specifying the
MSVS_VERSION
variable in the Environment initialization, setting it to the
appropriate version ('6.0' or '7.0', for example).
If the given version isn't installed, tool initialization will fail.
- MSVSPROJECTCOM
-
The action used to generate Microsoft Visual Studio
project and solution files.
- MSVSPROJECTSUFFIX
-
The suffix used for Microsoft Visual Studio project (DSP) files.
The default value is
.vcproj
when using Visual Studio version 7.x (.NET),
and
.dsp
when using earlier versions of Visual Studio.
- MSVSSOLUTIONSUFFIX
-
The suffix used for Microsoft Visual Studio solution (DSW) files.
The default value is
.sln
when using Visual Studio version 7.x (.NET),
and
.dsw
when using earlier versions of Visual Studio.
- no_import_lib
-
When set to non-zero,
suppresses creation of a corresponding Win32 static import lib by the
SharedLibrary
builder when used with
MinGW or Microsoft Visual Studio.
This also suppresses creation
of an export (.exp) file
when using Microsoft Visual Studio.
- OBJPREFIX
-
The prefix used for (static) object file names.
- OBJSUFFIX
-
The suffix used for (static) object file names.
- P4
-
The Perforce executable.
- P4COM
-
The command line used to
fetch source files from Perforce.
- P4FLAGS
-
General options that are passed to Perforce.
- PCH
-
The Microsoft Visual C++ precompiled header that will be used when compiling
object files. This variable is ignored by tools other than Microsoft Visual C++.
When this variable is
defined SCons will add options to the compiler command line to
cause it to use the precompiled header, and will also set up the
dependencies for the PCH file. Example:
-
env['PCH'] = 'StdAfx.pch'
- PCHSTOP
-
This variable specifies how much of a source file is precompiled. This
variable is ignored by tools other than Microsoft Visual C++, or when
the PCH variable is not being used. When this variable is define it
must be a string that is the name of the header that
is included at the end of the precompiled portion of the source files, or
the empty string if the "#pragma hrdstop" construct is being used:
-
env['PCHSTOP'] = 'StdAfx.h'
- PDB
-
The Microsoft Visual C++ PDB file that will store debugging information for
object files, shared libraries, and programs. This variable is ignored by
tools other than Microsoft Visual C++.
When this variable is
defined SCons will add options to the compiler and linker command line to
cause them to generate external debugging information, and will also set up the
dependencies for the PDB file. Example:
-
env['PDB'] = 'hello.pdb'
- PDFCOM
-
A deprecated synonym for $DVIPDFCOM.
- PDFPREFIX
-
The prefix used for PDF file names.
- PDFSUFFIX
-
The suffix used for PDF file names.
- PLATFORM
-
The name of the platform used to create the Environment. If no platform is
specified when the Environment is created,
SCons
autodetects the platform.
-
env = Environment(tools = [])
if env['PLATFORM'] == 'cygwin':
Tool('mingw')(env)
else:
Tool('msvc')(env)
- PROGPREFIX
-
The prefix used for executable file names.
- PROGSUFFIX
-
The suffix used for executable file names.
- PSCOM
-
The command line used to convert TeX DVI files into a PostScript file.
- PSPREFIX
-
The prefix used for PostScript file names.
- PSSUFFIX
-
The prefix used for PostScript file names.
- QTDIR
-
The qt tool tries to take this from os.environ.
It also initializes all QT_*
construction variables listed below.
(Note that all paths are constructed
with python's os.path.join() method, but listed here with the '/' seperator
for easier reading.)
In addition, the construction environment
variables CPPPATH, LIBPATH, LIBS, PROGEMITTER, SHLIBEMITTER and LIBEMITTER
are modified. Because the build-performance is affected when using this tool,
you have to explicitly specify it at Environment creation:
-
Environment(tools=['default','qt']).
-
You may want to use
Configure
to verify that the qt support really works.
The qt tool supports the following operations:
Automatic moc file generation from header files.
You do not have to specify moc files explicitly, the tool does it for you.
However, there are a few preconditions to do so: Your header file must have
the same filebase as your implementation file and must stay in the same
directory. It must have one of the suffixes .h, .hpp, .H, .hxx, .hh.
Automatic moc file generation from cxx files.
As stated in the qt documentation,
include the moc file at the end of the cxx file.
Note that you have to include the file, which is generated by the
QT_MOCNAMEGENERATOR function. If you are using BuildDir, you may need to
specify duplicate=1.
Automatic handling of .ui files.
The implementation files generated from .ui files are handled much the same
as yacc or lex files. Because there are also generated headers, you may
need to specify duplicate=1 in calls to BuildDir.
- QT_LIB
-
Default value is 'qt'. You may want to set this to 'qt-mt'
- QT_MOC
-
Default value is '$QTDIR/bin/moc'.
- QT_UIC
-
Default value is '$QTDIR/bin/uic'.
- QT_UICIMPLFLAGS
-
Default value is ''. These flags are passed to uic, when creating a cxx
file from a .ui file.
- QT_UICDECLFLAGS
-
Default value is ''. These flags are passed to uic, when creating a a h
file from a .ui file.
- QT_MOCFROMHFLAGS
-
Default value is ''. These flags are passed to moc, when moccing a header
file.
- QT_MOCFROMCPPFLAGS
-
Default value is '-i'. These flags are passed to moc, when moccing a
cpp file.
- QT_HSUFFIX
-
Default value is '.h'. Suffix of headers generated with uic.
- QT_UISUFFIX
-
Default value is '.ui'. Suffix of designer files.
- QT_UIHSUFFIX
-
Default value is '.ui.h'.
- QT_MOCNAMEGENERATOR
-
Three-argument function, which generates names of moc output files.
This is the most flexible way to support the huge number of conventions
for this type of files. The arguments are the
filebase
, which is the file to be moc'd without path and extension, the
src_suffix
, which is the extension of the file to be moc'd and the environment
env
The default value maps 'myfile.myext' to 'moc_myfile.$CXXFILESUFFIX':
-
lambda filebase, src_suffix, env: 'moc_' + filebase + env['CXXFILESUFFIX']
- QT_UICIMPLCOM
-
Command to generate cxx files from .ui files.
- QT_UICDECLCOM
-
Command to generate header files from .ui files.
- QT_MOCFROMHCOM
-
Command to generate a moc file from a header.
- QT_MOCFROMCXXCOM
-
Command to generate a moc file from a cpp file.
- RANLIB
-
The archive indexer.
- RANLIBFLAGS
-
General options passed to the archive indexer.
- RC
-
The resource compiler used by the RES builder.
- RCCOM
-
The command line used by the RES builder.
- RCFLAGS
-
The flags passed to the resource compiler by the RES builder.
- RCS
-
The RCS executable.
Note that this variable is not actually used
for the command to fetch source files from RCS;
see the
RCS_CO
construction variable, below.
- RCS_CO
-
The RCS "checkout" executable,
used to fetch source files from RCS.
- RCS_COCOM
-
The command line used to
fetch (checkout) source files from RCS.
- RCS_COFLAGS
-
Options that are passed to the $RCS_CO command.
- RDirs
-
A function that converts a file name into a list of Dir instances by
searching the repositories.
- RMIC
-
The Java RMI stub compiler.
- RMICCOM
-
The command line used to compile stub
and skeleton class files
from Java classes that contain RMI implementations.
Any options specified in the $RMICFLAGS construction variable
are included on this command line.
- RMICFLAGS
-
General options passed to the Java RMI stub compiler.
- SCANNERS
-
A list of the available implicit dependency scanners. [CScan] by default.
- SCCS
-
The SCCS executable.
- SCCSCOM
-
The command line used to
fetch source files from SCCS.
- SCCSFLAGS
-
General options that are passed to SCCS.
- SCCSGETFLAGS
-
Options that are passed specifically to the SCCS "get" subcommand.
This can be set, for example, to
-e
to check out editable files from SCCS.
- SHCC
-
The C compiler used for generating shared-library objects.
- SHCCCOM
-
The command line used to compile a C source file
to a shared-library object file.
Any options specified in the $SHCCFLAGS and $CPPFLAGS construction variables
are included on this command line.
- SHCCFLAGS
-
Options that are passed to the C compiler
to generate shared-library objects.
- SHCXX
-
The C++ compiler used for generating shared-library objects.
- SHCXXCOM
-
The command line used to compile a C++ source file
to a shared-library object file.
Any options specified in the $SHCXXFLAGS and $CPPFLAGS construction variables
are included on this command line.
- SHCXXFLAGS
-
Options that are passed to the C++ compiler
to generate shared-library objects.
- SHELL
-
A string naming the shell program that will be passed to the
SPAWN
function.
See the
SPAWN
construction variable for more information.
- SHF77
-
The Fortran compiler used for generating shared-library objects.
- SHF77COM
-
The command line used to compile a Fortran source file
to a shared-library object file.
- SHF77FLAGS
-
Options that are passed to the Fortran compiler
to generated shared-library objects.
- SHF77PPCOM
-
The command line used to compile a Fortran source file to a
shared-library object file
after first running the file through the C preprocessor.
Any options specified in the $SHF77FLAGS and $CPPFLAGS construction variables
are included on this command line.
- SHLIBPREFIX
-
The prefix used for shared library file names.
- SHLIBSUFFIX
-
The suffix used for shared library file names.
- SHLINK
-
The linker for programs that use shared libraries.
- SHLINKFLAGS
-
General user options passed to the linker for programs using shared libraries.
Note that this variable should
not
contain
-l
(or similar) options for linking with the libraries listed in $LIBS,
nor
-L
(or similar) include search path options
that scons generates automatically from $LIBPATH.
See
_LIBFLAGS,
above,
for the variable that expands to library-link options,
and
_LIBDIRFLAGS,
above,
for the variable that expands to library search path options.
- SHOBJPREFIX
-
The prefix used for shared object file names.
- SHOBJSUFFIX
-
The suffix used for shared object file names.
- SOURCE
-
A reserved variable name
that may not be set or used in a construction environment.
(See "Variable Substitution," below.)
- SOURCES
-
A reserved variable name
that may not be set or used in a construction environment.
(See "Variable Substitution," below.)
- SPAWN
-
A command interpreter function that will be called to execute command line
strings. The function must expect 4 arguments:
-
def spawn(shell, escape, cmd, args, env):
-
sh
is a string naming the shell program to use.
escape
is a function that can be called to escape shell special characters in
the command line.
cmd
is the path to the command to be executed.
args
is that arguments to the command.
env
is a dictionary of the environment variables
in which the command should be executed.
- SWIG
-
The scripting language wrapper and interface generator.
- SWIGCFILESUFFIX
-
The suffix that will be used for intermediate C
source files generated by
the scripting language wrapper and interface generator.
The default value is
_wrap$CFILESUFFIX.
By default, this value is used whenever the
-c++
option is
not
specified as part of the
SWIGFLAGS
construction variable.
- SWIGCOM
-
The command line used to call
the scripting language wrapper and interface generator.
- SWIGCXXFILESUFFIX
-
The suffix that will be used for intermediate C++
source files generated by
the scripting language wrapper and interface generator.
The default value is
_wrap$CFILESUFFIX.
By default, this value is used whenever the
-c++
option is specified as part of the
SWIGFLAGS
construction variable.
- SWIGFLAGS
-
General options passed to
the scripting language wrapper and interface generator.
This is where you should set
-python,
-perl5,
-tcl,
or whatever other options you want to specify to SWIG.
If you set the
-c++
option in this variable,
scons
will, by default,
generate a C++ intermediate source file
with the extension that is specified as the
$CXXFILESUFFIX
variable.
- TAR
-
The tar archiver.
- TARCOM
-
The command line used to call the tar archiver.
- TARFLAGS
-
General options passed to the tar archiver.
- TARGET
-
A reserved variable name
that may not be set or used in a construction environment.
(See "Variable Substitution," below.)
- TARGETS
-
A reserved variable name
that may not be set or used in a construction environment.
(See "Variable Substitution," below.)
- TARSUFFIX
-
The suffix used for tar file names.
- TEX
-
The TeX formatter and typesetter.
- TEXCOM
-
The command line used to call the TeX formatter and typesetter.
- TEXFLAGS
-
General options passed to the TeX formatter and typesetter.
- TOOLS
-
A list of the names of the Tool specifications
that are part of this construction environment.
- WIN32_INSERT_DEF
-
When this is set to true,
a library build of a WIN32 shared library (.dll file)
will also build a corresponding .def file at the same time,
if a .def file is not already listed as a build target.
The default is 0 (do not build a .def file).
- WIN32DEFPREFIX
-
The prefix used for WIN32 .def file names.
- WIN32DEFSUFFIX
-
The suffix used for WIN32 .def file names.
- YACC
-
The parser generator.
- YACCCOM
-
The command line used to call the parser generator
to generate a source file.
- YACCFLAGS
-
General options passed to the parser generator.
If $YACCFLAGS contains a -d option,
SCons assumes that the call will also create a .h file
(if the yacc source file ends in a .y suffix)
or a .hpp file
(if the yacc source file ends in a .yy suffix)
- ZIP
-
The zip compression and file packaging utility.
- ZIPCOM
-
The command line used to call the zip utility.
- ZIPFLAGS
-
General options passed to the zip utility.
Construction variables can be retrieved and set using the
Dictionary
method of the construction environment:
-
dict = env.Dictionary()
dict["CC"] = "cc"
or using the [] operator:
-
env["CC"] = "cc"
Construction variables can also be passed to the construction environment
constructor:
-
env = Environment(CC="cc")
or when copying a construction environment using the
Copy
method:
-
env2 = env.Copy(CC="cl.exe")
Configure contexts
scons
supports
configure contexts,
an integrated mechanism similar to the
various AC_CHECK macros in GNU autoconf
for testing for the existence of C header
files, libraries, etc.
In contrast to autoconf,
scons
does not maintain an explicit cache of the tested values,
but uses its normal dependency tracking to keep the checked values
up to date.
The following methods can be used to perform checks:
- Configure(env, [custom_tests, conf_dir, log_file])
-
This creates a configure context, which can be used to perform checks.
env
specifies the environment for building the tests.
This environment may be modified when performing checks.
custom_tests
is a dictionary containing custom tests.
See also the section about custom tests below.
By default, no custom tests are added to the configure context.
conf_dir
specifies a directory where the test cases are built.
Note that this directory is not used for building
normal targets.
The default value is the directory
#/.sconf_temp.
log_file
specifies a file which collects the output from commands
that are executed to check for the existence of header files, libraries, etc.
The default is the file #/config.log.
If you are using the
BuildDir
method,
you may want to specify a subdirectory under your build directory.
A created
Configure
instance has the following associated methods:
- Configure.Finish(self)
-
This method should be called after configuration is done.
It returns the environment as modified
by the configuration checks performed.
After this method is called, no further checks can be performed
with this configuration context.
However, you can create a new
Configure
context to perform additional checks.
Only one context should be active at a time.
The following Checks are predefined.
(This list will likely grow larger as time
goes by and developers contribute new useful tests.)
- Configure.CheckCHeader(self, header, [include_quotes])
-
Checks if
header
is usable in the C-language. The optional argument
include_quotes
must be
a two character string, where the first character denotes the opening
quote and the second character denotes the closing quote (both default
to N'34')
Returns 1 on success and 0 on failure.
- Configure.CheckCXXHeader(self, header, [include_quotes])
-
Checks if
header
is usable in the C++ language. The optional argument
include_quotes
must be
a two character string, where the first character denotes the opening
quote and the second character denotes the closing quote (both default
to N'34')
Returns 1 on success and 0 on failure.
- Configure.CheckFunc(self, function_name)
-
Checks if the specified
C or C+++ function is available.
function_name
is the name of the function to check for.
- Configure.CheckLib(self, [library, symbol, autoadd])
-
Checks if
library
provides
symbol.
If the value of
autoadd
is 1 and the library provides the specified
symbol,
appends the library to the LIBS construction environment variable.
library
may also be None (the default),
in which case
symbol
is checked with the current LIBS variable.
The default
symbol
is "main",
which just check if
you can link against the specified
library.
The default value for
autoadd
is 1.
It is assumed, that the C-language is used.
This method returns 1 on success and 0 on error.
- Configure.CheckLibWithHeader(self, library, header, language, [call, autoadd])
-
In contrast to the
Configure.CheckLib
call, this call provides a more sophisticated way to check against libraries.
Again,
library
specifies the library to check.
header
specifies a header to check for.
language
may be one of 'C','c','CXX','cxx','C++' and 'c++'.
call
can be any valid expression (with a trailing ';'). The default is 'main();'.
autoadd
specifies whether to add the library to the environment (only if the check
succeeds). This method returns 1 on success and 0 on error.
- Configure.CheckType(self, type_name, [includes])
-
Checks for the existence of a type defined by
typedef.
type_name
specifies the typedef name to check for.
includes
is a string containing one or more
#include
lines that will be inserted into the program
that will be run to test for the existence of the type.
Example of a typical Configure usage:
-
env = Environment()
conf = Configure( env )
if not conf.CheckCHeader( 'math.h' ):
print 'We really need math.h!'
Exit(1)
if conf.CheckLibWithHeader( 'qt', 'qapp.h', 'c++', 'QApplication qapp(0,0);' ):
# do stuff for qt - usage, e.g.
conf.env.Append( CPPFLAGS = '-DWITH_QT' )
env = conf.Finish()
You can define your own custom checks.
in addition to the predefined checks.
These are passed in a dictionary to the Configure function.
This dictionary maps the names of the checks
to user defined Python callables
(either Python functions or class instances implementing the
__call__
method).
The first argument of the call is always a
CheckContext
instance followed by the arguments,
which must be supplied by the user of the check.
These CheckContext instances define the following methods:
- CheckContext.Message(self, text)
-
Usually called before the check is started.
text
will be displayed to the user, e.g. 'Checking for library X...'
- CheckContext.Result(self,, res)
-
Usually called after the check is done.
res
can be either an integer or a string. In the former case, 'ok' (res != 0)
or 'failed' (res == 0) is displayed to the user, in the latter case the
given string is displayed.
- CheckContext.TryCompile(self, text, extension)
-
Checks if a file with the specified
extension
(e.g. '.c') containing
text
can be compiled using the environment's
Object
builder. Returns 1 on success and 0 on failure.
- CheckContext.TryLink(self, text, extension)
-
Checks, if a file with the specified
extension
(e.g. '.c') containing
text
can be compiled using the environment's
Program
builder. Returns 1 on success and 0 on failure.
- CheckContext.TryRun(self, text, extension)
-
Checks, if a file with the specified
extension
(e.g. '.c') containing
text
can be compiled using the environment's
Program
builder. On success, the program is run. If the program
executes successfully
(that is, its return status is 0),
a tuple
(1, outputStr)
is returned, where
outputStr
is the standard output of the
program.
If the program fails execution
(its return status is non-zero),
then (0, '') is returned.
- CheckContext.TryAction(self, action, [text, extension])
-
Checks if the specified
action
with an optional source file (contents
text
, extension
extension
= ''
) can be executed.
action
may be anything which can be converted to a
scons
Action.
On success,
(1, outputStr)
is returned, where
outputStr
is the content of the target file.
On failure
(0, '')
is returned.
- CheckContext.TryBuild(self, builder, [text, extension])
-
Low level implementation for testing specific builds;
the methods above are based on this method.
Given the Builder instance
builder
and the optional
text
of a source file with optional
extension,
this method returns 1 on success and 0 on failure. In addition,
self.lastTarget
is set to the build target node, if the build was successful.
Example for implementing and using custom tests:
-
def CheckQt(context, qtdir):
context.Message( 'Checking for qt ...' )
lastLIBS = context.env['LIBS']
lastLIBPATH = context.env['LIBPATH']
lastCPPPATH= context.env['CPPPATH']
context.env.Append(LIBS = 'qt', LIBPATH = qtdir + '/lib', CPPPATH = qtdir + '/include' )
ret = context.TryLink("""
#include <qapp.h>
int main(int argc, char **argv) {
QApplication qapp(argc, argv);
return 0;
}
""")
if not ret:
context.env.Replace(LIBS = lastLIBS, LIBPATH=lastLIBPATH, CPPPATH=lastCPPPATH)
context.Result( ret )
return ret
env = Environment()
conf = Configure( env, custom_tests = { 'CheckQt' : CheckQt } )
if not conf.CheckQt('/usr/lib/qt'):
print 'We really need qt!'
Exit(1)
env = conf.Finish()
Construction Variable Options
Often when building software, various options need to be specified at build
time that are not known when the SConstruct/SConscript files are
written. For example, libraries needed for the build may be in non-standard
locations, or site-specific compiler options may need to be passed to the
compiler.
scons
provides a mechanism for overridding construction variables from the
command line or a text-based SConscript file through an Options
object. To create an Options object, call the Options() function:
- Options([files], [args])
-
This creates an Options object that will read construction variables from
the file or list of filenames specified in
files.
If no files are specified,
or the
files
argument is
None,
then no files will be read.
The optional argument
args
is a dictionary of
values that will override anything read from the specified files;
it is primarily intended to be passed the
ARGUMENTS
dictionary that holds variables
specified on the command line.
Example:
-
opts = Options('custom.py')
opts = Options('overrides.py', ARGUMENTS)
opts = Options(None, {FOO:'expansion', BAR:7})
Options objects have the following methods:
- Add(key, [help, default, validator, converter])
-
This adds a customizable construction variable to the Options object.
key
is the name of the variable.
help
is the help text for the variable.
default
is the default value of the variable.
validator
is called to validate the value of the variable, and should take three
arguments: key, value, and environment
converter
is called to convert the value before putting it in the environment, and
should take a single argument: value. Example:
-
opts.Add('CC', 'The C compiler')
- Update(env, [args])
-
This updates a construction environment
env
with the customized construction variables. Normally this method is not
called directly, but is called indirectly by passing the Options object to
the Environment() function:
-
env = Environment(options=opts)
- Save(filename, env)
-
This saves the currently set options into a script file named
filename
that can be used on the next invocation to automatically load the current
settings. This method combined with the Options method can be used to
support caching of options between runs.
-
env = Environment()
opts = Options(['options.cache', 'custom.py'])
opts.Add(...)
opts.Update(env)
opts.Save('options.cache', env)
- GenerateHelpText(env, [sort])
-
This generates help text documenting the customizable construction
variables suitable to passing in to the Help() function.
env
is the construction environment that will be used to get the actual values
of customizable variables. Calling with
an optional
sort
function
will cause the output to be sorted
by the specified argument.
The specific
sort
function
should take two arguments
and return
-1, 0 or 1
(like the standard Python
cmp
function).
-
Help(opts.GenerateHelpText(env))
Help(opts.GenerateHelpText(env, sort=cmp))
The text based SConscript file is executed as a Python script, and the
global variables are queried for customizable construction
variables. Example:
-
CC = 'my_cc'
Other Functions
scons
also provides various additional functions,
not associated with a construction environment,
that SConscript files can use:
- AddPostAction(target, action)
-
Arranges for the specified
action
to be performed
after the specified
target
has been built.
The specified action(s) may be
an Action object, or anything that
can be converted into an Action object
(see below).
- AddPreAction(target, action)
-
Arranges for the specified
action
to be performed
before the specified
target
is built.
The specified action(s) may be
an Action object, or anything that
can be converted into an Action object
(see below).
- Alias(name)
-
Creates or references an alias independent of the construction environment.
-
Alias('install')
- BuildDir(build_dir, src_dir, [duplicate])
-
This specifies a build directory
build_dir
in which to build all derived files
that would normally be built under
src_dir.
Multiple build directories can be set up for multiple build variants, for
example.
src_dir
must be underneath the SConstruct file's directory,
and
build_dir
may not be underneath the
src_dir .
The default behavior is for
scons
to duplicate all of the files in the tree underneath
src_dir
into
build_dir,
and then build the derived files within the copied tree.
(The duplication is performed by
linking or copying,
depending on the platform.)
This guarantees correct builds
regardless of whether intermediate source files
are generated during the build,
where preprocessors or other scanners search
for included files,
or whether individual compilers or other invoked tools
are hard-coded to put derived files in the same directory as source files.
This behavior of making a complete copy of the source tree
may be disabled by setting
duplicate
to 0.
This will cause
scons
to invoke Builders using the
path names of source files in
src_dir
and the path names of derived files within
build_dir.
This is always more efficient than
duplicate=1,
and is usually safe for most builds.
Specifying
duplicate=0,
however,
may cause build problems
if source files are generated during the build,
if any invoked tools are hard-coded to
put derived files in the same directory as the source files.
Note that specifying a
BuildDir
works most naturally
with a subsidiary SConscript file
in the source directory.
However,
you would then call the subsidiary SConscript file
not in the source directory,
but in the
build_dir ,
as if
scons
had made a virtual copy of the source tree
regardless of the value of
duplicate.
This is how you tell
scons
which variant of a source tree to build.
For example:
-
BuildDir('build-variant1', 'src')
SConscript('build-variant1/SConscript')
BuildDir('build-variant2', 'src')
SConscript('build-variant2/SConscript')
-
See also the
SConscript()
function, described below,
for another way to
specify a build directory
in conjunction with calling a subsidiary
SConscript file.)
- CacheDir(cache_dir)
-
Specifies that
scons
will maintain a cache of derived files in
cache_dir .
The derived files in the cache will be shared
among all the builds using the same
CacheDir()
call.
When a
CacheDir()
is being used and
scons
finds a derived file that needs to be rebuilt,
it will first look in the cache to see if a
derived file has already been built
from identical input files and an identical build action
(as incorporated into the MD5 build signature).
If so,
scons
will retrieve the file from the cache.
If the derived file is not present in the cache,
scons
will rebuild it and
then place a copy of the built file in the cache
(identified by its MD5 build signature),
so that it may be retrieved by other
builds that need to build the same derived file
from identical inputs.
Use of a specified
CacheDir()
may be disabled for any invocation
by using the
--cache-disable
option.
If the
--cache-force
option is used,
scons
will place a copy of
all
derived files in the cache,
even if they already existed
and were not built by this invocation.
This is useful to populate a cache
the first time
CacheDir()
is added to a build,
or after using the
--cache-disable
option.
When using
CacheDir(),
scons
will report,
"Retrieved `file' from cache,"
unless the
--cache-show
option is being used.
When the
--cache-show
option is used,
scons
will print the action that
would
have been used to build the file,
without any indication that
the file was actually retrieved from the cache.
This is useful to generate build logs
that are equivalent regardless of whether
a given derived file has been built in-place
or retrieved from the cache.
- Clean(target, files_or_dirs)
-
This specifies a list of files or directories which should be removed
whenever the target is specified with the
-c
command line option.
Multiple calls to
Clean()
are legal,
and create a new target or add files and directories to the
clean list for the specified target.
Multiple files or directories should be specified
either as separate arguments to the
Clean()
method, or as a list.
Clean()
will also accept the return value of any of the construction environment
Builder methods.
Examples:
-
Clean('foo', ['bar', 'baz'])
Clean('dist', env.Program('hello', 'hello.c'))
- Default(targets)
-
This specifies a list of default targets,
which will be built by
scons
if no explicit targets are given on the command line.
Multiple calls to
Default()
are legal,
and add to the list of default targets.
Multiple targets should be specified as
separate arguments to the
Default()
method, or as a list.
Default()
will also accept the Node returned by any
of a construction environment's
builder methods.
Examples:
-
Default('foo', 'bar', 'baz')
Default(['a', 'b', 'c'])
hello = env.Program('hello', 'hello.c')
Default(hello)
-
An argument to
Default()
of
None
will clear all default targets.
Later calls to
Default()
will add to the (now empty) default-target list
like normal.
- DefaultEnvironment([args])
-
Creates and returns a default construction environment object.
This construction environment is used internally by SCons
in order to fetch source files transparently
from source code management systems.
- Dir(name, [directory])
-
This returns an object that represents a given directory
name.
name
can be a relative or absolute path.
directory
is an optional directory that will be used as the parent directory.
- EnsurePythonVersion(major, minor)
-
Ensure that the Python version is at least
major.minor.
This function will
print out an error message and exit SCons with a non-zero exit code if the
actual Python version is not late enough.
-
EnsurePythonVersion(2,2)
- EnsureSConsVersion(major, minor)
-
Ensure that the SCons version is at least
major.minor.
This function will
print out an error message and exit SCons with a non-zero exit code if the
actual SCons version is not late enough.
-
EnsureSConsVersion(0,9)
- Exit([value])
-
This tells
scons
to exit immediately
with the specified
value.
A default exit value of
0
(zero)
is used if no value is specified.
- Export(vars)
-
This tells
scons
to export a list of variables from the current
SConscript file to all other SConscript files.
The exported variables are kept in a global collection,
so subsequent calls to
Export()
will over-write previous exports that have the same name.
Multiple variable names can be passed to
Export()
as separate arguments or as a list. A dictionary can be used to map
variables to a different name when exported. Both local variables and
global variables can be exported.
Examples:
-
env = Environment()
# Make env available for all SConscript files to Import().
Export("env")
package = 'my_name'
# Make env and package available for all SConscript files:.
Export("env", "package")
# Make env and package available for all SConscript files:
Export(["env", "package"])
# Make env available using the name debug:.
Export({"debug":env})
-
Note that the
SConscript()
function supports an
exports
argument that makes it easier to to export a variable or
set of variables to a single SConscript file.
See the description of the
SConscript()
function, below.
- File(name, [directory])
-
This returns an object that represents a given file
name.
name
can be a relative or absolute path.
directory
is an optional directory that will be used as the parent directory.
- FindFile(file, dirs)
-
Search for
file
in the path specified by
dirs.
file
may be a list of file names or a single file name. In addition to searching
for files that exist in the filesytem, this function also searches for
derived files that have not yet been built.
-
foo = FindFile('foo', ['dir1', 'dir2'])
- GetOption(name)
-
This function provides a way to query a select subset of the scons command line
options from a SConscript file. See
SetOption()
for a description of the options available.
- Help(text)
-
This specifies help text to be printed if the
-h
argument is given to
scons.
scons
will exit after printing out the help text.
- Import(vars)
-
This tells
scons
to import a list of variables into the current SConscript file. This
will import variables that were exported with
Export()
or in the
exports
argument to
SConscript().
Variables exported by
SConscript()
have precedence.
Multiple variable names can be passed to
Import()
as separate arguments or as a list. The variable "*" can be used
to import all variables.
Examples:
-
Import("env")
Import("env", "variable")
Import(["env", "variable"])
Import("*")
- Literal(string)
-
The specified
string
will be preserved as-is
and not have construction variables expanded.
- Local(targets)
-
The specified
targets
will have copies made in the local tree,
even if an already up-to-date copy
exists in a repository.
- ParseConfig(env, command, [function])
-
Calls the specified
function
to modify the specified environment
env
as specified by the output of
command .
The default
function
expects the output of a typical
*-config command
(for example,
gtk-config)
and parses the returned
-L,
-l,
-I
and other options
into the
LIBPATH,
LIBS,
CPPPATH
and
CCFLAGS
variables,
respectively.
- Platform(string)
-
Returns a callable object
that can be used to initialize
a construction environment using the
platform keyword of the Environment() method.
-
env = Environment(platform = Platform('win32'))
-
Note that the
win32
platform adds the
SYSTEMROOT
variable from the user's external environment
to the construction environment's
ENV
dictionary.
This is so that any executed commands
that use sockets to connect with other systems
(such as fetching source files from
external CVS repository specifications like
:pserver:anonymous@cvs.sourceforge.net:/cvsroot/scons)
will work on Win32 systems.
- Repository(directory)
-
Specifies that
directory
is a repository to be searched for files.
Multiple calls to
Repository()
are legal,
and each one adds to the list of
repositories that will be searched.
To
scons,
a repository is a copy of the source tree,
from the top-level directory on down,
which may contain
both source files and derived files
that can be used to build targets in
the local source tree.
The canonical example would be an
official source tree maintained by an integrator.
If the repository contains derived files,
then the derived files should have been built using
scons,
so that the repository contains the necessary
signature information to allow
scons
to figure out when it is appropriate to
use the repository copy of a derived file,
instead of building one locally.
Note that if an up-to-date derived file
already exists in a repository,
scons
will
not
make a copy in the local directory tree.
In order to guarantee that a local copy
will be made,
use the
Local()
method.
- Return(vars)
-
This tells
scons
what variable(s) to use as the return value(s) of the current SConscript
file. These variables will be returned to the "calling" SConscript file
as the return value(s) of
SConscript().
Multiple variable names should be passed to
Return()
as a list. Example:
-
Return("foo")
Return(["foo", "bar"])
- SetOption(name, value)
-
This function provides a way to set a select subset of the scons command
line options from a SConscript file. The options supported are: clean which
cooresponds to -c, --clean, and --remove; implicit_cache which corresponds
to --implicit-cache; max_drift which corresponds to --max-drift; and
num_jobs which corresponds to -j and --jobs. See the documentation for the
corresponding command line object for information about each specific
option. Example:
-
SetOption('max_drift', 1)
- SConscript(scripts, [exports, build_dir, src_dir, duplicate])
-
- SConscript(dirs=subdirs, [name=script, exports, build_dir, src_dir, duplicate])
-
This tells
scons
to execute
one or more subsidiary SConscript (configuration) files.
There are two ways to call the
SConscript()
function.
The first way you can call
SConscript()
is to explicitly specify one or more
scripts
as the first argument.
A single script may be specified as a string;
multiple scripts must be specified as a list
(either explicitly or as created by
a function like
Split()).
The second way you can call
SConscript()
is to specify a list of (sub)directory names
as a
dirs=subdirs
keyword argument.
In this case,
scons
will, by default,
execute a subsidiary configuration file named
SConscript
in each of the specified directories.
You may specify a name other than
SConscript
by supplying an optional
name=script
keyword argument.
The optional
exports
argument provides a list of variable names or a dictionary of
named values to export to the
script(s).
These variables are locally exported only to the specified
script(s),
and do not affect the
global pool of variables used by
the
Export()
function.
The subsidiary
script(s)
must use the
Import()
function to import the variables.
The optional
build_dir
argument specifies that all of the target files
(for example, object files and executables)
that would normally be built in the subdirectory in which
script
resides should actually
be built in
build_dir.
The optional
src_dir
argument specifies that the
source files from which
the target files should be built
can be found in
src_dir.
By default,
scons
will link or copy (depending on the platform)
all the source files into the build directory.
This behavior may be disabled by
setting the optional
duplicate
argument to 0
(it is set to 1 by default),
in which case
scons
will refer directly to
the source files in their source directory
when building target files.
(Setting
duplicate=0
is usually safe, and always more efficient
than the default of
duplicate=1,
but it may cause build problems in certain end-cases,
such as compiling from source files that
are generated by the build.)
Any variables returned by
script
using
Return()
will be returned by the call to
SConscript().
Examples:
-
SConscript('subdir/SConscript')
foo = SConscript('sub/SConscript', exports='env')
SConscript('dir/SConscript', exports=['env', 'variable'])
SConscript('src/SConscript', build_dir='build', duplicate=0)
SConscript('bld/SConscript', src_dir='src', exports='env variable')
SConscript(dirs=['sub1', 'sub2'])
SConscript(dirs=['sub3', 'sub4'], name='MySConscript')
- SConscriptChdir(value)
-
By default,
scons
changes its working directory
to the directory in which each
subsidiary SConscript file lives.
This behavior may be disabled
by specifying:
-
SConscriptChdir(0)
-
in which case
scons
will stay in the top-level directory
while reading all SConscript files.
(This may be necessary when building from repositories,
when all the directories in which SConscript files may be found
don't necessarily exist locally.)
You may enable and disable
this ability by calling
SConscriptChdir()
multiple times:
-
SConscriptChdir(0)
SConscript('foo/SConscript') # will not chdir to foo
SConscriptChdir(1)
SConscript('bar/SConscript') # will chdir to bar
- SourceSignatures(type)
-
This function tells SCons what type of signature to use for source files:
MD5
or
timestamp.
"MD5" means the signature of a source file
is the MD5 checksum of its contents.
"timestamp" means the signature of a source file
is its timestamp (modification time).
When using "timestamp" signatures,
changes in the command line will not cause files to be rebuilt.
"MD5" signatures take longer to compute,
but are more accurate than "timestamp" signatures.
The default is "MD5".
- Split(arg)
-
Returns a list of file names or other objects.
If arg is a string,
it will be split on strings of white-space characters
within the string,
making it easier to write long lists of file names.
If arg is already a list,
the list will be returned untouched.
If arg is any other type of object,
it will be returned as a list
containing just the object.
-
files = Split("f1.c f2.c f3.c")
files = Split("""
f4.c
f5.c
f6.c
""")
- TargetSignatures(type)
-
This function tells SCons what type of signatures to use
for target files:
build
or
content.
"build" means the signature of a target file
is made by concatenating all of the
signatures of all its source files.
"content" means the signature of a target
file is an MD5 checksum of its contents.
"build" signatures are usually faster to compute,
but "content" signatures can prevent unnecessary rebuilds
when a target file is rebuilt to the exact same contents as last time.
The default is "build".
- Tool(string)
-
Returns a callable object
that can be used to initialize
a construction environment using the
tools keyword of the Environment() method.
-
env = Environment(tools = [ Tool('msvc') ])
-
The object may be called with a construction
environment as an argument,
in which case the object will be
add the necessary variables
to the construction environment
and the name of the tool will be added to the
$TOOLS
construction variable.
-
env = Environment()
t = Tool('msvc')
t(env) # adds 'msvc' to the TOOLS variable
- Value(value)
-
Returns a Node object representing the specified Python value. Value
nodes can be used as dependencies of targets. If the result of
calling
str(value)
changes between SCons runs, any targets depending on
Value(value)
will be rebuilt. When using timestamp source signatures, Value nodes'
timestamps are equal to the system time when the node is created.
-
def create(target, source, env):
f = open(str(target[0]), 'wb')
f.write('prefix=' + source[0].get_contents())
prefix = ARGUMENTS.get('prefix', '/usr/local')
env = Environment()
env['BUILDERS']['Config'] = Builder(action = create)
env.Config(target = 'package-config', source = Value(prefix))
- WhereIs(program, [path, [pathext]])
-
Searches for the specified executable
program,
returning the full path name to the program
if it is found,
and returning None if not.
Searches the specified
path,
or the user's current PATH
(os.environ['PATH'])
by default.
On Win32 systems, searches for executable
programs with any of the file extensions
listed in the specified
pathext,
or the user's current PATHEXT
(os.environ['PATHEXT'])
by default.
EXTENDING SCONS
Builder Objects
scons
can be extended by adding new builders to a construction
environment using the
Builder
function.
The
Builder
function accepts the following arguments:
- action
-
The command line string used to build the target from the source.
action
can also be:
a list of strings representing the command
to be executed and its arguments
(suitable for enclosing white space in an argument),
a dictionary
mapping source file name suffixes to
any combination of command line strings
(if the builder should accept multiple source file extensions),
a Python function;
an Action object
(see the next section);
or a list of any of the above.
An action function
takes three arguments:
source
- a list of source nodes,
target
- a list of target nodes,
env
- the construction environment.
- multi
-
Specifies whether this builder is allowed to be called multiple times for
the same target file(s). The default is 0, which means the builder
can not be called multiple times for the same target file(s). Calling a
builder multiple times for the same target simply adds additional source
files to the target; it is not allowed to change the environment associated
with the target, specify addition environment overrides, or associate a different
builder with the target.
- prefix
-
The prefix that will be prepended to the target file name.
This may be a simple string, or a callable object that takes
two arguments, a construction environment and a list of sources,
and returns a prefix.
-
b = Builder("build_it < $SOURCE > $TARGET"
prefix = "file-")
def gen_prefix(env, sources):
return "file-" + env['PLATFORM'] + '-'
b = Builder("build_it < $SOURCE > $TARGET"
prefix = gen_prefix)
- suffix
-
The suffix that will be appended to the target file name.
This may be a simple string, or a callable object that takes
two arguments, a construction environment and a list of sources,
and returns a suffix.
If the suffix is a string, then
scons
will append a '.' to the beginning of the
suffix if it's not already there.
The string returned by callable object
is untouched and must append its own '.'
to the beginning if one is desired.
-
b = Builder("build_it < $SOURCE > $TARGET"
suffix = "file-"
def gen_suffix(env, sources):
return "." + env['PLATFORM'] + "-file"
b = Builder("build_it < $SOURCE > $TARGET"
suffix = gen_suffix)
- src_suffix
-
The expected source file name suffix.
- src_builder
-
Specifies a builder to use when a source file name suffix does not match
any of the suffixes of the builder. Using this argument produces a
multi-stage builder.
- emitter
-
A function to manipulate the target and source
lists before dependencies are established
and the target(s) are actually built.
emitter
can also be string containing a construction variable to expand
to an emitter function,
or a dictionary mapping source file suffixes
to emitter functions.
(Only the suffix of the first source file
is used to select the actual emitter function
from an emitter dictionary.)
An emitter function
takes three arguments:
source
- a list of source nodes,
target
- a list of target nodes,
env
- the construction environment.
An emitter must return a tuple containing two lists,
the list of targets to be built by this builder,
and the list of sources for this builder.
Example:
-
def e(target, source, env):
return (target + ['foo.foo'], source + ['foo.src'])
# Simple association of an emitter function with a Builder.
b = Builder("my_build < $TARGET > $SOURCE",
emitter = e)
# Calling an emitter through a construction variable.
env = Environment(MY_EMITTER = e)
b = Builder("my_build < $TARGET > $SOURCE",
emitter = '$MY_EMITTER')
# Associating multiple emitters with different file
# suffixes using a dictionary.
def e_suf1(target, source, env):
return (target + ['another_target_file'], source)
def e_suf2(target, source, env):
return (target, source + ['another_source_file'])
b = Builder("my_build < $TARGET > $SOURCE",
emitter = {'.suf1' : e_suf1,
'.suf2' : e_suf2})
- generator
-
A function that returns a list of actions that will be executed to build
the target(s) from the source(s).
The returned action(s) may be
an Action object, or anything that
can be converted into an Action object
(see the next section).
The generator function
takes four arguments:
source
- a list of source nodes,
target
- a list of target nodes,
env
- the construction environment,
for_signature
- a Boolean value that specifies
whether the generator is being called
for generating a build signature
(as opposed to actually executing the command).
Example:
-
def g(source, target, env, for_signature):
return [["gcc", "-c", "-o"] + target + source]
b = Builder(generator=g)
The
generator
and
action
arguments must not both be used for the same Builder.
- env
-
A construction environment that can be used
to fetch source code using this Builder.
(Note that this environment is
not
used for normal builds of normal target files,
which use the environment that was
used to call the Builder for the target file.)
- overrides
-
A dictionary of construction variables
that will be set in the executing
construction environment when this
Builder is invoked.
The canonical example here would be
to set a construction variable to
the repository of a source code system.
Any additional keyword arguments supplied
when a Builder object is called
will be associated with the target
(and any other files built as a
result of the call).
-
b = Builder(action="build < $SOURCE > $TARGET")
env = Environment(BUILDERS = {'MyBuild' : b})
env.MyBuild('foo.out', 'foo.in', my_arg = 'xyzzy')
These extra keyword arguments are passed to the
following functions:
command generator functions,
function Actions,
and emitter functions.
Action Objects
The Builder function will turn its
action
keyword argument into an appropriate
internal Action object.
Occasionally, it may be more efficient
to create an explicit Action object
and use it to initialize multiple
Builder objects,
rather than let each separate Builder object
create a separate Action.
The Action method takes one or two arguments
and returns an appropriate object for the action
represented by the type of the first argument:
- Action
-
If the first argument is already an Action object,
the object is simply returned.
- String
-
If the first argument is a string,
a command-line Action is returned.
-
Action('$CC -c -o $TARGET $SOURCES')
- List
-
If the first argument is a list,
then a list of Action objects is returned.
An Action object is created as necessary
for each element in the list.
If an element
within
the list is itself a list,
the internal list is the
command and arguments to be executed via
the command line.
This allows white space to be enclosed
in an argument by defining
a command in a list within a list:
-
Action([['cc', '-c', '-DWHITE SPACE', '-o', '$TARGET', '$SOURCES']])
- Function
-
If the first argument is a Python function,
a function Action is returned.
The Python function takes three keyword arguments,
target
(a Node object representing the target file),
source
(a Node object representing the source file)
and
env
(the construction environment
used for building the target file).
The
target
and
source
arguments may be lists of Node objects if there is
more than one target file or source file.
The actual target and source file name(s) may
be retrieved from their Node objects
via the built-in Python str() function:
-
target_file_name = str(target)
source_file_names = map(lambda x: str(x), source)
-
The function should return
0
or
None
to indicate a successful build of the target file(s).
The function may raise an exception
or return a non-zero exit status
to indicate an unsuccessful build.
-
def build_it(target = None, source = None, env = None):
# build the target from the source
return 0
a = Action(build_it)
The second, optional argument
is a Python function that returns
a string to be printed to describe the action being executed.
Like the function to build a file,
this function takes three arguments:
target
(a Node object representing the target file),
source
(a Node object representing the source file)
and
env
(a construction environment).
The
target
and
source
arguments may be lists of Node objects if there is
more than one target file or source file.
Examples:
-
def build_it(target, source, env):
# build the target from the source
return 0
def string_it(target, source, env):
return "building '%s' from '%s'" % (target[0], source[0])
# Use a positional argument.
a = Action(build_it, string_it)
# Alternatively, use a keyword argument.
a = Action(build_it, strfunction=string_it)
The third, also optional argument
is a list of construction variables
whose values will be included
in the signature of the Action
when deciding whether a target should
be rebuilt because the action changed.
This is necessary whenever you want a target to
be rebuilt when a specific
construction variable changes,
because the underlying Python code for a function
will not change when the value of the construction variable does.
-
def build_it(target, source, env):
# build the target from the 'XXX' construction variable
open(target[0], 'w').write(env['XXX'])
return 0
def string_it(target, source):
return "building '%s' from '%s'" % (target[0], source[0])
# Use positional arguments.
a = Action(build_it, string_it, ['XXX'])
# Alternatively, use a keyword argument.
a = Action(build_it, varlist=['XXX'])
If the action argument is not one of the above,
None is returned.
Variable Substitution
Before executing a command,
scons
performs construction variable interpolation on the strings that make up
the command line of builders.
Variables are introduced by a
$
prefix.
Besides construction variables, scons provides the following
variables for each command execution:
- TARGET
-
The file name of the target being built, or the file name of the first
target if multiple targets are being built.
- TARGETS
-
The file names of all targets being built.
- SOURCE
-
The file name of the source of the build command, or the file name of the
first source if multiple sources are being built.
- SOURCES
-
The file names of the sources of the build command.
(Note that the above variables are reserved
and may not be set in a construction environment.)
For example, given the construction variable CC='cc', targets=['foo'], and
sources=['foo.c', 'bar.c']:
-
action='$CC -c -o $TARGET $SOURCES'
would produce the command line:
-
cc -c -o foo foo.c bar.c
Variable names may be surrounded by curly braces ({})
to separate the name from the trailing characters.
Within the curly braces, a variable name may have
a Python slice subscript appended to select one
or more items from a list.
In the previous example, the string:
-
${SOURCES[1]}
would produce:
-
bar.c
Additionally, a variable name may
have the following special
modifiers appended within the enclosing curly braces
to modify the interpolated string:
- base
-
The base path of the file name,
including the directory path
but excluding any suffix.
- dir
-
The name of the directory in which the file exists.
- file
-
The file name,
minus any directory portion.
- filebase
-
Just the basename of the file,
minus any suffix
and minus the directory.
- suffix
-
Just the file suffix.
- abspath
-
The absolute path name of the file.
- posix
-
The POSIX form of the path,
with directories separated by
/
(forward slashes)
not backslashes.
This is sometimes necessary on Win32 systems
when a path references a file on other (POSIX) systems.
- srcpath
-
The directory and file name to the source file linked to this file
through BuildDir. If this file isn't linked, it just returns the
directory and filename unchanged.
- srcdir
-
The directory containing the source file linked to this file
through BuildDir. If this file isn't linked, it just returns the
directory part of the filename.
For example, the specified target will
expand as follows for the corresponding modifiers:
-
$TARGET => sub/dir/file.x
${TARGET.base} => sub/dir/file
${TARGET.dir} => sub/dir
${TARGET.file} => file.x
${TARGET.filebase} => file
${TARGET.suffix} => .x
${TARGET.abspath} => /top/dir/sub/dir/file.x
BuildDir('sub/dir','src')
$SOURCE => sub/dir/file.x
${SOURCE.srcpath} => src/file.x
${SOURCE.srcdir} => src
Lastly, a variable name
may be a callable Python function
associated with a
construction variable in the environment.
The function should
take four arguments:
target
- a list of target nodes,
source
- a list of source nodes,
env
- the construction environment,
for_signature
- a Boolean value that specifies
whether the function is being called
for generating a build signature.
SCons will insert whatever
the called function returns
into the expanded string:
-
def foo(target, source, env, for_signature):
return "bar"
# Will expand $BAR to "bar baz"
env=Environment(FOO=foo, BAR="$FOO baz")
You can use this feature to pass arguments to a
Python function by creating a callable class
that stores one or more arguments in an object,
and then uses them when the
__call__()
method is called.
Note that in this case,
the entire variable expansion must
be enclosed by curly braces
so that the arguments will
be associated with the
instantiation of the class:
-
class foo:
def __init__(self, arg):
self.arg = arg
def __call__(self, target, source, env):
return arg + " bar"
# Will expand $BAR to "my argument bar baz"
env=Environment(FOO=foo, BAR="${FOO('my argument')} baz")
The special pseudo-variables
$(
and
$)
may be used to surround parts of a command line
that may change
without
causing a rebuild--that is,
which are not included in the signature
of target files built with this command.
All text between
$(
and
$)
will be removed from the command line
before it is added to file signatures,
and the
$(
and
$)
will be removed before the command is executed.
For example, the command line:
-
echo Last build occurred $( $TODAY $). > $TARGET
would execute the command:
-
echo Last build occurred $TODAY. > $TARGET
but the command signature added to any target files would be:
-
echo Last build occurred . > $TARGET
SCons uses the following rules when converting construction variables into
command lines:
- String
-
When the value is a string it is interpreted as a space delimited list of
command line arguments.
- List
-
When the value is a list it is interpreted as a list of command line
arguments. Each element of the list is converted to a string.
- Other
-
Anything that is not a list or string is converted to a string and
interpreted as a single command line argument.
- Newline
-
Newline characters (\n) delimit lines. The newline parsing is done after
all other parsing, so it is not possible for arguments (e.g. file names) to
contain embedded newline characters. This limitation will likely go away in
a future version of SCons.
Scanner Objects
You can use the
Scanner
function to define
objects to scan
new file types for implicit dependencies.
Scanner accepts the following arguments:
- function
-
A Python function that will process
the Node (file)
and return a list of strings (file names)
representing the implicit
dependencies found in the contents.
The function takes three or four arguments:
def scanner_function(node, env, path):
def scanner_function(node, env, path, arg):
The
node
argument is the internal
SCons node representing the file.
Use
str(node)
to fetch the name of the file, and
node.get_contents()
to fetch contents of the file.
The
env
argument is the construction environment for the scan.
Fetch values from it using the
env.Dictionary()
method.
The
path
argument is a tuple (or list)
of directories that can be searched
for files.
This will usually be the tuple returned by the
path_function
argument (see below).
The
arg
argument is the argument supplied
when the scanner was created, if any.
- name
-
The name of the Scanner.
This is mainly used
to identify the Scanner internally.
- argument
-
An optional argument that, if specified,
will be passed to the scanner function
(described above)
and the path function
(specified below).
- skeys
-
An optional list that can be used to
determine which scanner should be used for
a given Node.
In the usual case of scanning for file names,
this array will be a list of suffixes
for the different file types that this
Scanner knows how to scan.
- path_function
-
A Python function that takes
two or three arguments:
a construction environment, directory Node,
and optional argument supplied
when the scanner was created.
The
path_function
returns a tuple of directories
that can be searched for files to be returned
by this Scanner object.
- node_class
-
The class of Node that should be returned
by this Scanner object.
Any strings or other objects returned
by the scanner function
that are not of this class
will be run through the
node_factory
function.
- node_factory
-
A Python function that will take a string
or other object
and turn it into the appropriate class of Node
to be returned by this Scanner object.
- scan_check
-
An optional Python function that takes a Node (file)
as an argument and returns whether the
Node should, in fact,
be scanned for dependencies.
This check can be used to eliminate unnecessary
calls to the scanner function when,
for example, the underlying file
represented by a Node does not yet exist.
- recursive
-
An optional flag that
specifies whether this scanner should be re-invoked
on the dependency files returned by the scanner.
When this flag is not set,
the Node subsystem will
only invoke the scanner on the file being scanned,
and not (for example) also on the files
specified by the #include lines
in the file being scanned.
SYSTEM-SPECIFIC BEHAVIOR
SCons and its configuration files are very portable,
due largely to its implementation in Python.
There are, however, a few portability
issues waiting to trap the unwary.
.C file suffix
SCons handles the upper-case
.C
file suffix differently,
depending on the capabilities of
the underlying system.
On a case-sensitive system
such as Linux or UNIX,
SCons treats a file with a
.C
suffix as a C++ source file.
On a case-insensitive system
such as Windows,
SCons treats a file with a
.C
suffix as a C source file.
.F file suffix
SCons handles the upper-case
.F
file suffix differently,
depending on the capabilities of
the underlying system.
On a case-sensitive system
such as Linux or UNIX,
SCons treats a file with a
.F
suffix as a Fortran source file
that is to be first run through
the standard C preprocessor.
On a case-insensitive system
such as Windows,
SCons treats a file with a
.F
suffix as a Fortran source file that should
not
be run through the C preprocessor.
WIN32: Cygwin Tools and Cygwin Python vs. Windows Pythons
Cygwin supplies a set of tools and utilities
that let users work on a
Windows system using a more POSIX-like environment.
The Cygwin tools, including Cygwin Python,
do this, in part,
by sharing an ability to interpret UNIX-like path names.
For example, the Cygwin tools
will internally translate a Cygwin path name
like /cygdrive/c/mydir
to an equivalent Windows pathname
of C:/mydir (equivalent to C:\mydir).
Versions of Python
that are built for native Windows execution,
such as the python.org and ActiveState versions,
do not have the Cygwin path name semantics.
This means that using a native Windows version of Python
to build compiled programs using Cygwin tools
(such as gcc, bison, and flex)
may yield unpredictable results.
"Mixing and matching" in this way
can be made to work,
but it requires careful attention to the use of path names
in your SConscript files.
In practice, users can sidestep
the issue by adopting the following rules:
When using gcc,
use the Cygwin-supplied Python interpreter
to run SCons;
when using Microsoft Visual C/C++
(or some other Windows compiler)
use the python.org or ActiveState version of Python
to run SCons.
WIN32: scons.bat file
On WIN32 systems,
SCons is executed via a wrapper
scons.bat
file.
This has (at least) two ramifications:
First, Windows command-line users
that want to use variable assignment
on the command line
may have to put double quotes
around the assignments:
-
scons "FOO=BAR" "BAZ=BLEH"
Second, the Cygwin shell does not
recognize this file as being the same
as an
scons
command issued at the command-line prompt.
You can work around this either by
executing
scons.bat
from the Cygwin command line,
or by creating a wrapper shell
script named
scons .
MinGW
The MinGW bin directory must be in your PATH environment variable or the
PATH variable under the ENV construction variable for SCons
to detect and use the MinGW tools. When running under the native Windows
Python interpreter, SCons will prefer the MinGW tools over the Cygwin
tools, if they are both installed, regardless of the order of the bin
directories in the PATH variable. If you have both MSVC and MinGW
installed and you want to use MinGW instead of MSVC,
then you must explictly tell SCons to use MinGW by passing
-
tools=['mingw']
to the Environment() function, because SCons will prefer the MSVC tools
over the MinGW tools.
EXAMPLES
To help you get started using SCons,
this section contains a brief overview of some common tasks.
NOTE: SCons does
not
build all of its targets by default,
like other build tools do.
The canonical way to invoke SCons
is with a target of '.' (dot)
to represent all targets in and below the current directory:
-
scons .
One or more default targets may be specified
via the Default() method
in the SConstruct file.
Basic Compilation From a Single Source File
-
env = Environment()
env.Program(target = 'foo', source = 'foo.c')
Note: Build the file by specifying
the target as an argument
("scons foo" or "scons foo.exe").
or by specifying a dot ("scons .").
Basic Compilation From Multiple Source Files
-
env = Environment()
env.Program(target = 'foo', source = Split('f1.c f2.c f3.c'))
Setting a Compilation Flag
-
env = Environment(CCFLAGS = '-g')
env.Program(target = 'foo', source = 'foo.c')
Search The Local Directory For .h Files
Note: You do
not
need to set CCFLAGS to specify -I options by hand.
SCons will construct the right -I options from CPPPATH.
-
env = Environment(CPPPATH = ['.'])
env.Program(target = 'foo', source = 'foo.c')
Search Multiple Directories For .h Files
-
env = Environment(CPPPATH = ['include1', 'include2'])
env.Program(target = 'foo', source = 'foo.c')
Building a Static Library
-
env = Environment()
env.StaticLibrary(target = 'foo', source = Split('l1.c l2.c'))
env.StaticLibrary(target = 'bar', source = ['l3.c', 'l4.c'])
Building a Shared Library
-
env = Environment()
env.SharedLibrary(target = 'foo', source = ['l5.c', 'l6.c'])
env.SharedLibrary(target = 'bar', source = Split('l7.c l8.c'))
Linking a Local Library Into a Program
-
env = Environment(LIBS = 'mylib', LIBPATH = ['.'])
env.Library(target = 'mylib', source = Split('l1.c l2.c'))
env.Program(target = 'prog', source = ['p1.c', 'p2.c'])
Defining Your Own Builder Object
Notice that when you invoke the Builder,
you can leave off the target file suffix,
and SCons will add it automatically.
-
bld = Builder(action = 'pdftex < $SOURCES > $TARGET'
suffix = '.pdf',
src_suffix = '.tex')
env = Environment(BUILDERS = {'PDFBuilder' : bld})
env.PDFBuilder(target = 'foo.pdf', source = 'foo.tex')
# The following creates "bar.pdf" from "bar.tex"
env.PDFBuilder(target = 'bar', source = 'bar')
Note also that the above initialization
overwrites the default Builder objects,
so the Environment created above
can not be used call Builders like env.Program(),
env.Object(), env.StaticLibrary(), etc.
Adding Your Own Builder Object to an Environment
-
bld = Builder(action = 'pdftex < $SOURCES > $TARGET'
suffix = '.pdf',
src_suffix = '.tex')
env = Environment()
env.Append(BUILDERS = {'PDFBuilder' : bld})
env.PDFBuilder(target = 'foo.pdf', source = 'foo.tex')
env.Program(target = 'bar', source = 'bar.c')
You also can use other Pythonic techniques to add
to the BUILDERS construction variable, such as:
-
env = Environment()
env['BUILDERS]['PDFBuilder'] = bld
Defining Your Own Scanner Object
-
import re
include_re = re.compile(r'^include\s+(\S+)$', re.M)
def kfile_scan(node, env, path, arg):
contents = node.get_contents()
includes = include_re.findall(contents)
return includes
kscan = Scanner(name = 'kfile',
function = kfile_scan,
argument = None,
skeys = ['.k'])
scanners = Environment().Dictionary('SCANNERS')
env = Environment(SCANNERS = scanners + [kscan])
env.Command('foo', 'foo.k', 'kprocess < $SOURCES > $TARGET')
bar_in = File('bar.in')
env.Command('bar', bar_in, 'kprocess $SOURCES > $TARGET')
bar_in.target_scanner = kscan
Creating a Hierarchical Build
Notice that the file names specified in a subdirectory's
SConscript
file are relative to that subdirectory.
-
SConstruct:
env = Environment()
env.Program(target = 'foo', source = 'foo.c')
SConscript('sub/SConscript')
sub/SConscript:
env = Environment()
# Builds sub/foo from sub/foo.c
env.Program(target = 'foo', source = 'foo.c')
SConscript('dir/SConscript')
sub/dir/SConscript:
env = Environment()
# Builds sub/dir/foo from sub/dir/foo.c
env.Program(target = 'foo', source = 'foo.c')
Sharing Variables Between SConscript Files
You must explicitly Export() and Import() variables that
you want to share between SConscript files.
-
SConstruct:
env = Environment()
env.Program(target = 'foo', source = 'foo.c')
Export("env")
SConscript('subdirectory/SConscript')
subdirectory/SConscript:
Import("env")
env.Program(target = 'foo', source = 'foo.c')
Building Multiple Variants From the Same Source
Use the BuildDir() method to establish
one or more separate build directories for
a given source directory,
then use the SConscript() method
to specify the SConscript files
in the build directories:
-
SConstruct:
ccflags = '-DFOO'
Export("ccflags")
BuildDir('foo', 'src')
SConscript('foo/SConscript')
ccflags = '-DBAR'
Export("ccflags")
BuildDir('bar', 'src')
SConscript('bar/SConscript')
src/SConscript:
Import("ccflags")
env = Environment(CCFLAGS = ccflags)
env.Program(target = 'src', source = 'src.c')
Note the use of the Export() method
to set the "ccflags" variable to a different
value for each variant build.
Hierarchical Build of Two Libraries Linked With a Program
-
SConstruct:
env = Environment(LIBPATH = ['#libA', '#libB'])
Export('env')
SConscript('libA/SConscript')
SConscript('libB/SConscript')
SConscript('Main/SConscript')
libA/SConscript:
Import('env')
env.Library('a', Split('a1.c a2.c a3.c'))
libB/SConscript:
Import('env')
env.Library('b', Split('b1.c b2.c b3.c'))
Main/SConscript:
Import('env')
e = env.Copy(LIBS = ['a', ','b'])
e.Program('foo', Split('m1.c m2.c m3.c'))
The '#' in the LIBPATH directories specify that they're relative to the
top-level directory, so they don't turn into "Main/libA" when they're
used in Main/SConscript.
Specifying only 'a' and 'b' for the library names
allows SCons to append the appropriate library
prefix and suffix for the current platform
(for example, 'liba.a' on POSIX systems,
Customizing contruction variables from the command line.
The following would allow the C compiler to be specified on the command
line or in the file custom.py.
-
opts = Options('custom.py')
opts.Add('CC', 'The C compiler.')
env = Environment(options=opts)
Help(opts.GenerateHelpText(env))
The user could specify the C compiler on the command line:
-
scons "CC=my_cc"
or in the custom.py file:
-
CC = 'my_cc'
or get documentation on the options:
-
$ scons -h
CC: The C compiler.
default: None
actual: cc
Using Microsoft Visual C++ precompiled headers
Since windows.h includes everything and the kitchen sink, it can take quite
some time to compile it over and over again for a bunch of object files, so
Microsoft provides a mechanism to compile a set of headers once and then
include the previously compiled headers in any object file. This
technology is called precompiled headers. The general recipe is to create a
file named "StdAfx.cpp" that includes a single header named "StdAfx.h", and
then include every header you want to precompile in "StdAfx.h", and finally
include "StdAfx.h" as the first header in all the source files you are
compiling to object files. For example:
StdAfx.h:
-
#include <windows.h>
#include <my_big_header.h>
StdAfx.cpp:
-
#include <StdAfx.h>
Foo.cpp:
-
#include <StdAfx.h>
/* do some stuff */
Bar.cpp:
-
#include <StdAfx.h>
/* do some other stuff */
SConstruct:
-
env=Environment()
env['PCHSTOP'] = 'StdAfx.h'
env['PCH'] = env.PCH('StdAfx.cpp')[0]
env.Program('MyApp', ['Foo.cpp', 'Bar.cpp'])
For more information see the document for the PCH builder, and the PCH and
PCHSTOP construction variables. To learn about the details of precompiled
headers consult the MSDN documention for /Yc, /Yu, and /Yp.
Using Microsoft Visual C++ external debugging information
Since including debugging information in programs and shared libraries can
cause their size to increase significantly, Microsoft provides a mechanism
for including the debugging information in an external file called a PDB
file. SCons supports PDB files through the PDB construction
variable.
SConstruct:
-
env=Environment()
env['PDB'] = 'MyApp.pdb'
env.Program('MyApp', ['Foo.cpp', 'Bar.cpp'])
For more information see the document for the PDB construction variable.
ENVIRONMENT
- SCONS_LIB_DIR
-
Specifies the directory that contains the SCons Python module directory
(e.g. /home/aroach/scons-src-0.01/src/engine).
- SCONSFLAGS
-
A string of options that will be used by scons in addition to those passed
on the command line.
SEE ALSO
scons
User Manual,
scons
Design Document,
scons
source code.
AUTHORS
Steven Knight <knight@baldmt.com>
Anthony Roach <aroach@electriceyeball.com>
Index
- NAME
-
- SYNOPSIS
-
- DESCRIPTION
-
- OPTIONS
-
- CONFIGURATION FILE REFERENCE
-
- Construction Environments
-
- Builder Methods
-
- Other Construction Environment Methods
-
- Construction Variables
-
- Configure contexts
-
- Construction Variable Options
-
- Other Functions
-
- EXTENDING SCONS
-
- Builder Objects
-
- Action Objects
-
- Variable Substitution
-
- Scanner Objects
-
- SYSTEM-SPECIFIC BEHAVIOR
-
- .C file suffix
-
- .F file suffix
-
- WIN32: Cygwin Tools and Cygwin Python vs. Windows Pythons
-
- WIN32: scons.bat file
-
- MinGW
-
- EXAMPLES
-
- Basic Compilation From a Single Source File
-
- Basic Compilation From Multiple Source Files
-
- Setting a Compilation Flag
-
- Search The Local Directory For .h Files
-
- Search Multiple Directories For .h Files
-
- Building a Static Library
-
- Building a Shared Library
-
- Linking a Local Library Into a Program
-
- Defining Your Own Builder Object
-
- Adding Your Own Builder Object to an Environment
-
- Defining Your Own Scanner Object
-
- Creating a Hierarchical Build
-
- Sharing Variables Between SConscript Files
-
- Building Multiple Variants From the Same Source
-
- Hierarchical Build of Two Libraries Linked With a Program
-
- Customizing contruction variables from the command line.
-
- Using Microsoft Visual C++ precompiled headers
-
- Using Microsoft Visual C++ external debugging information
-
- ENVIRONMENT
-
- SEE ALSO
-
- AUTHORS
-
This document was created by
man2html,
using the manual pages.
Time: 23:18:34 GMT, August 19, 2003